WHERE'S MY APP?

.... SERIOUSLY, WHERE IS IT?

Ranveer Joyseeree

Who has a smartphone?

Who DOESN'T have a smartphone??

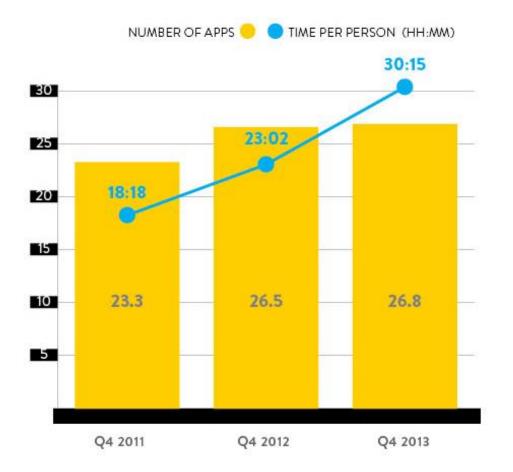
Who DOESN'T have a smartphone?? Almost no-one!

How many of them do you have?

How many of them do you have? Too many!

How much time do you spend on them?

How much time do you spend on them? Too much!



http://www.nielsen.com/us/en/insights/news/2014/smartphones-so-many-apps--so-much-time.html

Getting worse!

Getting worse!

TECH VIDEO GAMES

Nintendo Announces Plans to Expand Into Mobile Gaming

Rishi lyengar @iyengarrishi

March 17, 2015

Getting worse!

TECH VIDEO GAMES

Nintendo Announces Plans to Expand Into Mobile Gaming

Rishi lyengar @iyengarrishi

March 17, 2015

Image: Second systemQImage: Second systemNEWSYour area →Topics →

NATIONAL

Phone battery life 'causing stress' for millions

A dead battery in a smartphone would cause stress for nine out of 10 Britons, as daily activities hinge on a single factor "having enough juice to keep the phones running," says a report by smartphone case maker mophie.

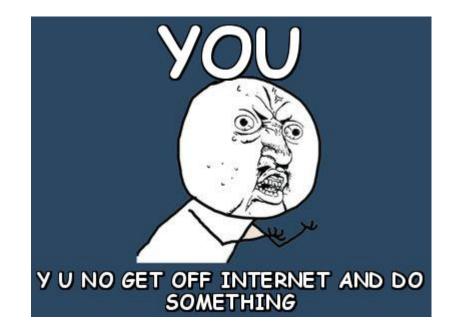
1:40 am, Mon 12 May 2014

More than 70% would 'give up dessert' for battery life

Almost half of those surveyed said that if their mobile phone died they would only be able to remember three phone numbers - and more than 70% said they would give up having pudding after a meal in order to have a fully charged smartphone for a month.

Kevin Malinowski, a spokesman for mophie, said:

Millions of people rely on their smartphones daily to stay in touch with loved ones and do work on the move.



STRESSED spelled backwards is DESSERTS Coincidence? We think not!

EXISTING SOLUTIONS

HOME SCREENS

MFU

Nokia Z Launcher app

MRU

Time still lost!

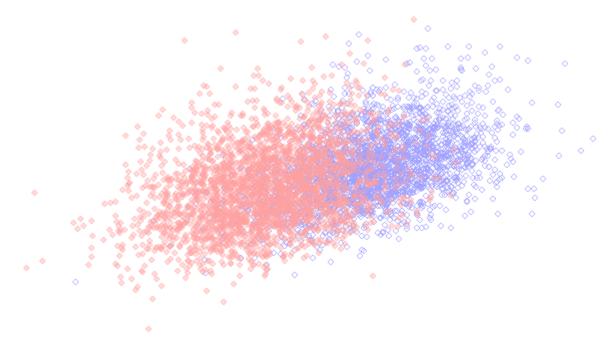
Time still lost!

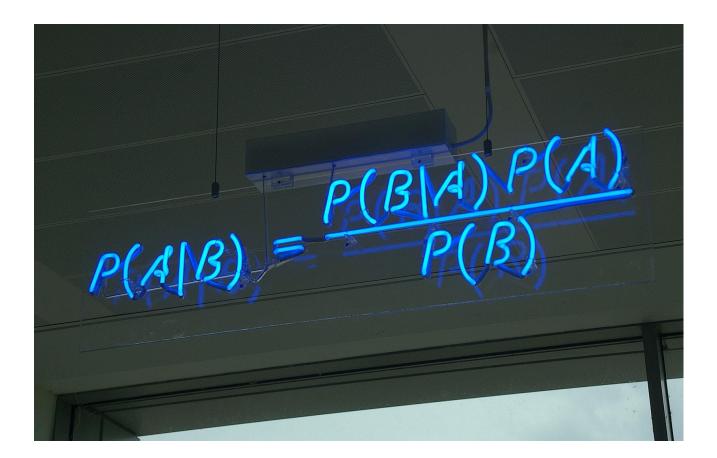
General methods do not suit everyone

SOLUTION

Predict next used app using current context

CURRENT RESEARCH

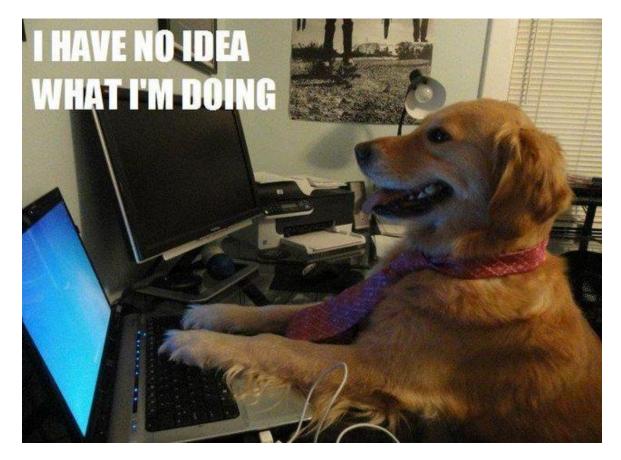




Remaining issues

Limited number of applications developed

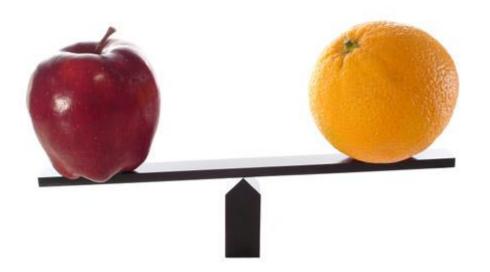
No analysis of how end-users utilized them



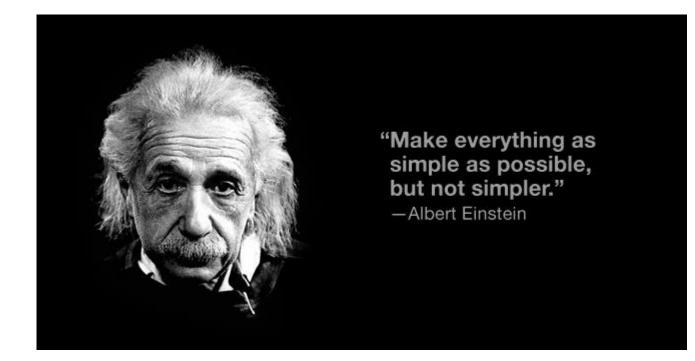
Unreliable performance:

- High with few candidate apps
- Low with many candidate apps

Little comparison with other approaches



Insufficient study of other contextual information



OVERVIEW

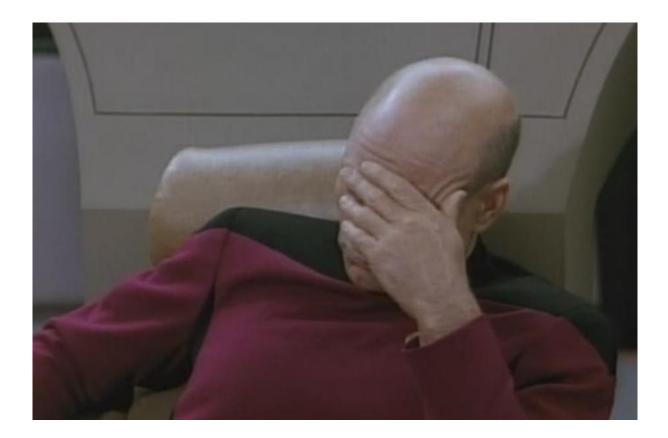
- 3 mining applications
- Discussion and conclusion
- Questions

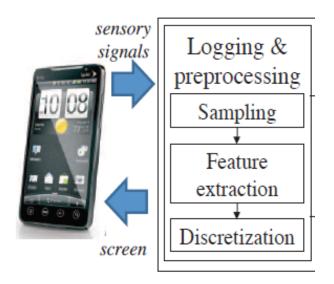
MINING APPLICATION 1

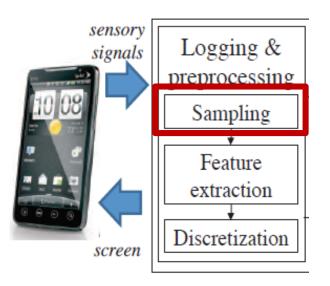
Shin, C., Hong, J. H., & Dey, A. K. (2012, September). Understanding and prediction of mobile application usage for smart phones. In *Proceedings of the 2012 ACM Conference on Ubiquitous Computing* (pp. 173-182). ACM.

Dynamic home screen app

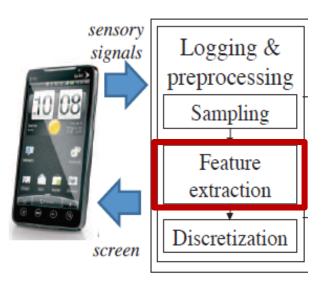
Yet another app!



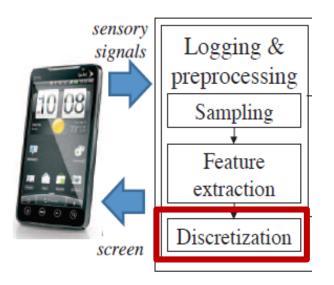




- GPS, calls, SMS, accelerometer, ...
- illumination, battery status, Wi-Fi, ...
- running apps, active app, app status.

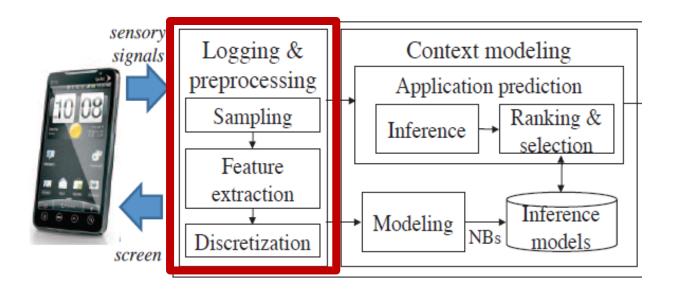


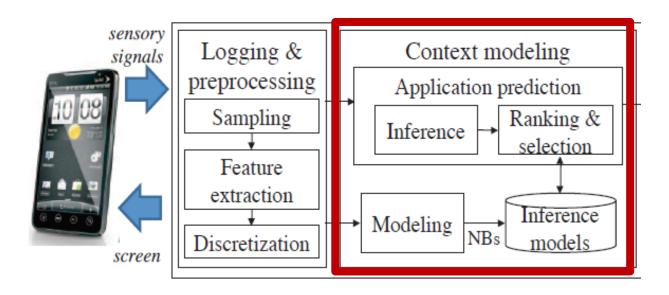
- loc_gpsx, acc_avgx, event, net_status, ...
- *ill_level*, *wifi_status*, *bat_level*, ...
- $last_app$, $last_appcnt$, $app_pkgchange$, ...

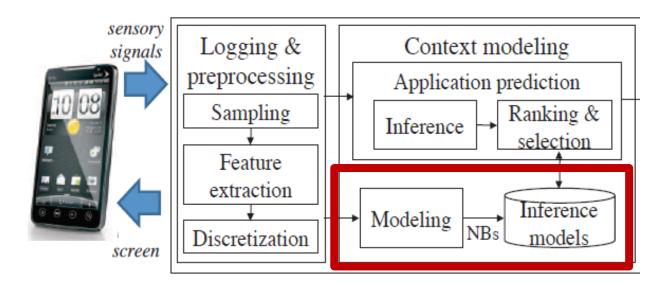


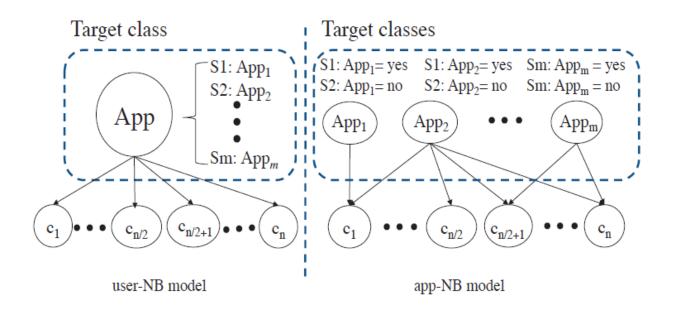
- Continuous -> {verylow, low, medium, large, verylarge}

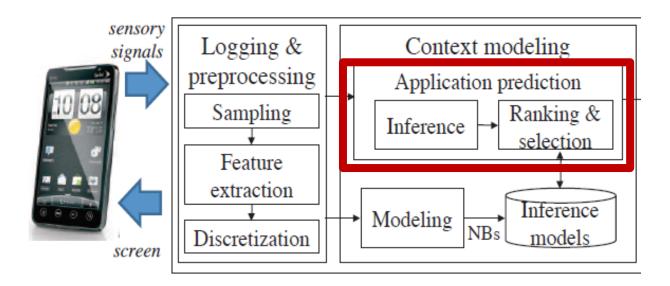
Sensor	Contextual information	Possible values
Illumin ation	Level (<i>ill_level</i>) Illumination changes (<i>ill_cnt</i>)	{verylow to veryhigh} {verylow to veryhigh}
Screen	Status (scr_status)	{on,off}
Call- SMS	Event (event)	{call, sms, none}



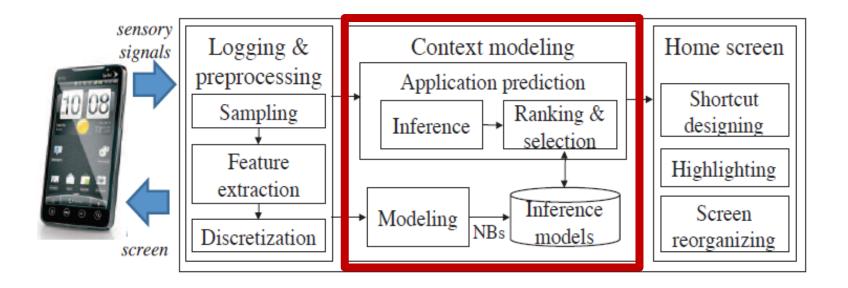


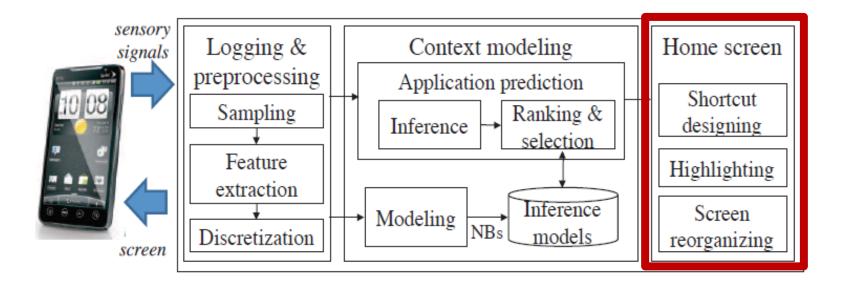




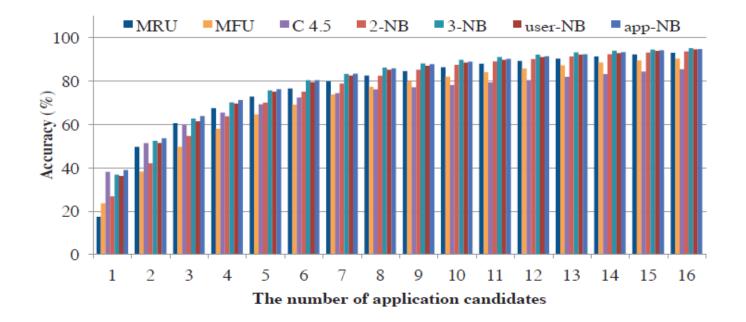


MINING APPLICATION I

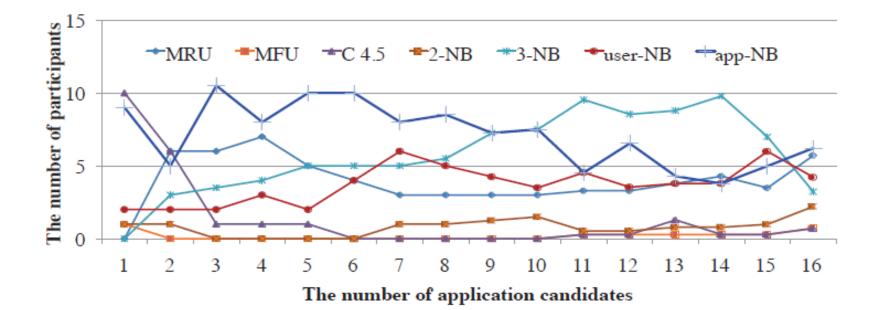




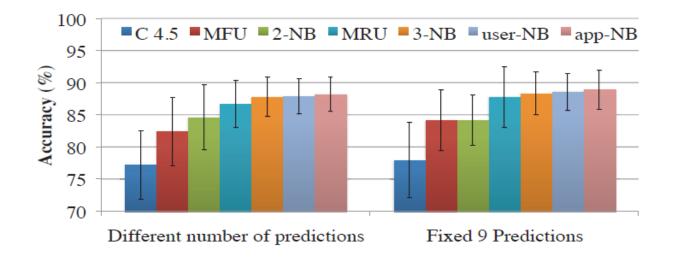
PERFORMANCE ASSESSMENT

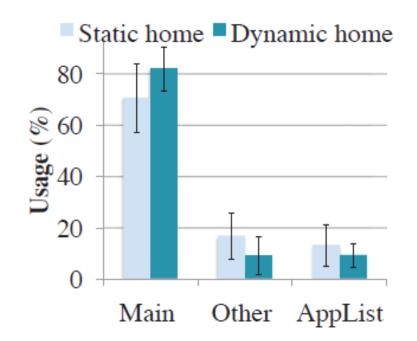


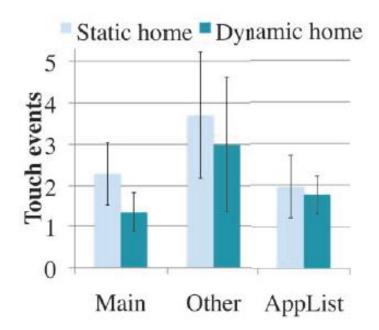
- C4.5 = decision tree strategies
- 2NB = 2-feature-based NB model (location and hour of day)
- 3NB = 3-feature-based NB model (location, hour of day, last_app)

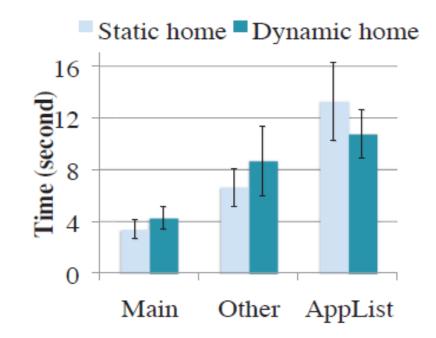


EVALUATION









USER FEEDBACK

+ General satisfaction

- Lack of control
- Placement of apps changing

CONTRIBUTIONS

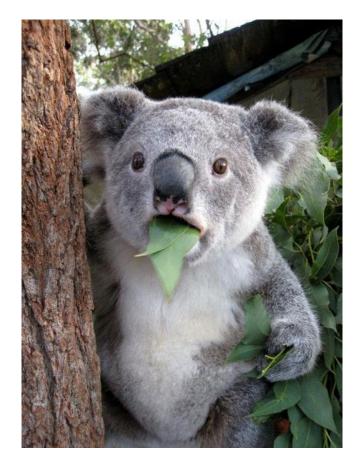
- + Best performance for few apps to be predicted
- + All calculations on phone (privacy)
- + Reduced number of touch input events
- + Increased interaction with main home screen

~ Battery life

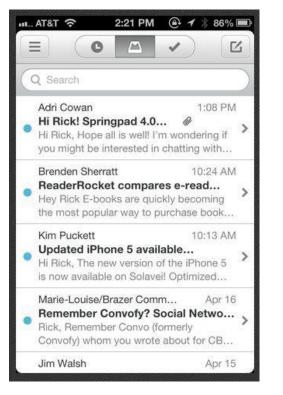
- Slightly increased time to find app on home screens

NEXT LEVEL – WHERE'S MY CONTENT? Prediction -> find app

User looking for **content**



Many apps -> real-time, content-driven



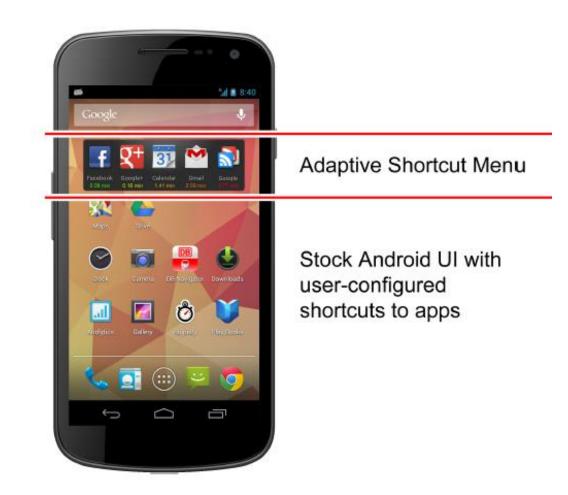
	9:15 AM	Ľ	
	Nick Fisher @Nick 2m Love being reminded of the power and magic of #space		
	Rob Chiswa @RobChiz Hilarious. Cats in #Space: omgcatsinspace.tumblr.com	2m	
	Lisa Wang @ldubs "Somewhere, something incre is waiting to be known." - Carl Sagan #space pic.twitter.com/qbJx26r		
	Coleen Baik @colbay Incredible, hi-res images of Ea from #space - thanks NASA satellite! is.gd/PFm9b9	5m arth	
Home	Zhanna Shamis ©Zhanna	5m	

Average network latency: 11 s

Ideally -> BOTH prediction and app loading

MINING APPLICATION 2

Parate, A., Böhmer, M., Chu, D., Ganesan, D., & Marlin, B. M. (2013, September). Practical prediction and prefetch for faster access to applications on mobile phones. In Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing (pp. 275-284). ACM.



BOTH prediction and app loading:

- App Prediction by Partial Match (APPM)
- Time Till Usage (TTU)

APPM + TTU = PREeminently Practical approach to Prefetch (PREPP)

Text compression: Prediction by Partial Match (PPM)

Text compression: Prediction by Partial Match (PPM)

- "natio"

Text compression: Prediction by Partial Match (PPM)

- "natio"
- Next letter?

Text compression: Prediction by Partial Match (PPM)

- "natio"
- Next letter?
- "n"

Email, Facebook, twitter, ?

Low training overhead

Adapts to usage dynamics

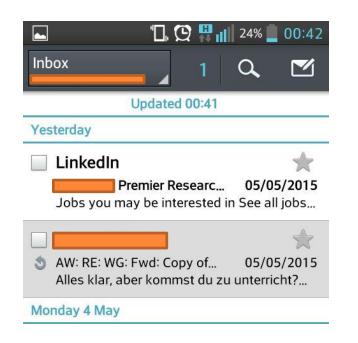
Calculations :

- when an app is opened
- for next app to be opened

TTU

"Freshness" – how recently an app's content was prefetched prior to application use

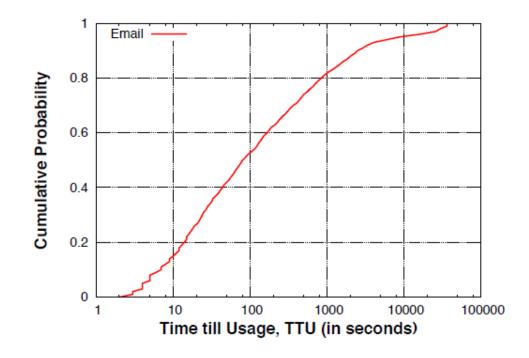
E.g. Email freshness



E.g. TTU versus polling

Kail Fetch New Data			
HEVS			
Mail, Notes	Fetch >		
Holiday Calendar Calendars	Fetch >		
FETCH			
The schedule below is used when push is off or for applications which do not support push. For better battery life, fetch less frequently.			
Every 15 Minutes			
Every 30 Minutes			
Hourly			
Manually	~		

Cumulative Distribution Function (CDF) calculated \circ CDF: $F_{TTU|nextapp=e}$, uses app usage history incl. timing



Need to predict WHEN app will be opened

TEMPORAL MODELING

APPM predicts next app

• Find Δt

DECISION ENGINE

Trade-off: freshness vs. bandwidth/battery cost

PREFETCH CONSIDERATIONS

Phone OS constraints: prefetch only when device is unlocked and in use

PREFETCH CONSIDERATIONS

Phone OS constraints: prefetch only when device is unlocked and in use

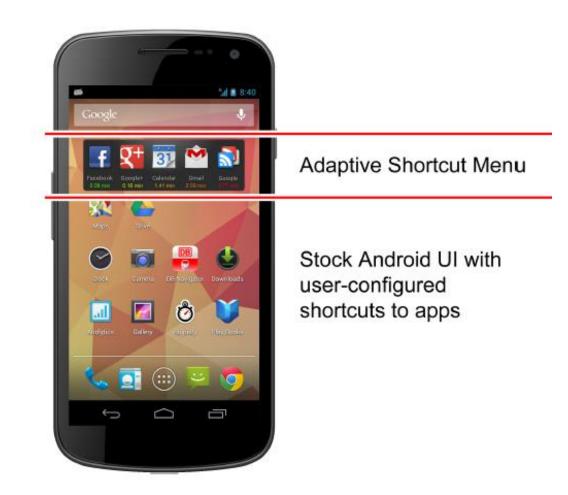
Minimal disruption: prefetch when user unlocks device for use

PREFETCH CONSIDERATIONS

Phone OS constraints: prefetch only when device is unlocked and in use

Minimal disruption: prefetch when user unlocks device for use

Saving energy: parallel prefetch on apps predicted to be used in quick succession



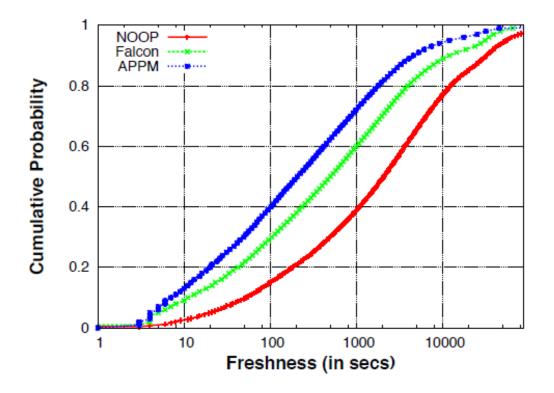
PERFORMANCE EVALUATION

Better prediction accuracy with fewer contexts esp. no location (privacy, energy constraints)

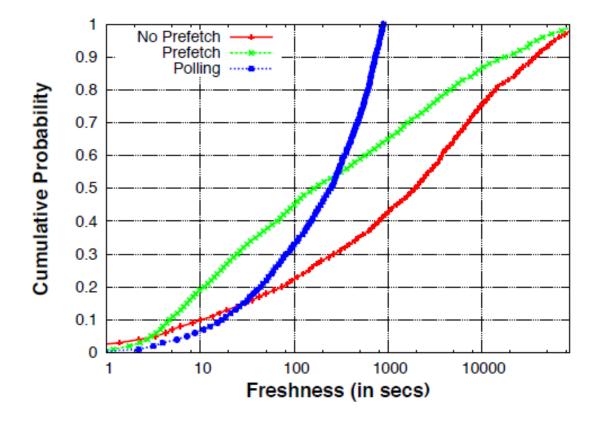
Algorithm	Prediction Accuracy
MFU	48.81±1.08 %
2-NB	74.87±1.60 %
3-NB	78.81±1.34 %
APPM	80.85±1.23 %

Algorithm	Prediction Accuracy
Falcon	70.16±1.56 %
APPM	74.37±1.41 %

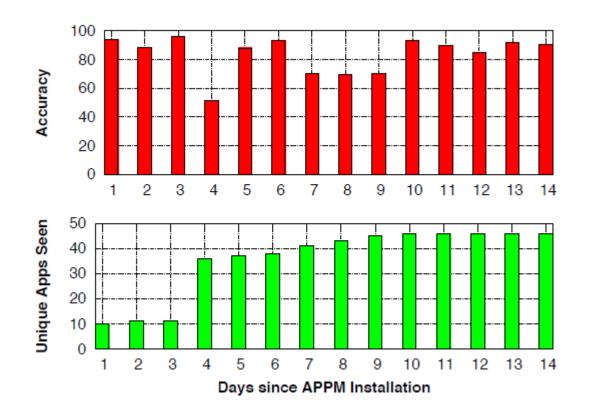
Better freshness vs. no-prefetch(NOOP) and Falcon e.g. for Email



Median: NOOP=32.6s, Polling=4.1, APPM=2.7



Little training and adaptable



Low system overhead

Binary Size	0.96MB
Memory	6.5MB
Time for prediction	$<250 \mu s$
Time for prefetch decision	<5ms

Low battery use:

1875 = 0.13% of 1400mAh battery

	Energy Consumption(in µ Ah)	
	Data Transfer Phase	Total
Sequential	2320.04	3547.25
Parallel	1407.31	1875.00

CONTRIBUTIONS

- + Best prediction accuracy vs. established methods
- + Location not needed
- + Better freshness
- + Little training and adaptable
- + Low system overhead
- ~ Battery life

NEXT LEVEL – IMPROVE MY LIFE!

Mining context data reveals user patterns

Chance to personalize/improve user experience!

MINING APPLICATION 3

Srinivasan, V., Moghaddam, S., Mukherji, A., Rachuri, K. K., Xu, C., & Tapia, E. M. (2014, September). Mobileminer: Mining your frequent patterns on your phone. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing (pp. 389-400). ACM.

MOBILEMINER

Objectives:

- Finding co-occurrence patterns
- Improving overall user experience
- Enabling pattern mining entirely on device

Co-occurrence:

• {Morning, Breakfast, AtHome} -> {ReadNews}

• Preload content

• Provide useful shortcuts

• Altering user habits

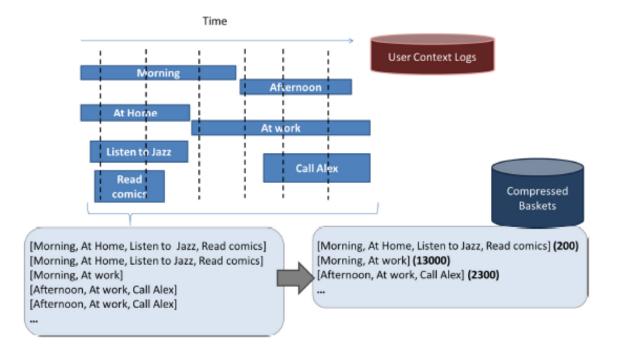
• If-then-else-type coding

• Pattern mining service at multiple resolutions using limited resources

May 2015 Calendar Printable calendars available from www.calendarcr

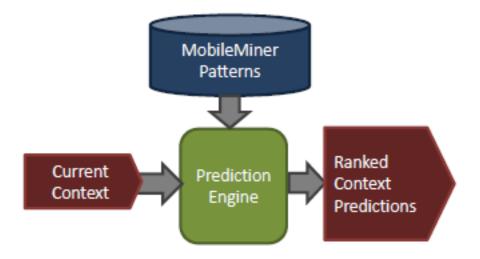
• Computations carried out during charging and when no app in use

RULE/FREQUENT ITEMSET MINING



Basket extraction + co-occurrence + filtering

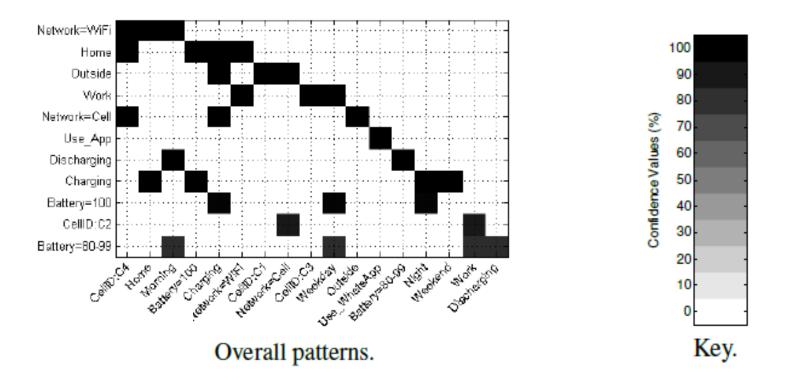
PREDICTION PIPELINE



PERFORMANCE EVALUATION

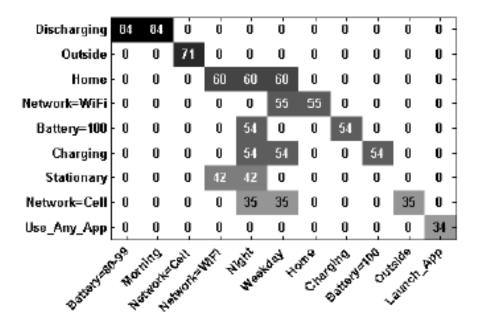
Performance Metric	Base Basket Extraction	Base Rule Mining	App Usage Filtering	App Usage Rule Mining
Execution time	1.7 seconds	16.5 minutes	1.4 seconds	21.2 seconds
Memory	9.9 MB	44.2 MB	11.6 MB	1.0 MB
CPU Utilization	22.9%	24.3%	20.8%	21.9%
Number of baskets or rules	114275 baskets 8559 compressed	46675 rules	752 baskets 327 compressed	1062 rules
Energy per day as % of full battery	<0.01 %	0.45 %	<0.01%	0.01%

CO-OCCURRENCES FOR ONE USER



- Preload data intensive content before leaving home
- Provide reminders to switch to low power/charge phone

CO-OCCURRENCES FOR MULTIPLE USERS



All users.

- Group activity scheduling
- Recommendation services for groups of people

CONTRIBUTIONS

- + Effective reminders/recommendations
- + Computations on phone only (privacy, network)
- + Smart usage of limited resources
- + Battery life

DISCUSSION

Three approaches for improving user experience

DISCUSSION

Three approaches for improving user experience

Measurable improvement

DISCUSSION

Three approaches for improving user experience

Measurable improvement

People not always welcoming of such innovation

CONCLUSION

Undeniable usefulness

CONCLUSION

Undeniable usefulness

No guarantee that it will be used

CONCLUSION

Undeniable usefulness

No guarantee that it will be used

Would YOU use it?

MINING APPLICATION I

• Inference model infers posteriori probability of a target app $P(App_i | C_i)$, given sensory evidence C_i and prior probability $P(S_{Appi})$

$$P(App_i | C_i) = \frac{P(S_{App_i} = yes | C_i)}{P(S_{App_i} = yes | C_i) + P(S_{App_i} = no | C_i)},$$

where

$$P(S_{App_i} | C_i) = P(S_{App_i}) \prod_j P(c_{i,j} | S_{App_i}), \text{where } S_{App_i} \in \{yes, no\}.$$

MINING APPLICATION II

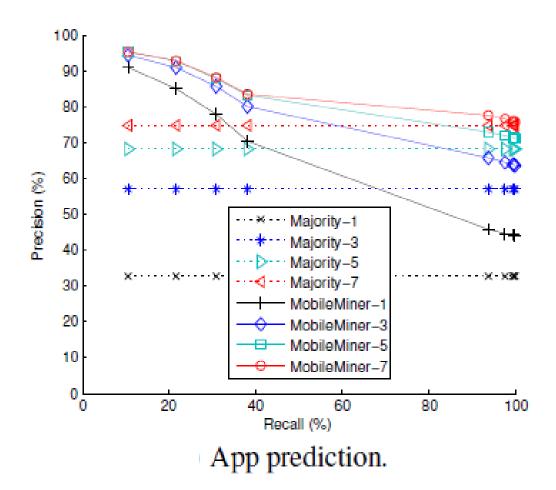
• Decision engine

- Trade-off between freshness and bandwidth cost
- Optimal refresh time for predicted app to be found

Algorithm 1 Compute Time To Prefetch

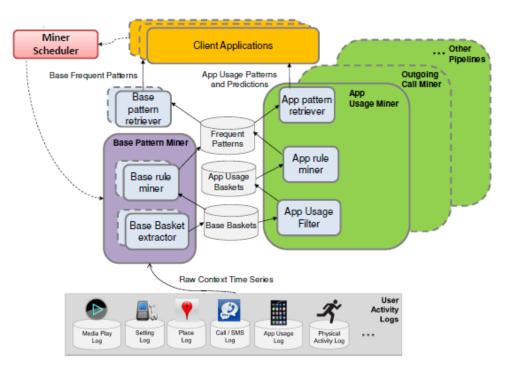
- 1: Input: Network Bandwidth Cost C; TTU distribution function for target app F_{TTU} ; TTU probability history d[1...L]; Count of target app in user's history N.
- 2: Output: Time to wait for prefetch Δt .
- 3: Sort d in decreasing order.
- 4: $p = d[N_e * C]$ i.e. NC^{th} highest TTU probability.
- 5: $\Delta t = F_{TTU}^{-1}(p)$.
- 6: return Δt

$$F_{TTU}(\Delta t) = p(nextapp = e) \times F_{TTU|nextapp=e}(\Delta t)$$



MINING APPLICATION III

• System architecture



• Association rule-mining : Antecedent -> Consequent