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Movie Rating

Application

Critic A 5

Critic B 6 5

Jian 9 8
Kind Guy B | 9 9

@ Observation: Matrix formulation, Clusters of opinion
o Challenge: Missing entries

o Task: Recover the matrix with constraints



Definition

Low Rank Matrix Completion

Low Rank Matrix Completion

minimize Rank(X)
s.t. Po(X) = Po(M)
where
Pa(8)i; = { 0 otherwise
() index set of observed entries in M




Outlines

Definition @ Linear Algebra Recap
@ Two Formulations
@ Optimization Algorithms

@ Performance Comparison



Recap: SVD and Nuclear Norm

@ Singular Value Decomposition

X =UuzvT
where
Xer™ put=1, vvi=1,
o1 T
X = [ul,ul, ,um] S o [vl,vl, ...,vn]
0

i=1



Recap: Trace Heuristic for Minimizing Rank

Trace Heuristic

minimize Rank(X) relazation, - hinimize 1 X |«

s.t. X el s.t. X el

Trace Heuristic

@ Positive semidefinite matrix case

A1
X=U N Ut
o

T

X[ =S A =Tr(x) =Y A
=1 =1



Recap: Trace Heuristic for Minimizing Rank

.
min|| X ||, = min » [\l
=1

@ Minimize L1 norm encourage zero entries
Trace Heuristic

L1 L2

lixll; I

e Rank(X) = # of non-zero eigenvalues



Recap: Trace Heuristic for Minimizing Rank

@ General case

minimize Rank(X) <= minimize Rank (diag(Y, Z))
|: Y X

Trace Heuristic

s.t. X el s.t. xT 7

|l PSD Trace Heuristic

}>0,X€C

minimize || X||« <= minimize Tr (diag(Y, Z))

Y X

s.t. Xed s.t. [ xT 7z

]zO,XeC



Recap: Rank and Decomposition

Rank and Decomposition
X = LR is at most rank r, if L € R™*" and R € R"™*"

@ Right null space of R is subspace of right null space of X
o dim (ker(X)) + dim (X) = n, dim(X) < dim(R) <r

@ much fewer variables if r is much smaller than m and n.

Decomposition



Recap: Summary

Trace Heuristic

minimize Rank(X) relazabion, - hinimize 1 X |«

s.t. XecC s.t. XecC

Rank and Decomposition
X = LR is at most rank r, if L € R™*" and R € R"™*"




Formulation: Barrier

Low Rank Matrix Completion
minimize Rank(X)
s.t. PQ(X) = PQ(M)

o Barrier:
Rank(X) is not continuous, not differentiable.
Thus an objective function difficult to optimize.



Formulation: Least Square

Least Square Formulation
minimize ||Po(X) — Po(M)||3
s.t. X = LRT

Formulation 1 @ Essentially a Least Square problem.
@ Enforce X to be at most rank r, if L € R™*"



Formulation: Least Square

@ Overfitting: degrade generalization

d =1 (under-fit) d=2 d = 6 (over-fit)

@ Regularizer: control the parameter complexity

- L2 norm of parameter vector is a common regularizer,
Formulation 1 . .
which is 377 [|Lil13 + 327 175113 = [|LI[ + [| R

Regularized Least Square Formulation

o o M
minimize Z ((LRT)iyj = ]\41',1')2 + §||L||%“ + §||R||%
(4,5)€Q




Formulation: Nuclear Norm Based

Nuclear Norm Based Formulation

minimize Z (X5 — Mz’,j)2 + || X |«
(1,5)€Q

@ Soft squared error instead of hard constraints

@ Nuclear norm and square error are convex functions of X
Formulation 2

@ 1 to keep balance between error and rank.

@ || X« still need to be updated as a easier explicit function
of entries in X



Formulation: Nuclear Norm Based

Decomposition of Nuclear Norm

||X||*_lnf{_”L||F+ HRHF X = LR"}

1
o |[Allr=(>; Zj A?,j)Q
o Verification with L = UX?z and R = VX7 from SVD

Formulation 2 HLH% :’I‘I'(LLT) :TI‘(UEUT)
=Tr(U'UE) =Tr(%)
=[1X1]«

$I|L||% + 3||R||%. as a upper bound for || X]||., can be
used to approximate || X||..



Formulation: Nuclear Norm Based

Approximated Nuclear Norm Based Formulation

minimize Z ((LRT); j — M; ;)* + gHLH% + gHRH%

Formulation 2



Formulation: Converged Formulation

Converged Formulation

.. JZ H
minimize Z ((LRT)Z‘J' — Mi,j)2 + §||L||%“ =+ §||R||%J
(4,7)€Q

@ Story Line 1: Approximately minimize rank with nuclear
norm and square error.

Convergency

@ Story Line 2: Least square estimation with Lo regularizer
preventing overfitting.

o A convergency of beautiful minds.



Optimization: Non-Convexity

Converged Formulation

. . . A A
minimize Z ((LRT)i,j = Mi,j>2 + §||LH% + §||R||%’
(4,5)€Q

@ A non-convex problem with local
minimum. Ex.
(x*y—1)%+0.00122 + 0.001%>

@ Under mild conditions, a local
minimum here is globally optimal for
min' Y, 5 ca(Xij— M)+l X1

o Convex if A large enough.

Opt Overview

@ Local mininum is worth our efforts.



Optimization: Alternating Least Square

Alternating Least Square Algorithm

minimize Z ((LR"); j — M ;)* + gHLH% + gHRH%‘
(4,9)€Q

1 Fix L, Vj
1 . Y -~ ,u/
min||L; R; — M ;|5 + §|\Rj.|\§

L;: include row L; , Vi, (4, j) € © (On Blackboard)
M ; : include entry M; ; Vi, (i,j) €

2 Fix R, Vi . -
min||R] L; — M |13 + 5112013

3 Repeat 1 and 2 until convergency.




Optimization: Alternating Least Square

Pros:
@ Convex sub-problem.

@ Closed-form solution in each step.
* : T 9 1%
R; =argmin||L;R; — M5 + §||Rj-||g
_(iTi PN\ iTar
= (EfL,+51) L],

Cons:

o O(max(nr3, mr?)) update operation in each step.



Optimization: Gradient Descent Recap

e V f(x) is the direction with most rapid increase.
o 2t = z()) _ (k)7 f(z) gives decreasing sequence if
step size is small enough.




Optimization: Gradient Descent

Gradient Descent Algorithm

LRT).; — M;,)* + B|L|% + £ R)?
mmlmlze(i%;Q(( Das ) +2|| ||F+2|| |7

where X = LR", L eR™ " ReR"™"

1 Vi, j
L g0 g0 | SN (LOROT 0,) ROT 4+ uL®
J:(4,5)EQ

Similar for R_(]].CH)

2 Repeat 1 until convergency.




Optimization: Gradient Descent

Pros:
e O((m + n)r?) update operation in each step.

@ O((m + n)r) update operation with Stochastic Gradient
Descent.

Pick (7,7) randomly.
Only consider error and ||.||r related to entry (i, )

L0 =) 0 (LR - A ) BT+
(@)

Cons:

@ lterative approach might need much more epochs.



Optimization: Conclusion

Alternating Least Square
@ Closed-form update with high stepwise complexity.

@ Might need fewer epochs.

(Stochastic) Gradient Descent
@ lterative update with low stepwise complexity.

@ Might need more epochs.

Summary



Experiment: Efficiency

o Netflix Dataset: Movie rating from 480K reviewer's rating
for more than 18K movies.

e Configuration: maximal possible rank r, L € R™*",

method | # of epochs | time/min (r = 50) | time/min (r = 100)
ALS 6 66 290
SGD 31 58 52.8

Experiment



Experiment:
More Applications and Qualitative Results

Video Denoising:
@ Observe reliable pixels.
@ Vectorizing and stacking similar patches to matrix.

@ Employ low rank structure within the matrix.

FAERE R Se
S0 gT789106 78910
F BUBEE "7 3UWB 86
DNDBANDDDANNNABN

Experiment



Experiment:
More Applications and Qualitative Results

Background Substraction:
@ Vectorizing and stacking different video frame.
@ Background is the low rank components.

@ Foreground is sparse noise.

Experiment



Conclusion

Technically

@ Matrix Completion is a fundamental problem for many real
world application.

@ Nuclear norm based and Least Square based formulation
converge into one with different relaxation.

@ Alternating Least Square and (Stochastic) Gradient
Descent are widely used alternatives to solve matrix
completion problems.

Methodologically

@ Relaxing the formulation and employing heuristic is a wise
way to approximately solve difficult problems.

@ Tradeoff between elegant closed form solution and " brute
Conclusion force” operations.



Thank You !
Q&A

o Acknowledgement:
Thanks to Tobias for helpful discussions,
suggestions and chips!!!

Conclusion
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