Self-Adjusting Binary Search Trees

Andrei Parvu

vu  13-05-2015 1



Motivation

Data Structure

)

&GO
& O

Andrei Parvu  13-05-2015 2



Motivation: Find

©,

Data Structure

®
HOE
O @

Andrei Parvu  13-05-2015 3



Motivation: Insert

Data Structure
. ' ; ]

HOG

Andrei Parvu  13-05-2015 4



Motivation: Delete

Data Structure

O ©
ORORCINONG

®
&

Andrei Parvu  13-05-2015 5



Goal: O(M x logN) time complexity (N elements, M operations)

Andrei Parvu  13-05-2015 6



What is a Binary Search Tree?

e Binary tree :)

Andrei Parvu  13-05-2015 7



What is a Binary Search Tree?

e Binary tree )
e Each node stores an element (key)

Andrei Parvu  13-05-2015 8



What is a Binary Search Tree?

e Binary tree )

e Each node stores an element (key)
¢ Key of a node:

— is bigger than the keys of the left subtree
— is smaller than the keys of the right subtree

Andrei Parvu  13-05-2015 9



Example

Andrei Parvu  13-05-2015 10



Operations: find element

o walk recursively down the tree

Andrei Parvu  13-05-2015 11



Operations: find element

o walk recursively down the tree

¢ if element equals with node key, stop

Andrei Parvu  13-05-2015 12



Operations: find element

o walk recursively down the tree

o if element equals with node key, stop
o else

— go to left child if element < than node key
— go to right child if element > than node key

Andrei Parvu  13-05-2015 13



Operations: insert element

e same algorithm as find

e add element as leaf

Andrei Parvu  13-05-2015 14



Example: insert element

Andrei Parvu  13-05-2015 15



Time complexity of operations

o if elements are chosen randomly, then O(M x logN))

e most of the time that is not the case :(

Andrei Parvu  13-05-2015 16



Example linear tree

Andrei Parvu  13-05-2015 17



How to make it faster?

Andrei Parvu  13-05-2015 18



Rotations

¢ rotate a node to the left or to the right

Andrei Parvu  13-05-2015 19



Rotations

¢ rotate a node to the left or to the right

e maintain the BST invariant

Andrei Parvu  13-05-2015 20



Rotations

¢ rotate a node to the left or to the right
e maintain the BST invariant

¢ use them to modify the tree structure and maintain it balanced

Andrei Parvu  13-05-2015 21



Example: rotation to the right

4

vu  13-05-2015 22



Operations: rotation to the left

b,

rvu  13-05-2015 23



How can we use rotations?

Andrei Parvu  13-05-2015 24



Move to root heuristic

o after accessing an item at node x, rotate edge from x to its parent until x becomes
root.

¢ Does this improve anything?

Andrei Parvu  13-05-2015 25



Move to root heuristic

o after accessing an item at node x, rotate edge from x to its parent until x becomes
root.

¢ Does this improve anything?
* No, time of access can still be O(n)

Andrei Parvu  13-05-2015 26



Splay tree

e BST with a restructuring heuristic, called splaying
e after inserting or finding an element, do pairs of rotations bottom-up

Andrei Parvu  13-05-2015 27



Splay tree

BST with a restructuring heuristic, called splaying

after inserting or finding an element, do pairs of rotations bottom-up

rotations depend on the structure of the path

each pair of rotations shall be named a splaying step

Andrei Parvu  13-05-2015 28



Splay tree

BST with a restructuring heuristic, called splaying

after inserting or finding an element, do pairs of rotations bottom-up

rotations depend on the structure of the path

each pair of rotations shall be named a splaying step

repeat splaying step on x until it is root

Andrei Parvu  13-05-2015 29



Splaying step - case 1: zig

e if p(x), parent of x, is root of tree, rotate edge joining x with p(x)

e terminal case

Andrei Parvu  13-05-2015 30



Example: zig

A\ (1)

Andrei Parvu  13-05-2015 31



Splaying step - case 2: zig-zig

p(x) not the root

g(x) parent of p(x)
x and p(x) both right-children or both left-children

rotate edge joining p(x) with g(x)

rotate edge joining p(x) with x

Andrei Parvu  13-05-2015 32



Example: zig-zig

Andrei Parvu  13-05-2015 33



Splaying step - case 3: zig-zag

p(x) not the root

g(x) parent of p(x)
x left child and p(x) right child or vice-versa

rotate edge joining x with p(x)

rotate edge joining x with g(x)

Andrei Parvu  13-05-2015 34



Example: zig-zag

0 ()
) A () Lo\
ANO (v) Lo

B C A B

Andrei Parvu  13-05-2015 35



Example: splaying on a node

Andrei Parvu  13-05-2015 36



Example: splaying on a node (1)

Andrei Parvu  13-05-2015 37



Example: splaying on a node (2)

Andrei Parvu  13-05-2015 38



Example: splaying on a node (3)

Andrei Parvu  13-05-2015 39



Example: splaying on a node (4)

Andrei Parvu  13-05-2015 40



Complexity & Analysis

o Why is splaying better than move to root heuristic?

Andrei Parvu  13-05-2015 41



Complexity & Analysis

o Why is splaying better than move to root heuristic?

e if a node is at depth d on the splaying path, it will be at about d/2 after the splay

Andrei Parvu  13-05-2015 42



Complexity & Analysis

e Why is splaying better than move to root heuristic?
e if a node is at depth d on the splaying path, it will be at about d/2 after the splay
— except the root, its child and the splayed node

Andrei Parvu  13-05-2015 43



Complexity & Analysis |l

¢ use the potential method
e ®(T) = extra time that can be later consumed on tree T
e from T to T amortized time = actual_time + ®(T') — ®(T)

Andrei Parvu  13-05-2015 44



Complexity & Analysis |l

e amortized time = actual_time + ®(T') — ®(T)
o if actual time < amortized time, increase potential

e if actual time > amortized time, decrease potential

Andrei Parvu  13-05-2015 45



Analysis on M operations

h+b+...+ity+ (¢(T1) — (D(To)) + ((D(Tg) — ¢(T1)) + ...+ (CD(TM) — ¢(TM_1)) =
t+ b+ ...+ t+ O(Tn) — &(To).

Andrei Parvu  13-05-2015 46



Potential function

e size(x) = number of nodes in the subtree rooted at x
e rank(x) = logs(size(x))
e ®(T) =sum of ranks of nodes in subtree T

Andrei Parvu  13-05-2015 47



Potential function

Size Rank Potential

Andrei Parvu  13-05-2015 48



Potential splaying

e only x, p(x) and g(x) change rank
o A® = rankj(g) — ranki;_1(g) + rank;(x) — ranki_1(x) + ranki(p) — ranki_1(p)
e actual_cost + AP < 3 x (ranki(x) — ranki_1(x)) + 1

Andrei Parvu  13-05-2015 49



Complexity & Analysis

e amortized time = actual_cost + A® < 3 x (ranki(x) — rankj_1(x)) + 1

o total time O(m = log(n))

Andrei Parvu  13-05-2015 50



Analysis

Pros:
e no additional information stored in nodes
¢ not that hard to implement
Cons:
e at one point an operation can have O(n) time

e problems with multithreading

Andrei Parvu  13-05-2015 51



Splitting a splay tree

o split(i, t): construct and return t; and

— elements in t; smaller than i
— elements in &, greater than i

e |deas?

Andrei Parvu  13-05-2015 52



How to split?

1 2 1 /2\

Andrei Parvu  13-05-2015 53



Joining two splay trees

e join(t1, t2): combine t; and f into single tree
— elements in t; smaller than elements in t

e Ideas?

Andrei Parvu  13-05-2015 54



How to join?

/1\ /2\ » /2\ " o

Andrei Parvu  13-05-2015 55



Applications: Lexicographic Search Tree

Andrei Parvu  13-05-2015 56



Lexicographic Search Tree

e store a set S of strings

e repeated access operations are efficient

Andrei Parvu  13-05-2015 57



Example - Lexicographic Tree

boy

bog cat
as day
at bats

Andrei Parvu  13-05-2015 58



Lexicographic Search Tree I

ternary tree

symbols in each node
two types of edges

— middle (dashed)
— left & right

nodes in the tree correspond to prefixes of strings:
— concatenate symbols from which we leave by a dashed edge

nodes connected by continuous edges form a binary search tree

Andrei Parvu  13-05-2015 59



Search for 'bats’ (1)

.@

Andrei Parvu  13-05-2015 60



Search for 'bats’ (2)

.@

Andrei Parvu  13-05-2015 61



Search for 'bats’ (3)

SN

OO

Andrei Parvu  13-05-2015 62



Search for 'bats’ (4)

SN

OO

Andrei Parvu  13-05-2015 63



Search for 'bats’ (5)

SN

® O

Andrei Parvu  13-05-2015 64



Using splaying

o rotation rearranges left and right child, but not the middle props
e splay at node x:

— similar with normal splay tree
— if node is middle child, continue with p(x)

Andrei Parvu  13-05-2015 65



Using splaying

¢ rotation rearranges left and right child, but not the middle props
¢ splay at node x:

— similar with normal splay tree
— if node is middle child, continue with p(x)

o after splaying, path from root to x contains only dashed edges

Andrei Parvu  13-05-2015 66



Insert 'car’

.

Andrei Parvu  13-05-2015 67



Insert 'car’ (2)

ee .o

@ o

Andrei Parvu  13-05-2015 68



Insert 'car’ (3)

Andrei Parvu  13-05-2015 69



Lex Tree splay

Andrei Parvu  13-05-2015 70



Lex Tree splay

Andrei Parvu  13-05-2015 71



Lex Tree analysis

e time of access is bounded by |o| plus number of right and left edges traversed
* O(lo| + logz(N))

Andrei Parvu  13-05-2015 72



Application: Link-Cut Trees

Andrei Parvu  13-05-2015 73



Link-Cut Trees

e abstract data structure for maintaining a forest of rooted trees
e the following operations should be supported

— find_root(v)

— cut(v)

— link(v, w)

Andrei Parvu  13-05-2015 74



Where are self-adjusting BSTs used?

Andrei Parvu  13-05-2015 75



e Java (TreeMap, TreeSet) and C++ (set, map)

Andrei Parvu  13-05-2015 76



e Java (TreeMap, TreeSet) and C++ (set, map)

¢ Linux CFS scheduler, which decides which tasks are executed when

Andrei Parvu  13-05-2015 77



e Java (TreeMap, TreeSet) and C++ (set, map)
e Linux CFS scheduler: decides which tasks are executed when

e memory allocators

Andrei Parvu  13-05-2015 78



Experiment 1: normal queries

5 T T T T T
Splay Tree —+—
Treap ———
STL set
4 L ]
W
=
=
(=]
@ 3t 1
Z
[<8)
E
=
=
S 2zt -
=
(=]
@
e
]
1k 4
0 . . . . .
500 1000 1500 2000 2500 3000

Number of operations / 1000 Andrei Parvu  13-05-2015 79



Experiment 2: reduced set of query elements

25 T T T T T
Splay Tree —+—
Treap ———
STL set —w—
2t
W
=
c
(=]
@ 15 i
Z
[<8)
E
=
=
=] 1 r 4
=
=}
@
e
]
05 r 4
o]

500 1000 1500 2000 2500 3000
Mumber of operations / 1000 Andrei Parvu  13-05-2015 80



Take-home message

¢ you probably use self-adjusting binary search trees every day :)
o it is useful to know how they work and how to implement one

e C++ STL or java.util cannot save you all the time

Andrei Parvu  13-05-2015 81



$

Andrei Parvu  13-05-2015 82



Potential function zig-zag

e only x, p(x) and g(x) change rank
o A® = rank’(g) — rank(g) + rank’(x) — rank(x) + rank’(p) — rank(p) =
rank’(g) — rank(x) + rank’(p) — rank(p) < rank’(g) + rank’(p) — 2 = rank(x)

e rank’(g) + rank’(p) — 2 x rank(x) + 2 — 2 < [rank’(g) + rank’(p) — 2  rank(x)] +
2 x rank’(x) — rank(p) — rank’(g) — 2 < 2 x (rank’(x) — rank(x)) — 2

Andrei Parvu  13-05-2015 83



