Maximal Matching

(Maximal set of vertex-disjoint edges)
Being greedy
Distributed algorithm

Initially, each node only knows its incident edges

Nodes exchange messages to learn more about other nodes and edges

Time = number of communication rounds
Known bounds

\[O(\Delta + \log^* n) \]

\[\Omega(\text{polylog}(\Delta) + \log^* n) \]

\[\Delta \text{ Degree} \]

\[\text{Max number of edges incident to a node} \]
Known bounds

\[O(\Delta + \log^* n) \]

\[\Omega(\text{polylog}(\Delta) + \log^* n) \]

\[\log^* n := \begin{cases}
0 & \text{if } n \leq 1 \\
1 + \log^*(\log n) & \text{if } n > 1
\end{cases} \]
Closing the gap

\[O(\Delta + \log^* n) \]

\[\Omega(\text{polylog}(\Delta) + \log^* n) \]
Closing the gap

\(O(\Delta + \log^* n) \)

in general graphs

\(\Omega(\text{polylog}(\Delta) + \log^* n) \)

simpler model
anonymous, k-edge-colored

- no two edges incident to the same node share the same color
- at most, k colors
anonymous, k-edge-colored

\[O(\Delta + \log^* k) \]

?.

\[\Omega(\log^* k) \]
anonymous, k-edge-colored

tight bound for distributed maximal matching in anonymous, k-edge-colored graphs

this work
\[\Omega(\Delta) \]

previous work
\[\Omega(\log^* k) \]

\[\therefore \quad \Omega(\Delta + \log^* k) \]
$\Delta \leq k$

k colors
degree Δ

this work
$\Omega(\Delta)$

$\Delta \leq k$

$\Omega(\ k\) \Rightarrow \Omega(\Delta)$
Theorem 1

Let k be a positive integer. A deterministic distributed algorithm that finds a maximal matching in any anonymous, k-edge-colored graph requires at least $k - 1$ communication rounds.

$$\Delta \leq k$$
$$\Omega(k) \Rightarrow \Omega(\Delta)$$
$$\Omega(k-1) \Rightarrow \Omega(\Delta) \Rightarrow \Omega(\Delta + \log^* k)$$
$$\Omega(\log^* k)$$
Theorem 1

Let k be a positive integer. A deterministic distributed algorithm that finds a maximal matching in any anonymous, k-edge-colored graph requires at least $k - 1$ communication rounds.

Greedy

\[\Delta \leq k \]
\[\Omega(k) \Rightarrow \Omega(\Delta) \]
\[\Omega(k - 1) \Rightarrow \Omega(\Delta) \Rightarrow \Omega(\Delta + \log^* k) \]
\[\Omega(\log^* k) \]
Deterministic distributed greedy algorithm to find a maximal matching on a k-edge-colored anonymous graph

This work \(\Omega(k - 1) \)
Distributed algorithm

radius-\(k\) neighbourhoods

Initially, each node only knows its incident edges, its radius-0 neighbourhood
Deterministic distributed greedy algorithm to find a maximal matching on a k-edge-colored anonymous graph

same radius-2 view

after 2 communication rounds
Deterministic distributed greedy algorithm to find a maximal matching on a k-edge-colored anonymous graph.

This greedy algorithm needs one more communication round.

$\Omega(k-1)$
Tight lower bound for deterministic distributed maximal matching on a k-edge-colored graph

back to this work $\Omega(k - 1)$
Local output
d-regular graph

3-regular
Theorem 1

Let k be a positive integer. A deterministic distributed algorithm that finds a maximal matching in any anonymous, k-edge-colored graph requires at least $k - 1$ communication rounds.
Theorem 1

Let k be a positive integer. A deterministic distributed algorithm that finds a maximal matching in any anonymous, k-edge-colored graph requires at least $k - 1$ communication rounds.

Theorem 2

Let $k \geq 3$ and $d = k - 1$

Assume a distributed algorithm that finds a maximal matching in any d-regular k-color graph. Then there are two d-regular k-colored graphs A, B such that a node u_e has the same $(d - 1)$-radius view in A and B and u_e is unmatched in A and matched in B.

Greedy algorithm $\Theta(k - 1)$

This work $\Omega(k - 1)$
Building a worst case

two d-regular k-colored graphs A, B such that a node u_e
has the same d-radius view in A and B
and u_e is unmatched in A and matched in B

k-colors, d-regular

d = k - 1
k \geq 3 \text{ and } d = k - 1

Group

Generators = \{ 1, 2, \ldots, k \}

Operation: concatenation

\begin{align*}
1 \cdot 3 &= 13 \\
32 \cdot 1 &= 321
\end{align*}

Identity element: \(e \)

Inverse

\begin{align*}
1 \cdot 1 &= e \\
21 \cdot 1 &= 2 \cdot e = 2 \\
342 \cdot 213 &= 3413
\end{align*}

Associativity
\[k \geq 3 \text{ and } d = k - 1 \]

\[\Omega(k - 1) \]

Group

Generators = \{ 1, 2, \ldots, k \}

Operation: concatenation

\[
\begin{align*}
1 \cdot 3 &= 13 \\
32 \cdot 1 &= 321
\end{align*}
\]

Identity element: \(e \)

Inverse

\[
\begin{align*}
1 \cdot 1 &= e \\
21 \cdot 1 &= 2 \cdot e = 2 \\
342 \cdot 213 &= 3413
\end{align*}
\]

Associativity
$k \geq 3$ and $d = k - 1$

Forbidden color

d-regular, k-color; $d = k - 1$

3-regular, 3-color

2-regular, 3-color
\(k \geq 3 \) and \(d = k - 1 \)

Worst case graphs

two \(d \)-regular \(k \)-colored graphs \(A, B \) such that a node \(e \) has the same \(d \)-radius view in \(A \) and \(B \) and \(u_e \) is unmatched in \(A \) and matched in \(B \)
Simplifying the graph

leveraging symmetry

same radius-∞ view

3-regular, 4-color

\[\Omega(k - 1) \]
Simplifying the graph

leveraging symmetry

same radius-∞ view
Templates

3-regular, 4-color
Templates
Templates
Templates
Templates
Templates
Templates

\[\Omega(k - 1) \]
Incompatible outputs

\[\Omega(k - 1) \]

\[k = 4, \; d = k - 1 = 3 \]

same radius-2 view
Induction

Two degree-i templates such that a root node
- produces different outputs;
- radius-(i - 1) neighbourhoods are identical

i = 1: base case
i > 1: by induction
i = d = k - 1: result
Base case

\[\Omega(k - 1) \]
Base case

Ω(k - 1)

this work
Base case

\[\Omega(k - 1) \]

degree 1 templates, same radius-0 view, different output
Base case

$\Omega(k - 1)$

Diagram: Two sets of objects labeled with x, y, and z. The objects are connected by lines labeled x, y, and z. The diagram on the right has an additional line connecting x and z.
Inductive step

Ω(k - 1)
Inductive step

\[\Omega(k - 1) \]
Inductive step

degree-2 templates, same radius-1 view, different output

this work
\[\Omega(k - 1) \]
degree-3

this work

$\Omega(k - 1)$
degree-3

this work

\(\Omega(k - 1)\)
degree-3

$\Omega(k - 1)$

degree-2 templates, same radius-2 view, different output
Theorem 2

Let $k \geq 3$ and $d = k - 1$

Assume a distributed algorithm that finds a maximal matching in any d-regular k-colored graph. Then there are two d-regular k-colored graphs A, B such that a node u_e has the same $(d - 1)$-radius view in A and B and u_e is unmatched in A and matched in B.
Theorem 2

Let $k \geq 3$ and $d = k - 1$

Assume a distributed algorithm that finds a maximal matching in any d-regular k-colored graph. Then there are two d-regular k-colored graphs A, B such that a node u_e has the same $(d - 1)$-radius view in A and B and u_e is unmatched in A and matched in B.

Theorem 1

Let k be a positive integer. A deterministic distributed algorithm that finds a maximal matching in any anonymous, k-edge-colored graph requires at least $k - 1$ communication rounds.
anonymous, k-edge-colored

thight bound for distributed maximal matching in anonymous, k-edge-colored graphs

this work

\[\Omega(\Delta) \]

previous work

\[\Omega(\log^* k) \]

\[\therefore \quad \Omega(\Delta + \log^* k) \]
Distributed maximal matching, Greedy is optimal in anonymous, k-edge-colored graphs

$\Theta(\Delta + \log^* k)$