Backscatter Bundle

Matteo Panzacchi

Backscattered signals - Matteo 14-05-2014 Panzacchi

What is backscatter?

Backscattered signals - Matteo Panzacchi 14-05-2014

Scanning devices

Backscattered signals - Matteo Panzacchi 14-05-2014

Battery free wireless communication

Backscattered signals - Matteo Panzacchi 14-05-2014

Outline

Full Duplex Backscatter:

Transforming our smartphone into Star Trek's Tricoder

Outline

- Full Duplex Backscatter:
 - Transforming our smartphone into Star Trek's Tricoder
- Ambient Backscatter:
 - RF battery free communication

Full Duplex Backscatter

 Transforming our smartphone into a futuristic Tricoder

Limited sampling rate

Self-interference

Backscattered signals - Matteo Panzacchi 14-05-2014

Limited dynamic range

Backscattered signals - Matteo Panzacchi 14-05-2014

Model of backscatter

$$h_m[n] = \sum_k \alpha_k e^{i(\nu_k + \gamma_{mk})} \operatorname{sinc}(B(nT_s - (\tau_k + \frac{\gamma_{mk}}{2\pi f_c})))$$

• $\alpha_k e^{i\nu_k}$: complex attenuation for the *k*th reflection

- $\gamma_{mk} = \frac{2\pi}{\lambda}(m-1)d\sin\theta_k$: added phase shift for *k*th reflection at *m*th antenna, relative to the first receiver
- f_c : carrier frequency
- λ : wavelength
- d: distance between two consecutive antennas

Estimation of the parameters

• Estimation of the linear channel $\implies \tilde{h}_m[n]$

 Estimation of the parameters of the constituent backscatter by solving the following optimization problem

minimize $\sum_{m}\sum_{n} \|h_{m}[n] - \tilde{h}_{m}[n]\|^{2}$

where $\tau_k \ge 0, \alpha_k \le 1,$ $\theta_k \in [\frac{-\pi}{2}, \frac{\pi}{2}], \nu_k \in [0, 2\pi],$ $k = \{1, \dots, L\}, n = \{-N, \dots, N\},$ $m = \{1, \dots, M\}$

Signal cancellation

Formal algorithm

Backscattered signals - Matteo Panzacchi 14-05-2014

First evaluations

 Checking the possibility of progressive cancellation by using an emulated backscatter setup

 Checking the accuracy of the parameters estimation algorithm via MatLab simulations

Progressive cancellation results

Backscattered signals - Matteo Panzacchi 14-05-2014

Backscattered signals - Matteo Panzacchi 14-05-2014

Conclusions

- Basic building blocks for transforming a smartphone into a scanning device
- Changes in the hardware are needed
- First evaluation of the solutions for the main challenges gave good results
- More in depth evaluations are needed

Ambient Backscatter

Idea: enable communication among devices by using only ambient RF signals as only source of power

Backscattered signals - Matteo Panzacchi 14-05-2014

RF signals

It includes: TV, radio and cellular transmissions

- TV signals in particular have these characteristics:
 - Carry up to 1 MW power of Effective Radiated Power
 - Serve locations 100 mi away from the source (flat terrain), 45 mi (denser terrain)
 - Excellent coverage
 - Broadcast signals 24/7
 - Amplitude changes at a very fast rate
 - Synchronization symbols to compute multipath channel characteristics

Designing an Ambient Backscatter

- Three main challenges:
 - Mechanism to extract the backscattered information carried by the RF signals
 - Low power infrastructure
 - Channel arbitration and bit error detection
- It differs from traditional backscatter technologies because:
 - They relies on power hungry components

Ambient Backscatter design

Extracting the backscattered signal

Formal extracting technique

Averaging the instantaneous power in the N receiver samples:

$$\frac{1}{N}\sum_{n}^{N}|y[n]|^{2} = \frac{1}{N}\sum_{n}^{N}|x[n] + \alpha Bx[n] + w[n]|^{2}$$

- ► B is either '0' or '1', w[n] is uncorrelated with x[n]: $\frac{|1 + \alpha B|^2}{N} \sum_{n}^{N} |x[n]|^2$
- We have two power levels $|1 + \alpha|^2 P$ and P

Receiver circuit

- RC circuit for the averaging stage (it acts a low-pass filter)
- Comparator which has a threshold $\left(\frac{V_0+V_1}{2}\right)$ as input of the pin and it detects the two levels of power

Physical and Link layer structure

- Three main challenges:
 - Mechanism to extract the backscattered information carried by the RF signals
 - Low power infrastructure \checkmark
 - Channel arbitration and bit error detection
- No presence of a centralized controller
 - A new packet format
 - Link layers techniques

Packet format

- 10...10: sequence of '1' and '0' used to awake the logical unit
- Preamble: used to detect the packet
- Type: which can be data/ACK

Link Layer

The detection of bit errors is done using CRC

- No centralized authority to arbitrate the channel
 - Devices perform carrier sense by overhearing the channel
 - In absence of a transmitter you have a constant bit, so:

$$D = 1 - \frac{|\#ones - \#zeros|}{\#ones + \#zeros}$$

- In presence of a transmission D is close to 1
- In absence of a transmission D is close to 0
- RTS-CTS can be used to avoid Hidden Terminal problem

BER at different locations (Far vs Near)

Backscattered signals - Matteo Panzacchi 14-05-2014

D

BER at different locations (Indoor vs Outdoor)

Backscattered signals - Matteo Panzacchi 14-05-2014

32

Interference with TV

Real world application into a Grocery Store

Backscattered signals - Matteo Panzacchi 14-05-2014

Conclusions

- They implemented a prototype of a power free communication using TV signals
- The results were impressive

It is a first step into a direction of battery free communication

References

- Dinesh Bharadia, Kiran Raj Joshi, Sachin Katti: "Full Duplex Backscatter"
- Vincent Liu, Aaron Parks, Vamsi Talla, Shyamnath Gollakota, David Wetherall, Joshoua R. Smith: "Ambient Backscatter: Wireless Communication Out of Thin Air"

Q&A

