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Simple example

Preferenes Table

Name Prefrence

James UZH>ETH>EPFL
Michael | ETH>EPFL>UZH
David EPFL>ETH>UZH
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Stable Matching

Definition

o Given two sets of elements with their set of preferences.

@ A matching is a mapping from the elements of one set to the
elements of the other set.

@ A matching is stable if there is no blocking pair.
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Blocking pair
Definition

A blocking pair is a pair such that both strictly improve by
matching to each other.

A B C

{A, 1} is a blocking pair.
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Problem modeling

i A network matching game: (social) network: N = (VL)
ii A set of vertices representing agents: V
i A set of fixed links: L C {{u,v}u,v eV, u#v}
iv A set of potential matching edges:
EC {{u,v}uveV,u#v}
v correlated network game: for Ve € E,
bu(e) = by(e) = b(e) >0
Difference between a link and an edge:
o endurable

@ controllable
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Local blocking pair

Assumption: each agent can match only to partners in its 2-hop
neighborhood of matching edges and links.

Definition

A local blocking pair is a blocking pair of agents that are at hop
distance at most 2 in the network.

Mar. 12, 2014 Seminar of Distributed Computing 7 /34



Local blocking pair

Assumption: each agent can match only to partners in its 2-hop
neighborhood of matching edges and links.

Definition

A local blocking pair is a blocking pair of agents that are at hop
distance at most 2 in the network.

@ local blocking pairs C blocking pairs.

Mar. 12, 2014 Seminar of Distributed Computing 7 /34



Local blocking pair

Assumption: each agent can match only to partners in its 2-hop
neighborhood of matching edges and links.

Definition

A local blocking pair is a blocking pair of agents that are at hop
distance at most 2 in the network.

@ local blocking pairs C blocking pairs.
— Every stable matching is a locally stable matching.

Mar. 12, 2014 Seminar of Distributed Computing 7 /34



Local blocking pair

Assumption: each agent can match only to partners in its 2-hop
neighborhood of matching edges and links.

Definition

A local blocking pair is a blocking pair of agents that are at hop
distance at most 2 in the network.

@ local blocking pairs C blocking pairs.
— Every stable matching is a locally stable matching.

Mar. 12, 2014 Seminar of Distributed Computing 7 /34



Local blocking pair

Assumption: each agent can match only to partners in its 2-hop
neighborhood of matching edges and links.

Definition

A local blocking pair is a blocking pair of agents that are at hop
distance at most 2 in the network.

@ local blocking pairs C blocking pairs.
— Every stable matching is a locally stable matching.

Mar. 12, 2014 Seminar of Distributed Computing 7 /34



Locally stable matching

A local improvement step is one such step that add one local

blocking pair to M and remove all edges that conflict with this
new edge.

Definition

A locally stable matching is a matching without local blocking
pairs.
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Locally stable matching

A local improvement step is one such step that add one local

blocking pair to M and remove all edges that conflict with this
new edge.

Definition
A locally stable matching is a matching without local blocking

pairs.

o Is it easier to find or reach using distributed dynamics than
ordinary stable matchings?
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Locally stable matching

A local improvement step is one such step that add one local
blocking pair to M and remove all edges that conflict with this
new edge.

Definition

A locally stable matching is a matching without local blocking
pairs.

o Is it easier to find or reach using distributed dynamics than
ordinary stable matchings?

o Answer: Locally stable matchings have a rich structure and
can behave quite differently than ordinary stable matchings.
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Another example

Preference-lists

prefrences

C>B>A>D

D>C>B>A

A>D>C>B

B>A>D>C

4>1>3>2

1>2>4>3

2>3>1>4

OO W > P|lw =<

3>4>2>1

Mar. 12, 2014

Circling Gadget
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Explanation

Two locally stable matchings: {{1, B},{2, C},{3,D}, {4, A}} and
{{1, C}. {2, D}, {3, A}, {4, B}}.

Assume 1 is unmatched.

1 A is not matched with 4

— 1 matched with A — B matched with 1 — some node unmatched
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Explanation

Two locally stable matchings: {{1, B}, {2, C}, {3, D}, {4,A}} and
{{1,C}.{2,D},{3,A}, {4, B}}.
Assume 1 is unmatched.
1 Ais not matched with 4
— 1 matched with A — B matched with 1 — some node unmatched
2 A matched with 4
2.1 B is not matched with 2
— 4 matches with B — A free for 1
2.2 B matches with 2
— 2 move to C — 4 switch to B
3 To prevent circle, one vertex must be matched to some vertex
outside.

4 Existence of LSM is guarantied for the bipartite case, J states
for which REACHABILITY is not necessarily true.
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Reachability

Given an instance and an initial matching, is there a sequence of
local blocking pair resolutions leading to a locally stable matching?
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Theorem 1

It is NP-hard to decide REACHABILITY from the initial matching

M = () to a given locally stable matching in a correlated network
game.
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Proof:

Example of 3SAT

— (AVx3Vxa)A(x1VX3V xs)

@ Prove that LSM is reducible to 3SAT and vice versa

o Given a 3SAT formula with k variables xi, ..., xx and / clauses
C1,..., ¢, where clauses C; contains the literals /1;,/2; and /3;.

@ Divide vertices set V into two disjoint sets U and W, we have
o U={uyli=1.k}U{uglj=1...1}U{bylh=1...k+1-1},
o W={vg,x;,x,|[i=1...k}U{vglj=1...1} U{a,ar}.
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Benefits of matching edges

velU|weW b({u,w})

ug; a J j=1...,1

Ux; a i+1 i=1,...,k

by a h+1/2 h=1,...,k+1-1

ug; /1]//2]//3_,’ k+1+1 j=1...,1

Uy, Xi | Xi k+1+1 i=1,...,k

ug; Vy; k+1+14i i=1,...,k,j=1,...,1
Uy, Vi k+1+14+7 | i=1,....k,i'=1,...,i
ug Ve 2k+14+14+ | j=1,... kj=1,...,i

Goal: reach M* = {{us, vs}|s € {x1,...,x} U{C,..., C}}
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3SAT Gadget

s b
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3SAT — Local Stable Matching

Assume 3SAT is satisfiable.

3SAT Gadget

R R

ng e
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3SAT Gadget
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3SAT — Local Stable Matching

Step 2 Step 3
S_tep .1 Move it over the Move it to negates its
First introduce . . o
{uc, a} u-and b-vertices value in the satisfying
A to Uy, . assignment.

o Every clause is fulfilled

@ All the clause u-vertex from a is not blocked by matching edges
of variable u-vertex.

@ Bypass the existing edges to reach final positions at M*.

@ Variable-edges can leave the branching to move to final
position.
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Local Stable Matching — 3SAT

@ Assume we can reach M* from (.

660080
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final position.
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Local Stable Matching — 3SAT

@ Assume we can reach M* from 0.

o Clause u-vertices have to overtake variable u-vertices to reach
final position.

@ The only place: the branching leading over the x; and X;.

@ All variable-edges have to wait at some x; or X; until the
clause-edges have passed.

Ll o000
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Local Stable Matching — 3SAT

_—

{ - ) ( - '
From a, vertex uy; is only A vertex uc; will move
blocking out a different vari- from a if it can reach

L able. J | one of its literals. )

. E

Set each variable to the All clauses can bypass
value that yields the the variables — there
passage for clause-edges was one of its literals
in the branching. left open for passage.

J \.
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Length of Sequences

Definition

The number of improvement steps required to reach locally stable
matchings.

o Consider the number of improvement steps required to reach
locally stable matchings.

@ In general, we need an exponential number of steps before
reaching LSM.

@ In contrast, LSM can be reached in polynomial number of steps
in correlated case.
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Theorem 2

— For every network game with correlated preferences, every
locally stable matching M* € E and initial matching My € E
such that M* can be reached from M° through local
improvement steps,
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Theorem 2

— For every network game with correlated preferences, every
locally stable matching M* € E and initial matching My € E
such that M* can be reached from M° through local
improvement steps,

© there exists a sequence of at most O(|E|*) local improvement
steps leading form M° to M*.
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I 1 I

Rank all edges by their benefit:
—  rmax = max{r(e)|e € E}
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I 1 Rank all edges by their benefit: I

—  rmax = max{r(e)|e € E}
2 Ever edge e has at most rp,ax predecessors.

3 Observations:

i An edge can only be deleted by a stronger edge.
i If an edge is created, moved, and finally deleted. — No need to

introduce it.
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I 1 I

Rank all edges by their benefit:

—  rmax = max{r(e)|e € E}
2 Ever edge e has at most rp,ax predecessors.
3 Observations:

i An edge can only be deleted by a stronger edge.
i If an edge is created, moved, and finally deleted. — No need to
introduce it.

4.1 |Initial matching is an empty matching.
—  We have |M*| edges, which each made at most rpax steps.
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IlR I

4.1

4.2

ank all edges by their benefit:
—  rmax = max{r(e)|e € E}
Ever edge e has at most rpax predecessors.
Observations:

i An edge can only be deleted by a stronger edge.
i If an edge is created, moved, and finally deleted. — No need to
introduce it.

Initial matching is an empty matching.

—  We have |M*| edges, which each made at most rpax steps.
Initial matching is not empty.

— At most |Mp| X rmax is introduced.
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IlR I

4.1

4.2

ank all edges by their benefit:
—  rmax = max{r(e)|e € E}
Ever edge e has at most rpax predecessors.
Observations:

i An edge can only be deleted by a stronger edge.
i If an edge is created, moved, and finally deleted. — No need to
introduce it.

Initial matching is an empty matching.

—  We have |M*| edges, which each made at most rpax steps.
Initial matching is not empty.

— At most |Mp| X rmax is introduced.

Overall bound: [Mp| X Fmax X Fmax + |M*| X rmax € O(|E|3).
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Recency Memory

With recency memory, each agent remembers the last partner he
has been matched to.

®© Interestingly, here we actually can ensure that a LSM can be
reached.
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Theorem 3

= For every network game with strict preference, links
LC(Ux W)U (W x W), recency memory and every initial
matching,
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Theorem 3

= For every network game with strict preference, links
LC(Ux W)U (W x W), recency memory and every initial

matching,
© there is a sequence of O(|U|?|W|?) many local improvement
steps to a locally stable matching.
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< Preparation phase:
1 while 3 one u € U with u matched and u part of a blocking pair

o allow u to switch to the better partner.

2 Terminates at most |U| x |W/| steps.
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< Preparation phase:
1 while 3 one u € U with u matched and u part of a blocking pair

o allow u to switch to the better partner.
2 Terminates at most |U| x |W/| steps.
— Memory phase
1 while 3 a u € U with u part of a blocking pair
Loop
pick u and execute a sequence of local improvement steps
Until u is not part of any blocking pair anymore.
2 For every edge e = {v/, w} with v’ # u that was deleted during
the sequence, recreate e from the memory of v/'.

Mar. 12, 2014 Seminar of Distributed Computing 25 / 34



— At the end of preparation phase the only U-vertices in local
blocking pairs are unmatched.
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— At the end of preparation phase the only U-vertices in local
blocking pairs are unmatched.

+

Suppose u is chosen, w is matched. w clearly has improved.

d

All matched U-vertices cannot improve at the end of the round.

1

As one W-vertex improves in every round, we have at most
|U| x |W/| rounds in the memory phase.
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— At the end of preparation phase the only U-vertices in local
blocking pairs are unmatched.

+

Suppose u is chosen, w is matched. w clearly has improved.

d

All matched U-vertices cannot improve at the end of the round.

1

As one W-vertex improves in every round, we have at most
|U| x |W/| rounds in the memory phase.

—  Where every round consists of at most |W/| steps by v and at
most |U| — 1 edges reproduced from memory.
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Independent Set

A set of vertices in a graph, no two of which are adjacent.

Question: what is the maximal size of target locally stable
matchings?
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Theorem 4

Job-market game
The vertices of U are isolated in N.

For every graph G = (V, E) there is a job-market game that
admits a maximum locally stable matching of size |V| + k if and
only if G holds a maximum independent set of size k.
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Maximum independent set — LSM

Uy 1 Uy’ 2 Wyl Wy 2

s
7’ 1
7
Uyl — Wy 2

1)

’
/

Uy Wy, 1

o Each u, prefers w, > to every w5, v/ € N(v), and every
wyr 2 to wy 1.

e Each w, > prefers u, 1 to every u, 1, v/ € N(v), and every T
to uy 2.

Claim: G has a maximum independent set of size k iff N has a

locally stable matching of size n + k.
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Proof cont.
a2
.V.
W

@ S is a maximum independent set in G.
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Proof cont.

Uprpg— Wy

Uyl Wy 2

’ y
Wy 1

uv72 )

@ S is a maximum independent set in G.
o M= {{Uv,la Wv,2}|V eV \ 5} U {{Uv,la Wv,l}a {Uv,27 Wv,2}|V €
S}
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Proof cont.

Uprpg— Wy

Uy Wy 2

y

Uy 2 Wy 1

@ S is a maximum independent set in G.

o M= {{UVJ, WV,2}|V evVv \ 5} U {{le, WV,]_}, {UV72, WV72}|V €
S}.

e For v € S all vertices v/ € N(S) generate stable edges
{uy 1, wyr 2} that keep u, 1 from switching to w, 5.
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Proof cont.

Uprpg— Wy

Uy Wy 2

y

Uy 2 Wy 1

@ S is a maximum independent set in G.

o M= {{UVJ, WV,2}|V evVv \ 5} U {{le, WV71}, {UV72, WV72}|V €
S}.

e For v € S all vertices v/ € N(S) generate stable edges
{uy 1, wyr 2} that keep u, 1 from switching to w, 5.

o Thus {uy1,w, 1} is stable and w, > cannot see u, 1 which
stabilizes {uy 2, wy 2}.
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LSM — Maximum independent set

o Chose M that every u, 1 is matched.
o Replacing partner of w, > by u, ;.
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LSM — Maximum independent set

o Chose M that every u, 1 is matched.
o Replacing partner of w, > by u, ;.
e No uy1 is matched to some w,s > with v # v/

—  Otherwise u,,; and w, > can see each other and constitute a
blocking pair.
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LSM — Maximum independent set

Chose M that every u, 1 is matched.
o Replacing partner of w, > by u, ;.
No w1 is matched to some w,» with v # v/
—  Otherwise u,,; and w, > can see each other and constitute a
blocking pair.
For S = {v|u,» € M},|S| =|M| —nand S is an independent
set
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Chose M that every u, 1 is matched.
o Replacing partner of w, > by u, ;.
No w1 is matched to some w,» with v # v/

—  Otherwise u,,; and w, > can see each other and constitute a
blocking pair.

For S = {v|u,2 € M},|S| = |M| —n and S is an independent
set

Every u, > can only be matched to w, >, u, 1 must be matched
to wy 1.
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LSM — Maximum independent set

Chose M that every u, 1 is matched.

o Replacing partner of w, > by u, ;.
No w1 is matched to some w,» with v # v/
—  Otherwise u,,; and w, > can see each other and constitute a

blocking pair.

For S = {v|u,2 € M},|S| = |M| —n and S is an independent
set

Every u, > can only be matched to w, >, u, 1 must be matched
to wy 1.

It is stable if every w,s >, v/ € N(v), is blocked by v, 1. Hence
for every v € S, N(v)NS = 0.
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Conclusion

@ Although existence of LSM is guaranteed, but rechability is
NP-hard to decide.

@ In correlated network, every locally stable matching can be
reached in polynomial time.

o With recency memory, reachability is guaranteed.

o We approximately find maximum locally stable matchings in
job-market game.
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Questions?

Please

@ Questions?
o Feedback?
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