
Self-Adjusting Binary Search Trees
Andrei Pârvu

Andrei Pârvu 13-05-2015 1

Motivation

Andrei Pârvu 13-05-2015 2

Motivation: Find

Andrei Pârvu 13-05-2015 3

Motivation: Insert

Andrei Pârvu 13-05-2015 4

Motivation: Delete

Andrei Pârvu 13-05-2015 5

Goal: O(M ∗ logN) time complexity (N elements, M operations)

Andrei Pârvu 13-05-2015 6

What is a Binary Search Tree?

• Binary tree :)

Andrei Pârvu 13-05-2015 7

What is a Binary Search Tree?

• Binary tree :)

• Each node stores an element (key)

Andrei Pârvu 13-05-2015 8

What is a Binary Search Tree?

• Binary tree :)

• Each node stores an element (key)
• Key of a node:

– is bigger than the keys of the left subtree
– is smaller than the keys of the right subtree

Andrei Pârvu 13-05-2015 9

Example

Andrei Pârvu 13-05-2015 10

Operations: find element

• walk recursively down the tree

Andrei Pârvu 13-05-2015 11

Operations: find element

• walk recursively down the tree

• if element equals with node key, stop

Andrei Pârvu 13-05-2015 12

Operations: find element

• walk recursively down the tree

• if element equals with node key, stop
• else

– go to left child if element < than node key
– go to right child if element > than node key

Andrei Pârvu 13-05-2015 13

Operations: insert element

• same algorithm as find

• add element as leaf

Andrei Pârvu 13-05-2015 14

Example: insert element

Andrei Pârvu 13-05-2015 15

Time complexity of operations

• if elements are chosen randomly, then O(M ∗ logN)

• most of the time that is not the case :(

Andrei Pârvu 13-05-2015 16

Example linear tree

Andrei Pârvu 13-05-2015 17

How to make it faster?

Andrei Pârvu 13-05-2015 18

Rotations

• rotate a node to the left or to the right

Andrei Pârvu 13-05-2015 19

Rotations

• rotate a node to the left or to the right

• maintain the BST invariant

Andrei Pârvu 13-05-2015 20

Rotations

• rotate a node to the left or to the right

• maintain the BST invariant

• use them to modify the tree structure and maintain it balanced

Andrei Pârvu 13-05-2015 21

Example: rotation to the right

Andrei Pârvu 13-05-2015 22

Operations: rotation to the left

Andrei Pârvu 13-05-2015 23

How can we use rotations?

Andrei Pârvu 13-05-2015 24

Move to root heuristic

• after accessing an item at node x , rotate edge from x to its parent until x becomes
root.

• Does this improve anything?

Andrei Pârvu 13-05-2015 25

Move to root heuristic

• after accessing an item at node x , rotate edge from x to its parent until x becomes
root.

• Does this improve anything?

• No, time of access can still be O(n)

Andrei Pârvu 13-05-2015 26

Splay tree

• BST with a restructuring heuristic, called splaying

• after inserting or finding an element, do pairs of rotations bottom-up

Andrei Pârvu 13-05-2015 27

Splay tree

• BST with a restructuring heuristic, called splaying

• after inserting or finding an element, do pairs of rotations bottom-up

• rotations depend on the structure of the path

• each pair of rotations shall be named a splaying step

Andrei Pârvu 13-05-2015 28

Splay tree

• BST with a restructuring heuristic, called splaying

• after inserting or finding an element, do pairs of rotations bottom-up

• rotations depend on the structure of the path

• each pair of rotations shall be named a splaying step

• repeat splaying step on x until it is root

Andrei Pârvu 13-05-2015 29

Splaying step - case 1: zig

• if p(x), parent of x , is root of tree, rotate edge joining x with p(x)

• terminal case

Andrei Pârvu 13-05-2015 30

Example: zig

Andrei Pârvu 13-05-2015 31

Splaying step - case 2: zig-zig

• p(x) not the root

• g(x) parent of p(x)

• x and p(x) both right-children or both left-children

• rotate edge joining p(x) with g(x)

• rotate edge joining p(x) with x

Andrei Pârvu 13-05-2015 32

Example: zig-zig

Andrei Pârvu 13-05-2015 33

Splaying step - case 3: zig-zag

• p(x) not the root

• g(x) parent of p(x)

• x left child and p(x) right child or vice-versa

• rotate edge joining x with p(x)

• rotate edge joining x with g(x)

Andrei Pârvu 13-05-2015 34

Example: zig-zag

Andrei Pârvu 13-05-2015 35

Example: splaying on a node

Andrei Pârvu 13-05-2015 36

Example: splaying on a node (1)

Andrei Pârvu 13-05-2015 37

Example: splaying on a node (2)

Andrei Pârvu 13-05-2015 38

Example: splaying on a node (3)

Andrei Pârvu 13-05-2015 39

Example: splaying on a node (4)

Andrei Pârvu 13-05-2015 40

Complexity & Analysis

• Why is splaying better than move to root heuristic?

Andrei Pârvu 13-05-2015 41

Complexity & Analysis

• Why is splaying better than move to root heuristic?

• if a node is at depth d on the splaying path, it will be at about d/2 after the splay

Andrei Pârvu 13-05-2015 42

Complexity & Analysis

• Why is splaying better than move to root heuristic?
• if a node is at depth d on the splaying path, it will be at about d/2 after the splay

– except the root, its child and the splayed node

Andrei Pârvu 13-05-2015 43

Complexity & Analysis II

• use the potential method

• Φ(T) = extra time that can be later consumed on tree T

• from T to T ′ amortized time = actual_time + Φ(T ′)− Φ(T)

Andrei Pârvu 13-05-2015 44

Complexity & Analysis II

• amortized time = actual_time + Φ(T ′)− Φ(T)

• if actual time < amortized time, increase potential

• if actual time > amortized time, decrease potential

Andrei Pârvu 13-05-2015 45

Analysis on M operations

t1 + t2 + ... + tM + (Φ(T1)− Φ(T0)) + (Φ(T2)− Φ(T1)) + ... + (Φ(TM)− Φ(TM−1)) =
t1 + t2 + ... + tM + Φ(TM)− Φ(T0).

Andrei Pârvu 13-05-2015 46

Potential function

• size(x) = number of nodes in the subtree rooted at x

• rank(x) = log2(size(x))

• Φ(T) = sum of ranks of nodes in subtree T

Andrei Pârvu 13-05-2015 47

Potential function

Andrei Pârvu 13-05-2015 48

Potential splaying

• only x , p(x) and g(x) change rank

• ∆Φ = ranki(g)− ranki−1(g) + ranki(x)− ranki−1(x) + ranki(p)− ranki−1(p)

• actual_cost + ∆Φ ≤ 3 ∗ (ranki(x)− ranki−1(x)) + 1

Andrei Pârvu 13-05-2015 49

Complexity & Analysis III

• amortized time = actual_cost + ∆Φ ≤ 3 ∗ (ranki(x)− ranki−1(x)) + 1

• total time O(m ∗ log(n))

Andrei Pârvu 13-05-2015 50

Analysis

Pros:

• no additional information stored in nodes

• not that hard to implement

Cons:

• at one point an operation can have O(n) time

• problems with multithreading

Andrei Pârvu 13-05-2015 51

Splitting a splay tree

• split(i, t): construct and return t1 and t2
– elements in t1 smaller than i
– elements in t2 greater than i

• Ideas?

Andrei Pârvu 13-05-2015 52

How to split?

Andrei Pârvu 13-05-2015 53

Joining two splay trees

• join(t1, t2): combine t1 and t2 into single tree
– elements in t1 smaller than elements in t2

• Ideas?

Andrei Pârvu 13-05-2015 54

How to join?

Andrei Pârvu 13-05-2015 55

Applications: Lexicographic Search Tree

Andrei Pârvu 13-05-2015 56

Lexicographic Search Tree

• store a set S of strings

• repeated access operations are efficient

Andrei Pârvu 13-05-2015 57

Example - Lexicographic Tree

Andrei Pârvu 13-05-2015 58

Lexicographic Search Tree II

• ternary tree

• symbols in each node
• two types of edges

– middle (dashed)
– left & right

• nodes in the tree correspond to prefixes of strings:
– concatenate symbols from which we leave by a dashed edge

• nodes connected by continuous edges form a binary search tree

Andrei Pârvu 13-05-2015 59

Search for ’bats’ (1)

Andrei Pârvu 13-05-2015 60

Search for ’bats’ (2)

Andrei Pârvu 13-05-2015 61

Search for ’bats’ (3)

Andrei Pârvu 13-05-2015 62

Search for ’bats’ (4)

Andrei Pârvu 13-05-2015 63

Search for ’bats’ (5)

Andrei Pârvu 13-05-2015 64

Using splaying

• rotation rearranges left and right child, but not the middle props
• splay at node x:

– similar with normal splay tree
– if node is middle child, continue with p(x)

Andrei Pârvu 13-05-2015 65

Using splaying

• rotation rearranges left and right child, but not the middle props
• splay at node x:

– similar with normal splay tree
– if node is middle child, continue with p(x)

• after splaying, path from root to x contains only dashed edges

Andrei Pârvu 13-05-2015 66

Insert ’car’

Andrei Pârvu 13-05-2015 67

Insert ’car’ (2)

Andrei Pârvu 13-05-2015 68

Insert ’car’ (3)

Andrei Pârvu 13-05-2015 69

Lex Tree splay

Andrei Pârvu 13-05-2015 70

Lex Tree splay

Andrei Pârvu 13-05-2015 71

Lex Tree analysis

• time of access is bounded by |σ| plus number of right and left edges traversed

• O(|σ|+ log2(N))

Andrei Pârvu 13-05-2015 72

Application: Link-Cut Trees

Andrei Pârvu 13-05-2015 73

Link-Cut Trees

• abstract data structure for maintaining a forest of rooted trees
• the following operations should be supported

– find_root(v)
– cut(v)
– link(v, w)

Andrei Pârvu 13-05-2015 74

Where are self-adjusting BSTs used?

Andrei Pârvu 13-05-2015 75

• Java (TreeMap, TreeSet) and C++ (set, map)

Andrei Pârvu 13-05-2015 76

• Java (TreeMap, TreeSet) and C++ (set, map)

• Linux CFS scheduler, which decides which tasks are executed when

Andrei Pârvu 13-05-2015 77

• Java (TreeMap, TreeSet) and C++ (set, map)

• Linux CFS scheduler: decides which tasks are executed when

• memory allocators

Andrei Pârvu 13-05-2015 78

Experiment 1: normal queries

Andrei Pârvu 13-05-2015 79

Experiment 2: reduced set of query elements

Andrei Pârvu 13-05-2015 80

Take-home message

• you probably use self-adjusting binary search trees every day :)

• it is useful to know how they work and how to implement one

• C++ STL or java.util cannot save you all the time

Andrei Pârvu 13-05-2015 81

Andrei Pârvu 13-05-2015 82

Potential function zig-zag

• only x , p(x) and g(x) change rank

• ∆Φ = rank ′(g)− rank(g) + rank ′(x)− rank(x) + rank ′(p)− rank(p) =

rank ′(g)− rank(x) + rank ′(p)− rank(p) ≤ rank ′(g) + rank ′(p)− 2 ∗ rank(x)

• rank ′(g) + rank ′(p)− 2 ∗ rank(x) + 2− 2 ≤ [rank ′(g) + rank ′(p)− 2 ∗ rank(x)] +

2 ∗ rank ′(x)− rank(p)− rank ′(g)− 2 ≤ 2 ∗ (rank ′(x)− rank(x))− 2

Andrei Pârvu 13-05-2015 83

