
Lossless Migrations of
Link-State IGPs

Laurent Vanbever, Student Member, IEEE, Stefano Vissicchio, Cristel Pelsser,
Pierre Francois, Member, IEEE, and Olivier Bonaventure, Member, IEEE

Seminar in Distributed Computing
Jochen Zehnder

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Table of Contents
1. Topology of the Internet

2. Migration Problem

3. Evaluation

4. Summary

5. Q&A

!2

/ 32

Topology of the
Internet

!3

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Topology of the Internet

!4

http://www.cisco.com/c/en/us/td/docs/ios/12_2sr/12_2srb/feature/guide/tbgp_c/brbclns.html

http://www.cisco.com/c/en/us/td/docs/ios/12_2sr/12_2srb/feature/guide/tbgp_c/brbclns.html

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Autonomous System (AS)

“An AS is a connected group of one or more IP
prefixes run by one or more network operators
which has a SINGLE and CLEARLY DEFINED

routing policy.” (RFC 1930)

!5

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Autonomous System (AS)
• groups of IP prefixes

• e.g. AS559 (ETH-NET)

• 129.132.0.0/16

!6

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Autonomous System (AS)
• groups of IP prefixes

• e.g. AS559 (ETH-NET)

• 129.132.0.0/16

• two types of protocols

• Border Gateway Protocol (BGP)

• Interior Gateway Protocol (IGP)

!6

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Interior Gateway Protocol
• flat vs. hierarchical

• flat: forward packets along the shortest path

• hierarchical: divided into zones

!7

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Interior Gateway Protocol
• flat vs. hierarchical

• flat: forward packets along the shortest path

• hierarchical: divided into zones

• route summarization

• for hierarchical IGP

• zone announces available prefixes and

• length of the path

!7

/ 32

Migration Problem

!8

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

next-hop function
• next-hop function

• : router

• : destination

!9

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

next-hop function
• next-hop function

• : router

• : destination

• next router towards d

!9

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

next-hop function
• next-hop function

• : router

• : destination

• next router towards d

• does not have to be 1

!9

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

VANBEVER et al.: LOSSLESS MIGRATIONS OF LINK-STATE IGPs 1845

Fig. 1. Bad square gadget. When the IGP hierarchy is modified, a given mi-
gration ordering is needed between and to avoid forwarding loops.

In the following, we describe the issues that must be ad-
dressed in each migration scenario we target, using the notation
introduced in Section II-B.
1) Protocol Replacement: This migration scenario consists

of replacing the running IGP protocol, but keeping the same
function in the initial and in the final configurations. A classical
example of such a scenario is the replacement of an OSPF con-
figuration with the corresponding IS-IS configuration [3]. Since
the function is the same in both IGPs, routers can bemigrated
in any order without creating loops.
2) Hierarchy Modification: Three migration scenarios are

encompassed by the modification of the IGP hierarchy. First, a
flat IGP can be replaced by a hierarchical IGP by introducing
several zones. Second, a hierarchical IGP can be migrated into
a flat IGP by removing peripheral zones and keeping only one
zone. Third, the structure of the zone in a hierarchical IGP can
be changed, e.g., making the backbone bigger or smaller. We
refer to these scenarios as flat2hier, hier2flat and hier2hier,
respectively.
Unlike protocol replacement, changing the mode of the IGP

configuration can require a specific router migration ordering.
Indeed, the function can change in hierarchy modification
scenarios because of the intrazone over interzone path prefer-
ence rule applied by routers in hierarchical IGPs (see Section II).
Hence, forwarding loops can arise due to inconsistencies be-
tween already migrated routers and routers that are not migrated
yet. Consider for example the topology depicted on the left side
of Fig. 1. In a flat2hier scenario, some routers change their
next-hop toward destinations and . In particular, the right
side of Fig. 1 shows the next-hop function for all the routers
when the destination is . During the migration process, a
forwarding loop arises for traffic destined to if is mi-
grated before . Indeed, reaches via in hierarchical
mode, and reaches via in flat mode. Hence, for each
time where is already migrated and is not, the for-
warding path used by is
since and .
Notice that such a loop lasts until is migrated. A symmetric
constraint holds between routers and for traffic destined
to . A loop-free migration can be achieved by migrating
and before and .
Nevertheless, there are also cases in which it is not possible

to avoid loops during the migration. Consider, for example, the
topology represented in Fig. 2. In this topology, symmetric con-
straints between and for traffic destined to and
imply the impossibility of finding a loop-free ordering. We refer
the reader to the central and the right parts of Fig. 2 to visualize
the next-hop functions in flat and hierarchical modes.
Similar examples can be found for hier2flat and hier2hier

migrations. They are omitted for brevity. Observe that problems

in hierarchy modification scenarios are mitigated in protocols
such as IS-IS that natively support multiple adjacencies [1]. In
fact, multiple adjacencies belonging to different zones decrease
the number of cases in which the function changes during the
migration. However, migration loops can still arise, depending
on the initial and the final configurations.
3) Route Summarization: Introducing or removing route

summarization (i.e., summarization scenarios) in a network can
lead to forwarding loops. For example, consider the topology
represented in the left part of Fig. 3. The right part of the figure
visualizes the functions before and after the introduction
of route summarization. In this case, the introduction of route
summarization on and can lead to a forwarding loop
between and for traffic destined to . Indeed, before
summarizing routes, and prefer to send traffic destined
to via . On the other hand, when summarization is
introduced, and propagate one aggregate for both
and with the same weight. Hence, and change their
next-hop since the path to has a lower weight than the path
to .
As for hierarchy modifications, no loop-free ordering exists

in some cases. An example of such a situation can be built by
simply replicating the topology in Fig. 3 so that symmetric con-
straints on the migration order hold between and .

IV. METHODOLOGY

Fig. 4 illustrates the main steps of our methodology. In the
first step, we precompute an ordering in which to seamlessly mi-
grate routers with no packet loss (Section V). Migrating all the
routers at once is not a viable solution in practice as it can gen-
erate protocol-dependent loops and control-plane traffic storms
concerning all the protocols (BGP, LDP, PIM, etc.) that rely on
the IGP. Moreover, this approach prevents operators from con-
trolling the migration process and from falling back to a pre-
vious working state when a problem is detected, e.g., when a
router does not receive an intended command. All the discus-
sions that we had with network operators further confirmed that
they prefer to gradually migrate their network to have full-con-
trol of the process. In the same step, when a per-router ordering
does not exist, we identify the set of problematic destinations
for which contradictory ordering constraints exists, andwe com-
pute a per-destination ordering for each of them. Then, we com-
pute a per-router ordering for the rest of the destinations.
The actual migration process begins in the second step. As

basic operation, we exploit a known migration technique called
ships-in-the-night [3], [4], [7], in which both the initial and
the final IGP configurations are running at the same time on
each router in separate routing processes. Routing processes
are ranked on the basis of their priority, the AD. When a route
for a given prefix is available in multiple processes, the one
with the lowest AD is installed in the Forwarding Information
Base (FIB). In this step, we set the AD of the routing process
running the final IGP configuration to 255 since this setting en-
sures that no route coming from that process is installed in the
FIB [22]. All ISP routers typically support this feature.
In the third step of the migration, we wait for network-wide

convergence of the final IGP configuration. After this step, both
IGPs are in a stable routing state.
In the fourth step, we progressively migrate routers following

the ordering precomputed in the first step of the methodology.

Migration Loop

!10

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

VANBEVER et al.: LOSSLESS MIGRATIONS OF LINK-STATE IGPs 1845

Fig. 1. Bad square gadget. When the IGP hierarchy is modified, a given mi-
gration ordering is needed between and to avoid forwarding loops.

In the following, we describe the issues that must be ad-
dressed in each migration scenario we target, using the notation
introduced in Section II-B.
1) Protocol Replacement: This migration scenario consists

of replacing the running IGP protocol, but keeping the same
function in the initial and in the final configurations. A classical
example of such a scenario is the replacement of an OSPF con-
figuration with the corresponding IS-IS configuration [3]. Since
the function is the same in both IGPs, routers can bemigrated
in any order without creating loops.
2) Hierarchy Modification: Three migration scenarios are

encompassed by the modification of the IGP hierarchy. First, a
flat IGP can be replaced by a hierarchical IGP by introducing
several zones. Second, a hierarchical IGP can be migrated into
a flat IGP by removing peripheral zones and keeping only one
zone. Third, the structure of the zone in a hierarchical IGP can
be changed, e.g., making the backbone bigger or smaller. We
refer to these scenarios as flat2hier, hier2flat and hier2hier,
respectively.
Unlike protocol replacement, changing the mode of the IGP

configuration can require a specific router migration ordering.
Indeed, the function can change in hierarchy modification
scenarios because of the intrazone over interzone path prefer-
ence rule applied by routers in hierarchical IGPs (see Section II).
Hence, forwarding loops can arise due to inconsistencies be-
tween already migrated routers and routers that are not migrated
yet. Consider for example the topology depicted on the left side
of Fig. 1. In a flat2hier scenario, some routers change their
next-hop toward destinations and . In particular, the right
side of Fig. 1 shows the next-hop function for all the routers
when the destination is . During the migration process, a
forwarding loop arises for traffic destined to if is mi-
grated before . Indeed, reaches via in hierarchical
mode, and reaches via in flat mode. Hence, for each
time where is already migrated and is not, the for-
warding path used by is
since and .
Notice that such a loop lasts until is migrated. A symmetric
constraint holds between routers and for traffic destined
to . A loop-free migration can be achieved by migrating
and before and .
Nevertheless, there are also cases in which it is not possible

to avoid loops during the migration. Consider, for example, the
topology represented in Fig. 2. In this topology, symmetric con-
straints between and for traffic destined to and
imply the impossibility of finding a loop-free ordering. We refer
the reader to the central and the right parts of Fig. 2 to visualize
the next-hop functions in flat and hierarchical modes.
Similar examples can be found for hier2flat and hier2hier

migrations. They are omitted for brevity. Observe that problems

in hierarchy modification scenarios are mitigated in protocols
such as IS-IS that natively support multiple adjacencies [1]. In
fact, multiple adjacencies belonging to different zones decrease
the number of cases in which the function changes during the
migration. However, migration loops can still arise, depending
on the initial and the final configurations.
3) Route Summarization: Introducing or removing route

summarization (i.e., summarization scenarios) in a network can
lead to forwarding loops. For example, consider the topology
represented in the left part of Fig. 3. The right part of the figure
visualizes the functions before and after the introduction
of route summarization. In this case, the introduction of route
summarization on and can lead to a forwarding loop
between and for traffic destined to . Indeed, before
summarizing routes, and prefer to send traffic destined
to via . On the other hand, when summarization is
introduced, and propagate one aggregate for both
and with the same weight. Hence, and change their
next-hop since the path to has a lower weight than the path
to .
As for hierarchy modifications, no loop-free ordering exists

in some cases. An example of such a situation can be built by
simply replicating the topology in Fig. 3 so that symmetric con-
straints on the migration order hold between and .

IV. METHODOLOGY

Fig. 4 illustrates the main steps of our methodology. In the
first step, we precompute an ordering in which to seamlessly mi-
grate routers with no packet loss (Section V). Migrating all the
routers at once is not a viable solution in practice as it can gen-
erate protocol-dependent loops and control-plane traffic storms
concerning all the protocols (BGP, LDP, PIM, etc.) that rely on
the IGP. Moreover, this approach prevents operators from con-
trolling the migration process and from falling back to a pre-
vious working state when a problem is detected, e.g., when a
router does not receive an intended command. All the discus-
sions that we had with network operators further confirmed that
they prefer to gradually migrate their network to have full-con-
trol of the process. In the same step, when a per-router ordering
does not exist, we identify the set of problematic destinations
for which contradictory ordering constraints exists, andwe com-
pute a per-destination ordering for each of them. Then, we com-
pute a per-router ordering for the rest of the destinations.
The actual migration process begins in the second step. As

basic operation, we exploit a known migration technique called
ships-in-the-night [3], [4], [7], in which both the initial and
the final IGP configurations are running at the same time on
each router in separate routing processes. Routing processes
are ranked on the basis of their priority, the AD. When a route
for a given prefix is available in multiple processes, the one
with the lowest AD is installed in the Forwarding Information
Base (FIB). In this step, we set the AD of the routing process
running the final IGP configuration to 255 since this setting en-
sures that no route coming from that process is installed in the
FIB [22]. All ISP routers typically support this feature.
In the third step of the migration, we wait for network-wide

convergence of the final IGP configuration. After this step, both
IGPs are in a stable routing state.
In the fourth step, we progressively migrate routers following

the ordering precomputed in the first step of the methodology.

Migration Loop

!10

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

VANBEVER et al.: LOSSLESS MIGRATIONS OF LINK-STATE IGPs 1845

Fig. 1. Bad square gadget. When the IGP hierarchy is modified, a given mi-
gration ordering is needed between and to avoid forwarding loops.

In the following, we describe the issues that must be ad-
dressed in each migration scenario we target, using the notation
introduced in Section II-B.
1) Protocol Replacement: This migration scenario consists

of replacing the running IGP protocol, but keeping the same
function in the initial and in the final configurations. A classical
example of such a scenario is the replacement of an OSPF con-
figuration with the corresponding IS-IS configuration [3]. Since
the function is the same in both IGPs, routers can bemigrated
in any order without creating loops.
2) Hierarchy Modification: Three migration scenarios are

encompassed by the modification of the IGP hierarchy. First, a
flat IGP can be replaced by a hierarchical IGP by introducing
several zones. Second, a hierarchical IGP can be migrated into
a flat IGP by removing peripheral zones and keeping only one
zone. Third, the structure of the zone in a hierarchical IGP can
be changed, e.g., making the backbone bigger or smaller. We
refer to these scenarios as flat2hier, hier2flat and hier2hier,
respectively.
Unlike protocol replacement, changing the mode of the IGP

configuration can require a specific router migration ordering.
Indeed, the function can change in hierarchy modification
scenarios because of the intrazone over interzone path prefer-
ence rule applied by routers in hierarchical IGPs (see Section II).
Hence, forwarding loops can arise due to inconsistencies be-
tween already migrated routers and routers that are not migrated
yet. Consider for example the topology depicted on the left side
of Fig. 1. In a flat2hier scenario, some routers change their
next-hop toward destinations and . In particular, the right
side of Fig. 1 shows the next-hop function for all the routers
when the destination is . During the migration process, a
forwarding loop arises for traffic destined to if is mi-
grated before . Indeed, reaches via in hierarchical
mode, and reaches via in flat mode. Hence, for each
time where is already migrated and is not, the for-
warding path used by is
since and .
Notice that such a loop lasts until is migrated. A symmetric
constraint holds between routers and for traffic destined
to . A loop-free migration can be achieved by migrating
and before and .
Nevertheless, there are also cases in which it is not possible

to avoid loops during the migration. Consider, for example, the
topology represented in Fig. 2. In this topology, symmetric con-
straints between and for traffic destined to and
imply the impossibility of finding a loop-free ordering. We refer
the reader to the central and the right parts of Fig. 2 to visualize
the next-hop functions in flat and hierarchical modes.
Similar examples can be found for hier2flat and hier2hier

migrations. They are omitted for brevity. Observe that problems

in hierarchy modification scenarios are mitigated in protocols
such as IS-IS that natively support multiple adjacencies [1]. In
fact, multiple adjacencies belonging to different zones decrease
the number of cases in which the function changes during the
migration. However, migration loops can still arise, depending
on the initial and the final configurations.
3) Route Summarization: Introducing or removing route

summarization (i.e., summarization scenarios) in a network can
lead to forwarding loops. For example, consider the topology
represented in the left part of Fig. 3. The right part of the figure
visualizes the functions before and after the introduction
of route summarization. In this case, the introduction of route
summarization on and can lead to a forwarding loop
between and for traffic destined to . Indeed, before
summarizing routes, and prefer to send traffic destined
to via . On the other hand, when summarization is
introduced, and propagate one aggregate for both
and with the same weight. Hence, and change their
next-hop since the path to has a lower weight than the path
to .
As for hierarchy modifications, no loop-free ordering exists

in some cases. An example of such a situation can be built by
simply replicating the topology in Fig. 3 so that symmetric con-
straints on the migration order hold between and .

IV. METHODOLOGY

Fig. 4 illustrates the main steps of our methodology. In the
first step, we precompute an ordering in which to seamlessly mi-
grate routers with no packet loss (Section V). Migrating all the
routers at once is not a viable solution in practice as it can gen-
erate protocol-dependent loops and control-plane traffic storms
concerning all the protocols (BGP, LDP, PIM, etc.) that rely on
the IGP. Moreover, this approach prevents operators from con-
trolling the migration process and from falling back to a pre-
vious working state when a problem is detected, e.g., when a
router does not receive an intended command. All the discus-
sions that we had with network operators further confirmed that
they prefer to gradually migrate their network to have full-con-
trol of the process. In the same step, when a per-router ordering
does not exist, we identify the set of problematic destinations
for which contradictory ordering constraints exists, andwe com-
pute a per-destination ordering for each of them. Then, we com-
pute a per-router ordering for the rest of the destinations.
The actual migration process begins in the second step. As

basic operation, we exploit a known migration technique called
ships-in-the-night [3], [4], [7], in which both the initial and
the final IGP configurations are running at the same time on
each router in separate routing processes. Routing processes
are ranked on the basis of their priority, the AD. When a route
for a given prefix is available in multiple processes, the one
with the lowest AD is installed in the Forwarding Information
Base (FIB). In this step, we set the AD of the routing process
running the final IGP configuration to 255 since this setting en-
sures that no route coming from that process is installed in the
FIB [22]. All ISP routers typically support this feature.
In the third step of the migration, we wait for network-wide

convergence of the final IGP configuration. After this step, both
IGPs are in a stable routing state.
In the fourth step, we progressively migrate routers following

the ordering precomputed in the first step of the methodology.

Migration Loop

!10

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

VANBEVER et al.: LOSSLESS MIGRATIONS OF LINK-STATE IGPs 1845

Fig. 1. Bad square gadget. When the IGP hierarchy is modified, a given mi-
gration ordering is needed between and to avoid forwarding loops.

In the following, we describe the issues that must be ad-
dressed in each migration scenario we target, using the notation
introduced in Section II-B.
1) Protocol Replacement: This migration scenario consists

of replacing the running IGP protocol, but keeping the same
function in the initial and in the final configurations. A classical
example of such a scenario is the replacement of an OSPF con-
figuration with the corresponding IS-IS configuration [3]. Since
the function is the same in both IGPs, routers can bemigrated
in any order without creating loops.
2) Hierarchy Modification: Three migration scenarios are

encompassed by the modification of the IGP hierarchy. First, a
flat IGP can be replaced by a hierarchical IGP by introducing
several zones. Second, a hierarchical IGP can be migrated into
a flat IGP by removing peripheral zones and keeping only one
zone. Third, the structure of the zone in a hierarchical IGP can
be changed, e.g., making the backbone bigger or smaller. We
refer to these scenarios as flat2hier, hier2flat and hier2hier,
respectively.
Unlike protocol replacement, changing the mode of the IGP

configuration can require a specific router migration ordering.
Indeed, the function can change in hierarchy modification
scenarios because of the intrazone over interzone path prefer-
ence rule applied by routers in hierarchical IGPs (see Section II).
Hence, forwarding loops can arise due to inconsistencies be-
tween already migrated routers and routers that are not migrated
yet. Consider for example the topology depicted on the left side
of Fig. 1. In a flat2hier scenario, some routers change their
next-hop toward destinations and . In particular, the right
side of Fig. 1 shows the next-hop function for all the routers
when the destination is . During the migration process, a
forwarding loop arises for traffic destined to if is mi-
grated before . Indeed, reaches via in hierarchical
mode, and reaches via in flat mode. Hence, for each
time where is already migrated and is not, the for-
warding path used by is
since and .
Notice that such a loop lasts until is migrated. A symmetric
constraint holds between routers and for traffic destined
to . A loop-free migration can be achieved by migrating
and before and .
Nevertheless, there are also cases in which it is not possible

to avoid loops during the migration. Consider, for example, the
topology represented in Fig. 2. In this topology, symmetric con-
straints between and for traffic destined to and
imply the impossibility of finding a loop-free ordering. We refer
the reader to the central and the right parts of Fig. 2 to visualize
the next-hop functions in flat and hierarchical modes.
Similar examples can be found for hier2flat and hier2hier

migrations. They are omitted for brevity. Observe that problems

in hierarchy modification scenarios are mitigated in protocols
such as IS-IS that natively support multiple adjacencies [1]. In
fact, multiple adjacencies belonging to different zones decrease
the number of cases in which the function changes during the
migration. However, migration loops can still arise, depending
on the initial and the final configurations.
3) Route Summarization: Introducing or removing route

summarization (i.e., summarization scenarios) in a network can
lead to forwarding loops. For example, consider the topology
represented in the left part of Fig. 3. The right part of the figure
visualizes the functions before and after the introduction
of route summarization. In this case, the introduction of route
summarization on and can lead to a forwarding loop
between and for traffic destined to . Indeed, before
summarizing routes, and prefer to send traffic destined
to via . On the other hand, when summarization is
introduced, and propagate one aggregate for both
and with the same weight. Hence, and change their
next-hop since the path to has a lower weight than the path
to .
As for hierarchy modifications, no loop-free ordering exists

in some cases. An example of such a situation can be built by
simply replicating the topology in Fig. 3 so that symmetric con-
straints on the migration order hold between and .

IV. METHODOLOGY

Fig. 4 illustrates the main steps of our methodology. In the
first step, we precompute an ordering in which to seamlessly mi-
grate routers with no packet loss (Section V). Migrating all the
routers at once is not a viable solution in practice as it can gen-
erate protocol-dependent loops and control-plane traffic storms
concerning all the protocols (BGP, LDP, PIM, etc.) that rely on
the IGP. Moreover, this approach prevents operators from con-
trolling the migration process and from falling back to a pre-
vious working state when a problem is detected, e.g., when a
router does not receive an intended command. All the discus-
sions that we had with network operators further confirmed that
they prefer to gradually migrate their network to have full-con-
trol of the process. In the same step, when a per-router ordering
does not exist, we identify the set of problematic destinations
for which contradictory ordering constraints exists, andwe com-
pute a per-destination ordering for each of them. Then, we com-
pute a per-router ordering for the rest of the destinations.
The actual migration process begins in the second step. As

basic operation, we exploit a known migration technique called
ships-in-the-night [3], [4], [7], in which both the initial and
the final IGP configurations are running at the same time on
each router in separate routing processes. Routing processes
are ranked on the basis of their priority, the AD. When a route
for a given prefix is available in multiple processes, the one
with the lowest AD is installed in the Forwarding Information
Base (FIB). In this step, we set the AD of the routing process
running the final IGP configuration to 255 since this setting en-
sures that no route coming from that process is installed in the
FIB [22]. All ISP routers typically support this feature.
In the third step of the migration, we wait for network-wide

convergence of the final IGP configuration. After this step, both
IGPs are in a stable routing state.
In the fourth step, we progressively migrate routers following

the ordering precomputed in the first step of the methodology.

Migration Loop

!10

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

VANBEVER et al.: LOSSLESS MIGRATIONS OF LINK-STATE IGPs 1845

Fig. 1. Bad square gadget. When the IGP hierarchy is modified, a given mi-
gration ordering is needed between and to avoid forwarding loops.

In the following, we describe the issues that must be ad-
dressed in each migration scenario we target, using the notation
introduced in Section II-B.
1) Protocol Replacement: This migration scenario consists

of replacing the running IGP protocol, but keeping the same
function in the initial and in the final configurations. A classical
example of such a scenario is the replacement of an OSPF con-
figuration with the corresponding IS-IS configuration [3]. Since
the function is the same in both IGPs, routers can bemigrated
in any order without creating loops.
2) Hierarchy Modification: Three migration scenarios are

encompassed by the modification of the IGP hierarchy. First, a
flat IGP can be replaced by a hierarchical IGP by introducing
several zones. Second, a hierarchical IGP can be migrated into
a flat IGP by removing peripheral zones and keeping only one
zone. Third, the structure of the zone in a hierarchical IGP can
be changed, e.g., making the backbone bigger or smaller. We
refer to these scenarios as flat2hier, hier2flat and hier2hier,
respectively.
Unlike protocol replacement, changing the mode of the IGP

configuration can require a specific router migration ordering.
Indeed, the function can change in hierarchy modification
scenarios because of the intrazone over interzone path prefer-
ence rule applied by routers in hierarchical IGPs (see Section II).
Hence, forwarding loops can arise due to inconsistencies be-
tween already migrated routers and routers that are not migrated
yet. Consider for example the topology depicted on the left side
of Fig. 1. In a flat2hier scenario, some routers change their
next-hop toward destinations and . In particular, the right
side of Fig. 1 shows the next-hop function for all the routers
when the destination is . During the migration process, a
forwarding loop arises for traffic destined to if is mi-
grated before . Indeed, reaches via in hierarchical
mode, and reaches via in flat mode. Hence, for each
time where is already migrated and is not, the for-
warding path used by is
since and .
Notice that such a loop lasts until is migrated. A symmetric
constraint holds between routers and for traffic destined
to . A loop-free migration can be achieved by migrating
and before and .
Nevertheless, there are also cases in which it is not possible

to avoid loops during the migration. Consider, for example, the
topology represented in Fig. 2. In this topology, symmetric con-
straints between and for traffic destined to and
imply the impossibility of finding a loop-free ordering. We refer
the reader to the central and the right parts of Fig. 2 to visualize
the next-hop functions in flat and hierarchical modes.
Similar examples can be found for hier2flat and hier2hier

migrations. They are omitted for brevity. Observe that problems

in hierarchy modification scenarios are mitigated in protocols
such as IS-IS that natively support multiple adjacencies [1]. In
fact, multiple adjacencies belonging to different zones decrease
the number of cases in which the function changes during the
migration. However, migration loops can still arise, depending
on the initial and the final configurations.
3) Route Summarization: Introducing or removing route

summarization (i.e., summarization scenarios) in a network can
lead to forwarding loops. For example, consider the topology
represented in the left part of Fig. 3. The right part of the figure
visualizes the functions before and after the introduction
of route summarization. In this case, the introduction of route
summarization on and can lead to a forwarding loop
between and for traffic destined to . Indeed, before
summarizing routes, and prefer to send traffic destined
to via . On the other hand, when summarization is
introduced, and propagate one aggregate for both
and with the same weight. Hence, and change their
next-hop since the path to has a lower weight than the path
to .
As for hierarchy modifications, no loop-free ordering exists

in some cases. An example of such a situation can be built by
simply replicating the topology in Fig. 3 so that symmetric con-
straints on the migration order hold between and .

IV. METHODOLOGY

Fig. 4 illustrates the main steps of our methodology. In the
first step, we precompute an ordering in which to seamlessly mi-
grate routers with no packet loss (Section V). Migrating all the
routers at once is not a viable solution in practice as it can gen-
erate protocol-dependent loops and control-plane traffic storms
concerning all the protocols (BGP, LDP, PIM, etc.) that rely on
the IGP. Moreover, this approach prevents operators from con-
trolling the migration process and from falling back to a pre-
vious working state when a problem is detected, e.g., when a
router does not receive an intended command. All the discus-
sions that we had with network operators further confirmed that
they prefer to gradually migrate their network to have full-con-
trol of the process. In the same step, when a per-router ordering
does not exist, we identify the set of problematic destinations
for which contradictory ordering constraints exists, andwe com-
pute a per-destination ordering for each of them. Then, we com-
pute a per-router ordering for the rest of the destinations.
The actual migration process begins in the second step. As

basic operation, we exploit a known migration technique called
ships-in-the-night [3], [4], [7], in which both the initial and
the final IGP configurations are running at the same time on
each router in separate routing processes. Routing processes
are ranked on the basis of their priority, the AD. When a route
for a given prefix is available in multiple processes, the one
with the lowest AD is installed in the Forwarding Information
Base (FIB). In this step, we set the AD of the routing process
running the final IGP configuration to 255 since this setting en-
sures that no route coming from that process is installed in the
FIB [22]. All ISP routers typically support this feature.
In the third step of the migration, we wait for network-wide

convergence of the final IGP configuration. After this step, both
IGPs are in a stable routing state.
In the fourth step, we progressively migrate routers following

the ordering precomputed in the first step of the methodology.

Migration Loop

!10

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

VANBEVER et al.: LOSSLESS MIGRATIONS OF LINK-STATE IGPs 1845

Fig. 1. Bad square gadget. When the IGP hierarchy is modified, a given mi-
gration ordering is needed between and to avoid forwarding loops.

In the following, we describe the issues that must be ad-
dressed in each migration scenario we target, using the notation
introduced in Section II-B.
1) Protocol Replacement: This migration scenario consists

of replacing the running IGP protocol, but keeping the same
function in the initial and in the final configurations. A classical
example of such a scenario is the replacement of an OSPF con-
figuration with the corresponding IS-IS configuration [3]. Since
the function is the same in both IGPs, routers can bemigrated
in any order without creating loops.
2) Hierarchy Modification: Three migration scenarios are

encompassed by the modification of the IGP hierarchy. First, a
flat IGP can be replaced by a hierarchical IGP by introducing
several zones. Second, a hierarchical IGP can be migrated into
a flat IGP by removing peripheral zones and keeping only one
zone. Third, the structure of the zone in a hierarchical IGP can
be changed, e.g., making the backbone bigger or smaller. We
refer to these scenarios as flat2hier, hier2flat and hier2hier,
respectively.
Unlike protocol replacement, changing the mode of the IGP

configuration can require a specific router migration ordering.
Indeed, the function can change in hierarchy modification
scenarios because of the intrazone over interzone path prefer-
ence rule applied by routers in hierarchical IGPs (see Section II).
Hence, forwarding loops can arise due to inconsistencies be-
tween already migrated routers and routers that are not migrated
yet. Consider for example the topology depicted on the left side
of Fig. 1. In a flat2hier scenario, some routers change their
next-hop toward destinations and . In particular, the right
side of Fig. 1 shows the next-hop function for all the routers
when the destination is . During the migration process, a
forwarding loop arises for traffic destined to if is mi-
grated before . Indeed, reaches via in hierarchical
mode, and reaches via in flat mode. Hence, for each
time where is already migrated and is not, the for-
warding path used by is
since and .
Notice that such a loop lasts until is migrated. A symmetric
constraint holds between routers and for traffic destined
to . A loop-free migration can be achieved by migrating
and before and .
Nevertheless, there are also cases in which it is not possible

to avoid loops during the migration. Consider, for example, the
topology represented in Fig. 2. In this topology, symmetric con-
straints between and for traffic destined to and
imply the impossibility of finding a loop-free ordering. We refer
the reader to the central and the right parts of Fig. 2 to visualize
the next-hop functions in flat and hierarchical modes.
Similar examples can be found for hier2flat and hier2hier

migrations. They are omitted for brevity. Observe that problems

in hierarchy modification scenarios are mitigated in protocols
such as IS-IS that natively support multiple adjacencies [1]. In
fact, multiple adjacencies belonging to different zones decrease
the number of cases in which the function changes during the
migration. However, migration loops can still arise, depending
on the initial and the final configurations.
3) Route Summarization: Introducing or removing route

summarization (i.e., summarization scenarios) in a network can
lead to forwarding loops. For example, consider the topology
represented in the left part of Fig. 3. The right part of the figure
visualizes the functions before and after the introduction
of route summarization. In this case, the introduction of route
summarization on and can lead to a forwarding loop
between and for traffic destined to . Indeed, before
summarizing routes, and prefer to send traffic destined
to via . On the other hand, when summarization is
introduced, and propagate one aggregate for both
and with the same weight. Hence, and change their
next-hop since the path to has a lower weight than the path
to .
As for hierarchy modifications, no loop-free ordering exists

in some cases. An example of such a situation can be built by
simply replicating the topology in Fig. 3 so that symmetric con-
straints on the migration order hold between and .

IV. METHODOLOGY

Fig. 4 illustrates the main steps of our methodology. In the
first step, we precompute an ordering in which to seamlessly mi-
grate routers with no packet loss (Section V). Migrating all the
routers at once is not a viable solution in practice as it can gen-
erate protocol-dependent loops and control-plane traffic storms
concerning all the protocols (BGP, LDP, PIM, etc.) that rely on
the IGP. Moreover, this approach prevents operators from con-
trolling the migration process and from falling back to a pre-
vious working state when a problem is detected, e.g., when a
router does not receive an intended command. All the discus-
sions that we had with network operators further confirmed that
they prefer to gradually migrate their network to have full-con-
trol of the process. In the same step, when a per-router ordering
does not exist, we identify the set of problematic destinations
for which contradictory ordering constraints exists, andwe com-
pute a per-destination ordering for each of them. Then, we com-
pute a per-router ordering for the rest of the destinations.
The actual migration process begins in the second step. As

basic operation, we exploit a known migration technique called
ships-in-the-night [3], [4], [7], in which both the initial and
the final IGP configurations are running at the same time on
each router in separate routing processes. Routing processes
are ranked on the basis of their priority, the AD. When a route
for a given prefix is available in multiple processes, the one
with the lowest AD is installed in the Forwarding Information
Base (FIB). In this step, we set the AD of the routing process
running the final IGP configuration to 255 since this setting en-
sures that no route coming from that process is installed in the
FIB [22]. All ISP routers typically support this feature.
In the third step of the migration, we wait for network-wide

convergence of the final IGP configuration. After this step, both
IGPs are in a stable routing state.
In the fourth step, we progressively migrate routers following

the ordering precomputed in the first step of the methodology.

Migration Loop

!10

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Migration Problem
• given unicast IP network

!11

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Migration Problem
• given unicast IP network

• replace IGP configuration

• from to

!11

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Migration Problem
• given unicast IP network

• replace IGP configuration

• from to

• minimal configuration changes

!11

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Migration Problem
• given unicast IP network

• replace IGP configuration

• from to

• minimal configuration changes

• no migration loops

!11

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Migration Scenarios

!12

scenario IGP configuration changes

protocol protocol replacement

flat2hier zone introduction

hier2flat zone removal

hier2hier zone reshaping

summarization summarization introduction/removal

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

ships-in-the-night

• run separate routing protocols on one router

!13

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

ships-in-the-night

• run separate routing protocols on one router

• share hardware and software resources

!13

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

ships-in-the-night

• run separate routing protocols on one router

• share hardware and software resources

• but do not interact on a protocol level

!13

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Proposed methodology
• Seamless IGP Migration Methodology

!14

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Proposed methodology
• Seamless IGP Migration Methodology

1. Compute a lossless router migration order

!14

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Proposed methodology
• Seamless IGP Migration Methodology

1. Compute a lossless router migration order

2. Introduce the final IGP configuration

!14

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Proposed methodology
• Seamless IGP Migration Methodology

1. Compute a lossless router migration order

2. Introduce the final IGP configuration

3. Monitor the final IGP status

!14

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Proposed methodology
• Seamless IGP Migration Methodology

1. Compute a lossless router migration order

2. Introduce the final IGP configuration

3. Monitor the final IGP status

4. Progressively migrate routers

!14

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Proposed methodology
• Seamless IGP Migration Methodology

1. Compute a lossless router migration order

2. Introduce the final IGP configuration

3. Monitor the final IGP status

4. Progressively migrate routers

5. Remove initial IGP configuration

!14

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Router migration ordering
• Given

• initial and final next-hop functions

• logical graph G

• set of destinations D

!15

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Router migration ordering
• Given

• initial and final next-hop functions

• logical graph G

• set of destinations D

• Compute router migration

• no forwarding loops in G for d ∈ D

!15

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Router migration ordering
• Router Migration Ordering Problem is NP-complete

!16

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Router migration ordering
• Router Migration Ordering Problem is NP-complete

• is in NP

!16

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Router migration ordering
• Router Migration Ordering Problem is NP-complete

• is in NP

• Reduction from 3-SAT

!16

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Router migration ordering
• Router Migration Ordering Problem is NP-complete

• is in NP

• Reduction from 3-SAT

• e.g.

!16

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Router migration ordering
• Router Migration Ordering Problem is NP-complete

• is in NP

• Reduction from 3-SAT

• e.g.

• is F satisfiable?

!16

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Router migration ordering
• given formula F

!17

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Router migration ordering
• given formula F

• transform into migration ordering instance

!17

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Router migration ordering
• given formula F

• transform into migration ordering instance

• show that

!17

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Router migration ordering
• given formula F

• transform into migration ordering instance

• show that

• F satisfiable ⇒ loop free migration ordering

!17

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Router migration ordering
• given formula F

• transform into migration ordering instance

• show that

• F satisfiable ⇒ loop free migration ordering

• F not satisfiable ⇒ no loop free migration ordering

!17

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Router migration ordering

• central vertex P

!18

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Router migration ordering

• central vertex P

• true: migrated before P

!18

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Router migration ordering

• central vertex P

• true: migrated before P

• false: migrated after P

!18

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Router migration ordering

!18

1846 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 6, DECEMBER 2012

Fig. 2. Loop gadget. No migration ordering is loop-free for flat2hier and hier2flat scenarios because of contradictory constraints between and .

Fig. 3. Route summarization gadget. When summarization is introduced or re-
moved, a specific migration ordering is needed between and to avoid
forwarding loops.

Fig. 4. Proposed methodology for seamless IGP migrations.

For this purpose, we lower the AD of the routing process run-
ning the final IGP such that it is smaller than the AD of the
process running the initial configuration. Doing so, the router
installs the final routes in its FIB. If a per-destination ordering
is required for some destinations, we prevent them from being
routed according to the final IGP by keeping the AD of these
destinations to a high value. This could be done by using tailored
route-maps matching the problematic destinations (see [23] and
[24]). After, we migrate the problematic destinations one by
one, by lowering their AD following the precomputed per-desti-
nation orderings. Since a routing entry change could take about
200 ms before being reflected in the FIB [25], we wait for a
given amount time (typically a few seconds) before migrating
the next router in the ordering. This step ensures a loop-free
migration of the network. Notice that switching the AD and up-
dating the FIB are lossless operations on ISP routers [26].
In the last step, we remove, in any order, the initial IGP con-

figuration from the routers. This is safe since all of the routers
are now using the final IGP to forward traffic.

Fig. 5. Gadgets used in the reduction from 3-SAT to RMOP. Solid lines repre-
sent , while dotted lines represent . Edges are labeled with desti-
nations to which they refer. (a) Variable gadget. (b) Clause gadget.

V. LOOP-FREE MIGRATIONS

In this section, we study the problem of migrating a network
from one link-state IGP configuration to another without cre-
ating any loop. First, we prove that the problem is NP-complete.
Then, we present the algorithms we use to compute a loop-free
router migration ordering. Finally, we describe how to adapt the
algorithms to compute a per-destination ordering to use as fall-
back when a per-router ordering does not exist.

A. Router Migration Ordering Problem
We now study the following problem from an algorithmic

perspective.
Problem 2: Given an initial and a final next-hop function, a

logical graph , and a set of destinations , compute a router
migration ordering, if any, such that no forwarding loop arises
in for any .
Even the problem of deciding if a loop-free router migra-

tion ordering exists, which we call Router Migration Ordering
Problem (RMOP), is an -complete problem. In order to
prove the complexity of the RMOP problem, we use a reduc-
tion from 3-SAT [27]. In the following, we denote the fact that
is migrated before with . Consider a logical formula

in conjunctive normal form. Let be the clauses in
be the variables, and and the literals corre-

sponding to . In the following, we build the RMOP instance
corresponding to .

As a basis, contains a single vertex . For each variable
in , we add to a variable gadget as depicted in Fig. 5(a). In
practice, we add two vertices and to , along with
edges , and . and are also added
to . Intuitively, node and represent literals and ,
respectively. In the following, we call nodes and literal
vertices. Assigning TRUE to corresponds to migrate be-
fore , while assigning FALSE to implies . For each
clause , we add a clause gadget similar
to that depicted in Fig. 5(b). For each literal in , we add the
corresponding literal vertex, along with edges

, and . Moreover, a vertex is added to both

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Router migration ordering

!18

1846 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 6, DECEMBER 2012

Fig. 2. Loop gadget. No migration ordering is loop-free for flat2hier and hier2flat scenarios because of contradictory constraints between and .

Fig. 3. Route summarization gadget. When summarization is introduced or re-
moved, a specific migration ordering is needed between and to avoid
forwarding loops.

Fig. 4. Proposed methodology for seamless IGP migrations.

For this purpose, we lower the AD of the routing process run-
ning the final IGP such that it is smaller than the AD of the
process running the initial configuration. Doing so, the router
installs the final routes in its FIB. If a per-destination ordering
is required for some destinations, we prevent them from being
routed according to the final IGP by keeping the AD of these
destinations to a high value. This could be done by using tailored
route-maps matching the problematic destinations (see [23] and
[24]). After, we migrate the problematic destinations one by
one, by lowering their AD following the precomputed per-desti-
nation orderings. Since a routing entry change could take about
200 ms before being reflected in the FIB [25], we wait for a
given amount time (typically a few seconds) before migrating
the next router in the ordering. This step ensures a loop-free
migration of the network. Notice that switching the AD and up-
dating the FIB are lossless operations on ISP routers [26].
In the last step, we remove, in any order, the initial IGP con-

figuration from the routers. This is safe since all of the routers
are now using the final IGP to forward traffic.

Fig. 5. Gadgets used in the reduction from 3-SAT to RMOP. Solid lines repre-
sent , while dotted lines represent . Edges are labeled with desti-
nations to which they refer. (a) Variable gadget. (b) Clause gadget.

V. LOOP-FREE MIGRATIONS

In this section, we study the problem of migrating a network
from one link-state IGP configuration to another without cre-
ating any loop. First, we prove that the problem is NP-complete.
Then, we present the algorithms we use to compute a loop-free
router migration ordering. Finally, we describe how to adapt the
algorithms to compute a per-destination ordering to use as fall-
back when a per-router ordering does not exist.

A. Router Migration Ordering Problem
We now study the following problem from an algorithmic

perspective.
Problem 2: Given an initial and a final next-hop function, a

logical graph , and a set of destinations , compute a router
migration ordering, if any, such that no forwarding loop arises
in for any .
Even the problem of deciding if a loop-free router migra-

tion ordering exists, which we call Router Migration Ordering
Problem (RMOP), is an -complete problem. In order to
prove the complexity of the RMOP problem, we use a reduc-
tion from 3-SAT [27]. In the following, we denote the fact that
is migrated before with . Consider a logical formula

in conjunctive normal form. Let be the clauses in
be the variables, and and the literals corre-

sponding to . In the following, we build the RMOP instance
corresponding to .

As a basis, contains a single vertex . For each variable
in , we add to a variable gadget as depicted in Fig. 5(a). In
practice, we add two vertices and to , along with
edges , and . and are also added
to . Intuitively, node and represent literals and ,
respectively. In the following, we call nodes and literal
vertices. Assigning TRUE to corresponds to migrate be-
fore , while assigning FALSE to implies . For each
clause , we add a clause gadget similar
to that depicted in Fig. 5(b). For each literal in , we add the
corresponding literal vertex, along with edges

, and . Moreover, a vertex is added to both

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Loop enumeration Algorithm

!20

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Loop enumeration Algorithm

• inefficient algorithm

!20

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Loop enumeration Algorithm

• inefficient algorithm

• requires exponential time

• cycles can be exponential in the number of
nodes

!20

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Loop enumeration Algorithm

1. for each destination d

!21

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Loop enumeration Algorithm

1. for each destination d

1. Build graph

!21

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Loop enumeration Algorithm

1. for each destination d

1. Build graph

• initial and final next hops for destination d

!21

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Loop enumeration Algorithm

1. for each destination d

1. Build graph

• initial and final next hops for destination d

2. for each loop in create ordering constraint

!21

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Loop enumeration Algorithm

1. for each destination d

1. Build graph

• initial and final next hops for destination d

2. for each loop in create ordering constraint

2. solve the problem using a Linear Programm

!21

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Routing Tree Heuristic

!22

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Routing Tree Heuristic
• computes constraints for each destination

• migrate next-hop changing routers after

• forwarding path is established

!22

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Routing Tree Heuristic
• computes constraints for each destination

• migrate next-hop changing routers after

• forwarding path is established

• polynomial respect to input size

!22

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Routing Tree Heuristic
• computes constraints for each destination

• migrate next-hop changing routers after

• forwarding path is established

• polynomial respect to input size

• not guaranteed to find a solution

• rare in carefully designed networks

!22

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Routing Tree Heuristic
1. for each destination d

!23

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Routing Tree Heuristic
1. for each destination d

1. greedy run to generate set

!23

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Routing Tree Heuristic
1. for each destination d

1. greedy run to generate set

2. generate set

!23

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Routing Tree Heuristic
1. for each destination d

1. greedy run to generate set

2. generate set

3. build graph

!23

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Routing Tree Heuristic
1. for each destination d

1. greedy run to generate set

2. generate set

3. build graph

4. constraints: migrate router after all its successors

!23

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Routing Tree Heuristic
1. for each destination d

1. greedy run to generate set

2. generate set

3. build graph

4. constraints: migrate router after all its successors

2. topological sort of the final graph

!23

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Per-Destination Ordering

• per-router ordering does not exist or

!24

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Per-Destination Ordering

• per-router ordering does not exist or

• Routing Tree Heuristic does not find a solution

!24

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Per-Destination Ordering

• per-router ordering does not exist or

• Routing Tree Heuristic does not find a solution

• applied to problematic destinations only

!24

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Per-Destination Ordering

• per-router ordering does not exist or

• Routing Tree Heuristic does not find a solution

• applied to problematic destinations only

• use constraints generated in Routing Tree Heuristic

!24

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Method discussion
• always migrate one router after the other

• why not migrate a subset of routers?

• why not migrate only part of the routers?

!25

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Method discussion
• always migrate one router after the other

• why not migrate a subset of routers?

• why not migrate only part of the routers?

• other approach introducing version numbers

• packets need to be adapted

• when can I delete old configurations?

!25

/ 32

Evaluation

!26

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Dataset
• Rocketfuel project

!27

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Dataset
• Rocketfuel project

• AS of different sizes

!27

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Dataset
• Rocketfuel project

• AS of different sizes

• smallest: 79 nodes and 294 edges

!27

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Dataset
• Rocketfuel project

• AS of different sizes

• smallest: 79 nodes and 294 edges

• biggest: 315 nodes and 1944 edges

!27

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Dataset
• Rocketfuel project

• AS of different sizes

• smallest: 79 nodes and 294 edges

• biggest: 315 nodes and 1944 edges

• pan-European research network (Geant)

!27

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Dataset
• Rocketfuel project

• AS of different sizes

• smallest: 79 nodes and 294 edges

• biggest: 315 nodes and 1944 edges

• pan-European research network (Geant)

• 36 routers and 53 links

!27

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Dataset
• Rocketfuel project

• AS of different sizes

• smallest: 79 nodes and 294 edges

• biggest: 315 nodes and 1944 edges

• pan-European research network (Geant)

• 36 routers and 53 links

• emulation

!27

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Algorithms compared

!28

VANBEVER et al.: LOSSLESS MIGRATIONS OF LINK-STATE IGPs 1851

Fig. 12. Percentage of routers involved in the ordering in flat2hier (Rocketfuel
topologies). Results for other scenarios are similar.

basis, i.e., migrating all the routers in the same zone (e.g., a con-
tinent) before routers in other zones. We argue that it is often
possible to compute and apply per-zone orderings. Indeed, in
both the Rocketfuel and the real-world topologies we analyzed,
all the possible loops involve routers in the same zone or back-
bone routers and routers in a peripheral zone. These consider-
ations further motivate our effort to find a router migration or-
dering that is guaranteed to be loop-free. We found slightly dif-
ferent results on the real ISP topologies we analyzed. For the
two hierarchical ISPs, none or few migration loops can arise in
the considered scenarios. This is mainly due to a sensible de-
sign of the hierarchy by the ISPs. On the other hand, we found
that huge number of problems could arise within in the

scenario where the hierarchy was designed as de-
scribed in Section VII-A. Indeed, more than 2000 loops might
arise, involving up to 10 routers. Again, this stresses the impor-
tance of the IGP design on the migration outcome. We discuss
simple design guidelines that ease IGPmigrations in Section IX.
As a second group of experiments, we ran the ordering al-

gorithms on both the real-world and the Rocketfuel topologies.
In the following, we present results for the scenario,
but similar results and considerations hold for the other sce-
narios. Fig. 12 shows for each Rocketfuel topology the per-
centage of routers that need to be migrated in a specific order
according to each algorithm (implying that other routers can be
migrated in any order). When a point is missing, it means that
the corresponding algorithm was not able to find a loop-free
ordering for the topology. The enumeration algorithm was al-
ways able to find a loop-free ordering in all situations (including
the real-world topologies). In the worst case, the computed or-
dering involves more than 20% of the routers in the network.We
believe that finding ordering constraints for such a number of
routers is not practical at a glance. This stresses the importance
of our algorithms. The Routing Trees Heuristic, instead, found
a loop-free ordering on 9 topologies out of 11. In the remaining
two cases, the heuristic was not able to find a solution because
of contradictory (unnecessary) constraints relative to four and
six destinations, respectively. Because of the limited number of
destinations involved in contradictory constraints, we propose
to apply a per-destination ordering in these cases. Fig. 12 also
highlights the gain of relying on the greedy subprocedure, as the
heuristic could find a solution for only six topologies without it.

Fig. 13. Time taken to compute an ordering in flat2hier (Rocketfuel topolo-
gies). Results for other scenarios are similar.

Finally, we evaluated the time taken by our ordering algo-
rithms. Typically, time efficiency of ordering algorithms is not
critical in our approach since a loop-free router migration or-
dering can be computed before actually performing the migra-
tion. However, it becomes an important factor to support ad-
vanced abilities like computing router migration orderings that
ensures loop-free migrations even in case of network failures
(see Section VIII). Fig. 13 plots the median of the computa-
tion time taken by each algorithm over 50 separated runs. Stan-
dard deviation is always under 40 for the loop enumeration al-
gorithm, except for the two cases corresponding to topology
1239, in which standard deviation is around 450. Moreover,
the standard deviation of the time taken by the Routing Trees
Heuristic is always less than 25. Even if correct and complete,
the Loop Enumeration Algorithm is inefficient, especially for
large topologies. The heuristic is always one order of magni-
tude faster. In Fig. 13, the low absolute value of the time taken
by the Loop Enumeration Algorithm can be explained by the
relatively small size of the Rocketfuel topologies. Neverthe-
less, for the topology, the Loop Enumeration Algorithm
took more than 11 h to complete. To further evaluate the per-
formance degradation of the complete algorithm, we enlarged

’s and ’s topologies. The operation consisted in
replicating multiple times the structure of one peripheral zone,
and attaching these additional zones to the network in order to
reach a size similar to . In such experiments, we found
that the Loop Enumeration Algorithm took several hours even
if routers can be migrated in any order, while the heuristics al-
ways took less than 1.5 min.

C. Provisioning System
We evaluated the performance of the main components of our

provisioning system by means of a case study. In the case study,
we performed a migration of Geant, the pan-Euro-
pean research network, that we emulated by using amajor router
vendor routing operative system image. In particular, we simu-
lated the migration from a flat IS-IS configuration to a hierar-
chical OSPF. Geant’s topology is publicly available [33]. It is
composed of 36 routers and 53 links. For the case study, we ar-
tificially built zones on the basis of the geographical location
of the routers and their interconnections [34]. In addition to the
backbone (12 routers), we defined three peripheral zones: the

Time taken to compute an ordering in flat2hier (Rocketfuel topologie)

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Packet loss

!29

1852 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 6, DECEMBER 2012

Fig. 14. Our system guarantees that no packet is lost during migration, while
long-lasting connectivity disruptions can happen with a naive approach.

southwest area (6 routers), the northeast area (11 routers), and
the southeast area (17 routers). We defined the IGP link weights
to be inversely proportional to the bandwidth of the links. By
executing the Loop Enumeration Algorithm (see Section V-B),
we found that eight different loops toward five different desti-
nations could arise on that topology.
To evaluate the cost of not following a proper migration

ordering, we counted the number of loops appearing in 1000
random orderings. We observed that more than 50% of the
orderings show at least one migration loop for more than
67% of the migration. To further illustrate the effect of not
following the ordering, we ran two experiments. In the first
experiment, we relied on the ordering computed by the Loop
Enumeration Algorithm, while in the second experiment, we
adopted an alphabetical order based on the name of the routers.
The second experiment mimics a naive approach in which
ordering constraints are not taken into account. To minimize
the impact of factors beyond our control (e.g., related to the
virtual environment), we repeated each experiment 50 times.
To measure traffic disruptions due to the migration, we injected
data probes (i.e., ICMP echo request) from each router toward
the five troublesome destinations. Fig. 14 reports the median,
the 5th, and the 95th percentiles of ICMP packets lost that arose
after each migration step.
The case study showed the ability of our provisioning system

to perform seamless IGP migrations. Following the ordering
computed by the Loop Enumeration Algorithm, we were able
to achieve no packet loss during the migration (the few losses
reported in Fig. 14 should be ascribed to the virtual environ-
ment). On the other hand, adopting the naive approach of mi-
grating routers in the random order, forwarding loops arose at
step 6 and are only solved at step 34. Thus, the network suffered
traffic losses during more than 80% of the migration process.
Our system also enables faster migrations than known

migration [4], [7]. The IGP LSA Listener is able to process
IGP messages in a few milliseconds. The performance of
the module is confirmed by a separate experiment we ran.
We forced the Listener to process messages from a pcap file
containing 204 LSAs (both OSPF and IS-IS). On 50 runs, the
monitor was able to decode and collect each IGP message in
about 14 ms on average and 24 ms at most. We evaluated the
performance of the IGP State Asserter on the IS-IS and the
OSPF DBs generated during the case study. The DBs contained
information about 106 directed links and 96 IP prefixes. The

Fig. 15. Link failures can change the reconfiguration ordering to be followed.
In a scenario on this topology, a forwarding loop can appear between

and if is migrated before and link fails.

IGP State Asserter took about 40 ms to assess equivalence of
the logical graph, routing stability, and advertisement of the
same set of prefixes in both IGPs. Even if the code could be
optimized, current performance is good, also considering that
the IGP Asserter does not need to be invoked more than once in
absence of network failures (see Section IV). On average, the
Configuration Manager took 8.84 s to push one intermediate
configuration on a router. The average size of an intermediate
configuration is around 38 lines. The entire migration process
took less than 20 min. On the contrary, a similar real-world
Geant migration took several days to be completed [7].
All the intermediate configurations that our system generated

in the case study described above are available online [34].

VIII. DEALING WITH NETWORK FAILURES

In this section, we show how to extend the algorithms de-
scribed in Section III to deal with network failures.
IGP link and node failures modify the IGP topology, which in

turn could affect both the function and themigration ordering
to be followed. Consequently, it may be necessary to adapt the
migration ordering to be followed when a failure has been de-
tected in order to not incur long-lasting migration loops. Con-
sider, for example, the topology in Fig. 15 and assume a flat2hier
migration. The figure shows the initial and the final functions
toward , before (left side) and after (right side) the failure of
the link between and . Before the failure, any reconfig-
uration ordering is loop-free since . However,
after the failure of the link between and , is no
longer equal to , and a migration loop can be created if

is migrated before . To prevent forwarding loops exclu-
sively due to link failures, additional constraints need to be con-
sidered during the computation of the migration ordering. For
instance, in the example of Fig. 15, should be migrated be-
fore to guarantee loop prevention even in case of failure of
link .
As a paradigmatic example of how to deal with network fail-

ures, we focus on single-link failures. Other kinds of failures
(e.g., node and shared risk link group failures) can be similarly
addressed. Also, note that single-link failures have been shown
to account for the majority of the failures typically occurring in
a network [35]. In the following, we refer to a router migration
ordering that prevents loop for any single-link failure in the net-
work as a single-failure compliant ordering.
For each IGP topology, we computed the additional set

of constraints for a single-link failure compliant ordering by
iteratively removing single links from the initial topology and
running the constraint generation portion of the Loop Enumer-
ation Algorithm or the Routing Trees Heuristic on the topology
we obtained. Fig. 16 shows the 50-, 99-, and 100-percentiles of
the number of additional forwarding loops that one single-link

Packet loss during flat2hier migration (Geant topology)

/ 32

Summary

!30

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Summary
• changing IGP configurations can lead to loops

!31

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Summary
• changing IGP configurations can lead to loops

• proposed a methodology

• router migration ordering

!31

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Summary
• changing IGP configurations can lead to loops

• proposed a methodology

• router migration ordering

• finding loop free migration ordering is NP-complete

!31

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Summary
• changing IGP configurations can lead to loops

• proposed a methodology

• router migration ordering

• finding loop free migration ordering is NP-complete

• loop enumeration algorithm

!31

/ 32Seminar in Distributed Computing - Jochen Zehnder05.03.2014

Summary
• changing IGP configurations can lead to loops

• proposed a methodology

• router migration ordering

• finding loop free migration ordering is NP-complete

• loop enumeration algorithm

• routing tree heuristic

!31

/ 32

Q&A

!32

