cover

Application and Definition

Definitio

Recap

Nuclear Norm
Trace Heuristic
Decomposition
Summary

Formulation

Barrier Formulation Formulation

Formulation 2 Convergency

Optimization

ALS SGD

Experimen

. . .

Deference

Low Rank Matrix Completion Formulation and Algorithm

Jian Zhang

Department of Computer Science, ETH Zurich zhangjianthu@gmail.com

March 25, 2014

Movie Rating

cover

Application

	THE WOLF	15 III THE REPORT OF THE PARTY	DO AND
Critic A	5	5	
Critic B	6	5	
Jian	9		8
Kind Guy B	9		9

Observation: Matrix formulation, Clusters of opinion

Challenge: Missing entries

Task: Recover the matrix with constraints

Low Rank Matrix Completion

cover

Definition

Low Rank Matrix Completion

minimize $\mathbf{Rank}(X)$

s.t.
$$P_{\Omega}(X) = P_{\Omega}(M)$$

where

$$P_{\Omega}(S)_{i,j} = \begin{cases} S_{i,j} & \text{if } (i,j) \in \Omega \\ 0 & \text{otherwise} \end{cases}$$

 Ω index set of observed entries in M

Outlines

cover

Application and Definitio

Definition

Nuclear Norm Trace Heuristic Decomposition Summary

Formulation

Formulation 1 Formulation 2 Convergency

Optimization Opt Overview ALS SGD

Experimen

Canalusias

Reference

- Linear Algebra Recap
- Two Formulations
- Optimization Algorithms
- Performance Comparison

Recap: SVD and Nuclear Norm

cover

Singular Value Decomposition

$$X = U\Sigma V^T$$

where

$$oldsymbol{X} \in \mathbb{R}^{m imes n} \quad oldsymbol{U} oldsymbol{U}^{oldsymbol{T}} = oldsymbol{I}_m \quad oldsymbol{V} oldsymbol{V}^{oldsymbol{T}} = oldsymbol{I}_n$$

$$\sigma_i \ge 0$$

Nuclear Norm

$$||X||_* = \sum_{i=1}^r \sigma_r$$

COV

and Definition

Recan

Nuclear Norm Trace Heuristic Decomposition

Formulation

Formulation Formulation Convergency

Opt Overview

ALS SGD Summary

Experimen

Reference

Recap: Trace Heuristic for Minimizing Rank

cover

Trace Heuristic

Trace Heuristic

minimize
$$\mathbf{Rank}(X)$$
 $\xrightarrow{relaxation}$ minimize $||X||_*$ $s.t.$ $X \in \mathcal{C}$ $s.t.$ $X \in \mathcal{C}$

Positive semidefinite matrix case

Recap: Trace Heuristic for Minimizing Rank

cover

Trace Heuristic

$$\min||\boldsymbol{X}||_* = \min \sum_{i=1}^r |\lambda_i|$$

• Minimize L_1 norm encourage zero entries

• Rank(X) = # of non-zero eigenvalues

Recap: Trace Heuristic for Minimizing Rank

cover

and Definit

Application

Definition

Recap

Nuclear Norm Trace Heuristic Decomposition Summary

Formulation Barrier Formulation 1 Formulation 2

Opt Overvie ALS SGD

Experiment

ZAPOLITICA

Reference

General case

$$\begin{array}{lll} \text{minimize} & ||X||_* & \Longleftrightarrow & \text{minimize} & \mathbf{Tr}\left(\mathrm{diag}(Y,Z)\right) \\ s.t. & X \in \mathcal{C} & s.t. & \left[\begin{array}{cc} Y & X \\ X^T & Z \end{array} \right] \geq 0, X \in \mathcal{C} \end{array}$$

Recap: Rank and Decomposition

cover

Application and Definition Application

Recap

Nuclear Norm Trace Heuristic Decomposition Summary

Barrier Formulation : Formulation : Convergency

Optimization
Opt Overview
ALS
SGD
Summary

Experimen

Conclusion

Reference

Rank and Decomposition

 $m{X} = m{L}m{R}$ is at most rank r, if $L \in \mathbb{R}^{m \times r}$ and $R \in \mathbb{R}^{r \times n}$

- Right null space of R is subspace of right null space of X
- $\dim(\ker(X)) + \dim(X) = n$, $\dim(X) \le \dim(R) \le r$
- ullet much fewer variables if r is much smaller than m and n.

Recap: Summary

cover

and Definiti

Definition

Recap

Nuclear Norm Trace Heuristic Decomposition Summary

Formulatio

Formulation :

Optimization Opt Overview

ALS SGD Summary

Experimen

Conclusion

Reference

Trace Heuristic

 $\begin{array}{ll} \text{minimize} & \mathbf{Rank}(X) & \xrightarrow{relaxation} & \text{minimize} & ||\boldsymbol{X}||_* \\ s.t. & \boldsymbol{X} \in \mathcal{C} & s.t. & \boldsymbol{X} \in \mathcal{C} \end{array}$

Rank and Decomposition

 $m{X} = m{L}m{R}$ is at most rank r, if $L \in \mathbb{R}^{m imes r}$ and $R \in \mathbb{R}^{r imes n}$

Formulation: Barrier

cover

and Definit
Application
Definition

Recap

Nuclear Norm Trace Heuristic Decomposition Summary

Formulation

Barrier

Formulation Formulation

Optimization Opt Overview ALS

Experimen

Experimen

Conclusio

Reference

Low Rank Matrix Completion

minimize $\mathbf{Rank}(X)$

s.t. $P_{\Omega}(X) = P_{\Omega}(M)$

Barrier:

Rank(X) is not continuous, not differentiable. Thus an objective function difficult to optimize.

Formulation: Least Square

cover

Formulation 1

Least Square Formulation

minimize
$$||P_{\Omega}(\boldsymbol{X}) - P_{\Omega}(\boldsymbol{M})||_2^2$$

$$s.t. X = LR^T$$

- Essentially a Least Square problem.
- ullet Enforce $oldsymbol{X}$ to be at most rank r, if $oldsymbol{L} \in \mathbb{R}^{m imes r}$

Formulation: Least Square

cover

Application and Definition Application

Recar

Nuclear Norm Trace Heuristic Decomposition Summary

Barrier

Formulation 1 Formulation 2 Convergency

Opt Overvie ALS SGD Summary

Experimen

Reference

• Overfitting: degrade generalization

- Regularizer: control the parameter complexity
 - L2 norm of parameter vector is a common regularizer, which is $\sum_{i=1}^m ||L_i||_2^2 + \sum_{j=1}^n ||R_j||_2^2 = ||\boldsymbol{L}||_F^2 + ||\boldsymbol{R}||_F^2$

Regularized Least Square Formulation

minimize
$$\sum_{(i,j)\in\Omega} ((\boldsymbol{L}\boldsymbol{R}^T)_{i,j} - \boldsymbol{M}_{i,j})^2 + \frac{\mu}{2}||\boldsymbol{L}||_F^2 + \frac{\mu}{2}||\boldsymbol{R}||_F^2$$

Formulation: Nuclear Norm Based

cover

and Definiti

Application

Definition

Recap

Nuclear Norm Trace Heuristic Decomposition Summary

Formulation
Barrier
Formulation 1
Formulation 2

Optimization
Opt Overview
ALS
SGD

Experiment

Conclusion

D (

Nuclear Norm Based Formulation

minimize
$$\sum_{(i,j)\in\Omega}(\boldsymbol{X}_{i,j}-\boldsymbol{M}_{i,j})^2+\mu||\boldsymbol{X}||_*$$

- Soft squared error instead of hard constraints
- ullet Nuclear norm and square error are convex functions of X
- \bullet μ to keep balance between error and rank.
- ullet $||X||_*$ still need to be updated as a easier explicit function of entries in X

Formulation: Nuclear Norm Based

cover

Decomposition of Nuclear Norm

$$||X||_* = \inf\{\frac{1}{2}||L||_F^2 + \frac{1}{2}||R||_F^2 : X = LR^T\}$$

- $||A||_F = (\sum_i \sum_j A_{i,j}^2)^{\frac{1}{2}}$
- ullet Verification with $oldsymbol{L}=oldsymbol{U}oldsymbol{\Sigma}^{rac{1}{2}}$ and $oldsymbol{R}=oldsymbol{V}oldsymbol{\Sigma}^{rac{1}{2}}$ from SVD

$$egin{aligned} ||m{L}||_F^2 = & \mathbf{Tr}(m{L}m{L}^T) & = & \mathbf{Tr}(m{U}m{\Sigma}m{U}^T) \ = & \mathbf{Tr}(m{U}^Tm{U}m{\Sigma}) & = & \mathbf{Tr}(m{\Sigma}) \ = & ||m{X}||_* \end{aligned}$$

• $\frac{1}{2}||L||_F^2 + \frac{1}{2}||R||_F^2$, as a upper bound for $||X||_*$, can be used to approximate $||X||_*$.

Application and Definition

Nuclear Norm Trace Heuristi

Formulation
Barrier
Formulation 1
Formulation 2

Optimization
Opt Overview
ALS
SGD
Summary

Experiment

Reference

Formulation: Nuclear Norm Based

cover

Application and Definition Application

D.

Recap

Nuclear Norm Trace Heuristic Decomposition Summary

Formulation

Barrie

Formulation 1
Formulation 2

Optimization

ALS SGD

Experimen

Experimen

Conclusion

Reference

Approximated Nuclear Norm Based Formulation

minimize
$$\sum_{(i,j)\in\Omega} ((\boldsymbol{L}\boldsymbol{R}^T)_{i,j} - \boldsymbol{M}_{i,j})^2 + \frac{\mu}{2}||\boldsymbol{L}||_F^2 + \frac{\mu}{2}||\boldsymbol{R}||_F^2$$

Formulation: Converged Formulation

cover

Convergency

Converged Formulation

minimize
$$\sum_{(i,j)\in\Omega} ((\boldsymbol{L}\boldsymbol{R}^T)_{i,j} - \boldsymbol{M}_{i,j})^2 + \frac{\mu}{2}||\boldsymbol{L}||_F^2 + \frac{\mu}{2}||\boldsymbol{R}||_F^2$$

- Story Line 1: Approximately minimize rank with nuclear norm and square error.
- Story Line 2: Least square estimation with L_2 regularizer preventing overfitting.
- A convergency of beautiful minds.

Optimization: Non-Convexity

cover

Converged Formulation

Opt Overview

$$\text{minimize} \sum_{(i,j)\in\Omega} ((\boldsymbol{L}\boldsymbol{R}^T)_{i,j} - \boldsymbol{M}_{i,j})^2 + \frac{\lambda}{2}||\boldsymbol{L}||_F^2 + \frac{\lambda}{2}||\boldsymbol{R}||_F^2$$

 A non-convex problem with local minimum. Ex.

$$(x*y-1)^2 + 0.001x^2 + 0.001y^2$$

- Under mild conditions, a local minimum here is globally optimal for $\min \sum_{(i,j)\in\Omega} (X_{i,j} - M_{i,j})^2 + \mu ||X||_*$
- Convex if λ large enough.
- Local mininum is worth our efforts.

Optimization: Alternating Least Square

cover

Alternating Least Square Algorithm

minimize
$$\sum_{(i,j)\in\Omega}((\bm{L}\bm{R}^T)_{i,j}-\bm{M}_{i,j})^2+\frac{\mu}{2}||\bm{L}||_F^2+\frac{\mu}{2}||\bm{R}||_F^2$$

1 Fix L, $\forall j$

$$\min ||\hat{\boldsymbol{L}}_{j}\boldsymbol{R}_{j.} - \hat{\boldsymbol{M}}_{.j}||_{2}^{2} + \frac{\mu}{2}||\boldsymbol{R}_{j.}||_{2}^{2}$$

 $\hat{\boldsymbol{L}}_{j}$: include row $\boldsymbol{L}_{i.}$, $\forall i, (i,j) \in \Omega$ (On Blackboard) $\hat{\boldsymbol{M}}_{i,j}$: include entry $M_{i,j}$ $\forall i, (i,j) \in \Omega$

2 Fix
$$m{R}$$
, $orall i$ $\min || \hat{m{R}}_i^T m{L}_{.i} - \hat{m{M}}_{i.}^T ||_2^2 + rac{\mu}{2} || m{L}_{.i} ||_2^2$

3 Repeat 1 and 2 until convergency.

and Definition

Application

Definition

Recap

Nuclear Norm Trace Heuristic Decomposition Summary

Formulation Barrier

Formulation 2 Formulation 2 Convergency

Optimization
Opt Overview

SGD Summary

Experimen

Conclusion

Optimization: Alternating Least Square

cover

and Definition

Definition

Recan

Nuclear Norm Trace Heuristic Decomposition Summary

Barrier
Formulation 1
Formulation 2

Optimization
Opt Overview

ALS SGD Summary

Experimen

. . .

Reference

Pros:

- Convex sub-problem.
- Closed-form solution in each step.

$$\mathbf{R}_{j.}^* = \operatorname{argmin} ||\hat{\mathbf{L}}_j \mathbf{R}_{j.} - \hat{\mathbf{M}}_{.j}||_2^2 + \frac{\mu}{2} ||\mathbf{R}_{j.}||_2^2$$
$$= \left(\hat{\mathbf{L}}_j^T \hat{\mathbf{L}}_j + \frac{\mu}{2} \mathbf{I}\right)^{-1} \hat{\mathbf{L}}_j^T \hat{\mathbf{M}}_{.j}$$

Cons:

• $O(\max(nr^3, mr^3))$ update operation in each step.

Optimization: Gradient Descent Recap

cover

• $\nabla f(x)$ is the direction with most rapid increase.

• $x^{(k+1)} = x^{(k)} - \eta^{(k)} \nabla f(x)$ gives decreasing sequence if step size is small enough.

Optimization: Gradient Descent

cover

Gradient Descent Algorithm

$$\text{minimize} \sum_{(i,j) \in \Omega} ((\boldsymbol{L}\boldsymbol{R}^T)_{i,j} - \boldsymbol{M}_{i,j})^2 + \frac{\mu}{2} ||\boldsymbol{L}||_F^2 + \frac{\mu}{2} ||\boldsymbol{R}||_F^2$$

where
$$\boldsymbol{X} = \boldsymbol{L}\boldsymbol{R}^T$$
, $L \in \mathbb{R}^{m \times r}$, $R \in \mathbb{R}^{n \times r}$

 $1 \ \forall i, j$

$$\boldsymbol{L}_{i.}^{(k+1)} = \boldsymbol{L}_{i.}^{(k)} - \eta^{(k+1)} \left[\sum_{j:(i,j) \in \Omega} \left(\boldsymbol{L}_{i.}^{(k)} \boldsymbol{R}_{j.}^{(k)T} - \boldsymbol{M}_{i,j} \right) \boldsymbol{R}_{j.}^{(k)T} + \mu \boldsymbol{L}_{i.}^{(k)} \right]$$

Similar for $\boldsymbol{R}_{i}^{(k+1)}$

2 Repeat 1 until convergency.

Optimization: Gradient Descent

cover

Pros:

- $O((m+n)r^2)$ update operation in each step.
- O((m+n)r) update operation with Stochastic Gradient Descent.

Pick (i, j) randomly.

Only consider error and $||.||_F$ related to entry (i, j)

$$\boldsymbol{L}_{i.}^{(k+1)} = \boldsymbol{L}_{i.}^{(k)} - \eta^{(k+1)} \left[\left(\boldsymbol{L}_{i.}^{(k)} \boldsymbol{R}_{j.}^{(k)T} - \boldsymbol{M}_{i,j} \right) \boldsymbol{R}_{j.}^{(k)T} + \frac{\mu}{|\Omega_{(i.)}|} \boldsymbol{L}_{i.}^{(k)} \right]$$

Cons:

Iterative approach might need much more epochs.

Optimization: Conclusion

cover

Application and Definition Application

Recan

Nuclear Norm Trace Heuristic Decomposition Summary

Barrier Formulation 1 Formulation 2 Convergency

Optimization
Opt Overview
ALS
SGD
Summary

Experimen

Lxperimer

Deference

Alternating Least Square

- Closed-form update with high stepwise complexity.
- Might need fewer epochs.

(Stochastic) Gradient Descent

- Iterative update with low stepwise complexity.
- Might need more epochs.

Experiment: Efficiency

cover

Experiment

- Netflix Dataset: Movie rating from 480K reviewer's rating for more than 18K movies.
- Configuration: maximal possible rank r, $L \in \mathbb{R}^{m \times r}$.

method	# of epochs	time/min (r = 50)	time/min (r = 100)
ALS	6	66	290
SGD	31	58	52.8

Experiment: More Applications and Qualitative Results

cover

Application and Definition Application Definition

Reca

Nuclear Norm Trace Heuristic Decomposition Summary

Formulation

Formulation Formulation Convergency

Opt Overview
ALS
SGD
Summary

Experiment

Video Denoising:

- Observe reliable pixels.
- Vectorizing and stacking similar patches to matrix.
- Employ low rank structure within the matrix.

Experiment: More Applications and Qualitative Results

cover

Application and Definition Application

Recap

Nuclear Norm Trace Heuristic Decomposition Summary

Formulation Barrier

Formulation Formulation Convergency

Optimization

ALS SGD Summary

Experiment

. Canalusian

D . C

Background Substraction:

- Vectorizing and stacking different video frame.
- Background is the low rank components.
- Foreground is sparse noise.

Conclusion

cover

Conclusion

Technically

- Matrix Completion is a fundamental problem for many real world application.
- Nuclear norm based and Least Square based formulation converge into one with different relaxation.
- Alternating Least Square and (Stochastic) Gradient Descent are widely used alternatives to solve matrix completion problems.

Methodologically

- Relaxing the formulation and employing heuristic is a wise way to approximately solve difficult problems.
- Tradeoff between elegant closed form solution and "brute force" operations.

cover

Application and Definition Application

Recap

Nuclear Norm Trace Heuristic Decomposition Summary

Formulation

Barrier

Formulation

Convergency

Optimization

Opt Overview

SGD Summary

Experimen

Conclusion

Reference

Thank You!

Q & A

 Acknowledgement: Thanks to Tobias for helpful discussions, suggestions and chips!!!

Reference

cover

Reference

1 Low-rank Matrix Completion using Alternating Minimization. Prateek et al. STOC 2013.

2 Distributed Matrix Completion. Teflioudi et al. ICDM 2012.

3 Large-scale Parallel Collaborative Filtering for the Netflix Prize. Thou et al. AAIM 2008

4 Parallel Stochastic Gradient ALgorithms for Large-Scale Matrix Completion.

Recht et al. MPC 2013.

5 Matrix Rank Minimization with Applications. Fazel. Phd Thesis.

6 Robust Video Denoising using Low Rank Matrix Completion. Ji et al. CVPR 2010.

7 Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization Wright et al. NIPS 2009.