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Goal: O(M x logN) time complexity (N elements, M operations)
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What is a Binary Search Tree?

e Binary tree :)
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What is a Binary Search Tree?

e Binary tree )
e Each node stores an element (key)
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What is a Binary Search Tree?

e Binary tree )

e Each node stores an element (key)
¢ Key of a node:

— is bigger than the keys of the left subtree
— is smaller than the keys of the right subtree

Andrei Parvu  13-05-2015 9



Example
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Operations: find element

o walk recursively down the tree
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Operations: find element

o walk recursively down the tree

¢ if element equals with node key, stop
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Operations: find element

o walk recursively down the tree

o if element equals with node key, stop
o else

— go to left child if element < than node key
— go to right child if element > than node key
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Operations: insert element

e same algorithm as find

e add element as leaf
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Example: insert element
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Time complexity of operations

o if elements are chosen randomly, then O(M x logN))

e most of the time that is not the case :(
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Example linear tree
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How to make it faster?
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Rotations

¢ rotate a node to the left or to the right
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Rotations

¢ rotate a node to the left or to the right

e maintain the BST invariant
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Rotations

¢ rotate a node to the left or to the right
e maintain the BST invariant

¢ use them to modify the tree structure and maintain it balanced
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Example: rotation to the right
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Operations: rotation to the left

b,

rvu  13-05-2015 23



How can we use rotations?
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Move to root heuristic

o after accessing an item at node x, rotate edge from x to its parent until x becomes
root.

¢ Does this improve anything?
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Move to root heuristic

o after accessing an item at node x, rotate edge from x to its parent until x becomes
root.

¢ Does this improve anything?
* No, time of access can still be O(n)
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Splay tree

e BST with a restructuring heuristic, called splaying
e after inserting or finding an element, do pairs of rotations bottom-up
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Splay tree

BST with a restructuring heuristic, called splaying

after inserting or finding an element, do pairs of rotations bottom-up

rotations depend on the structure of the path

each pair of rotations shall be named a splaying step
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Splay tree

BST with a restructuring heuristic, called splaying

after inserting or finding an element, do pairs of rotations bottom-up

rotations depend on the structure of the path

each pair of rotations shall be named a splaying step

repeat splaying step on x until it is root
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Splaying step - case 1: zig

e if p(x), parent of x, is root of tree, rotate edge joining x with p(x)

e terminal case
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Example: zig

A\ (1)
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Splaying step - case 2: zig-zig

p(x) not the root

g(x) parent of p(x)
x and p(x) both right-children or both left-children

rotate edge joining p(x) with g(x)

rotate edge joining p(x) with x
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Example: zig-zig
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Splaying step - case 3: zig-zag

p(x) not the root

g(x) parent of p(x)
x left child and p(x) right child or vice-versa

rotate edge joining x with p(x)

rotate edge joining x with g(x)
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Example: zig-zag

0 ()
) A () Lo\
ANO (v) Lo

B C A B
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Example: splaying on a node
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Example: splaying on a node (1)
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Example: splaying on a node (2)

Andrei Parvu  13-05-2015 38



Example: splaying on a node (3)
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Example: splaying on a node (4)
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Complexity & Analysis

o Why is splaying better than move to root heuristic?
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Complexity & Analysis

o Why is splaying better than move to root heuristic?

e if a node is at depth d on the splaying path, it will be at about d/2 after the splay

Andrei Parvu  13-05-2015 42



Complexity & Analysis

e Why is splaying better than move to root heuristic?
e if a node is at depth d on the splaying path, it will be at about d/2 after the splay
— except the root, its child and the splayed node
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Complexity & Analysis |l

¢ use the potential method
e ®(T) = extra time that can be later consumed on tree T
e from T to T amortized time = actual_time + ®(T') — ®(T)
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Complexity & Analysis |l

e amortized time = actual_time + ®(T') — ®(T)
o if actual time < amortized time, increase potential

e if actual time > amortized time, decrease potential

Andrei Parvu  13-05-2015 45



Analysis on M operations

h+b+...+ity+ (¢(T1) — (D(To)) + ((D(Tg) — ¢(T1)) + ...+ (CD(TM) — ¢(TM_1)) =
t+ b+ ...+ t+ O(Tn) — &(To).
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Potential function

e size(x) = number of nodes in the subtree rooted at x
e rank(x) = logs(size(x))
e ®(T) =sum of ranks of nodes in subtree T
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Potential function

Size Rank Potential
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Potential splaying

e only x, p(x) and g(x) change rank
o A® = rankj(g) — ranki;_1(g) + rank;(x) — ranki_1(x) + ranki(p) — ranki_1(p)
e actual_cost + AP < 3 x (ranki(x) — ranki_1(x)) + 1
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Complexity & Analysis

e amortized time = actual_cost + A® < 3 x (ranki(x) — rankj_1(x)) + 1

o total time O(m = log(n))
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Analysis

Pros:
e no additional information stored in nodes
¢ not that hard to implement
Cons:
e at one point an operation can have O(n) time

e problems with multithreading
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Splitting a splay tree

o split(i, t): construct and return t; and

— elements in t; smaller than i
— elements in &, greater than i

e |deas?
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How to split?

1 2 1 /2\
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Joining two splay trees

e join(t1, t2): combine t; and f into single tree
— elements in t; smaller than elements in t

e Ideas?
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How to join?

/1\ /2\ » /2\ " o
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Applications: Lexicographic Search Tree
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Lexicographic Search Tree

e store a set S of strings

e repeated access operations are efficient
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Example - Lexicographic Tree

boy

bog cat
as day
at bats
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Lexicographic Search Tree I

ternary tree

symbols in each node
two types of edges

— middle (dashed)
— left & right

nodes in the tree correspond to prefixes of strings:
— concatenate symbols from which we leave by a dashed edge

nodes connected by continuous edges form a binary search tree
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Search for 'bats’ (1)

.@
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Search for 'bats’ (2)

.@
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Search for 'bats’ (3)

SN

OO
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Search for 'bats’ (4)

SN

OO
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Search for 'bats’ (5)

SN

® O
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Using splaying

o rotation rearranges left and right child, but not the middle props
e splay at node x:

— similar with normal splay tree
— if node is middle child, continue with p(x)
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Using splaying

¢ rotation rearranges left and right child, but not the middle props
¢ splay at node x:

— similar with normal splay tree
— if node is middle child, continue with p(x)

o after splaying, path from root to x contains only dashed edges
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Insert 'car’

.
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Insert 'car’ (2)

ee .o
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Insert 'car’ (3)
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Lex Tree splay
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Lex Tree splay
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Lex Tree analysis

e time of access is bounded by |o| plus number of right and left edges traversed
* O(lo| + logz(N))
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Application: Link-Cut Trees
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Link-Cut Trees

e abstract data structure for maintaining a forest of rooted trees
e the following operations should be supported

— find_root(v)

— cut(v)

— link(v, w)
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Where are self-adjusting BSTs used?
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e Java (TreeMap, TreeSet) and C++ (set, map)
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e Java (TreeMap, TreeSet) and C++ (set, map)

¢ Linux CFS scheduler, which decides which tasks are executed when
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e Java (TreeMap, TreeSet) and C++ (set, map)
e Linux CFS scheduler: decides which tasks are executed when

e memory allocators
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Experiment 1: normal queries
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Experiment 2: reduced set of query elements
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Take-home message

¢ you probably use self-adjusting binary search trees every day :)
o it is useful to know how they work and how to implement one

e C++ STL or java.util cannot save you all the time

Andrei Parvu  13-05-2015 81



$

Andrei Parvu  13-05-2015 82



Potential function zig-zag

e only x, p(x) and g(x) change rank
o A® = rank’(g) — rank(g) + rank’(x) — rank(x) + rank’(p) — rank(p) =
rank’(g) — rank(x) + rank’(p) — rank(p) < rank’(g) + rank’(p) — 2 = rank(x)

e rank’(g) + rank’(p) — 2 x rank(x) + 2 — 2 < [rank’(g) + rank’(p) — 2  rank(x)] +
2 x rank’(x) — rank(p) — rank’(g) — 2 < 2 x (rank’(x) — rank(x)) — 2
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