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Who am I? 

• PhD student with Prof. Timothy Roscoe 

• Working on operating systems (Barrelfish) 
– But this talk is not only about that 

 

• I will present 
– Trends of multicore hardware 

– Ongoing research in the Systems Group 

– Also: Opportunities for future research 
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Some of it is preliminary work. 
Lots of unknowns, feedback 

welcome 



MULTICORE INTRODUCTION 
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Computer 20 years ago 
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CPU 

memory 



Computer 10 years ago 
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CPU 

memory 

CPU 

Cache coherency protocol 



Today 
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• Multicores:  
– Increasing number of cores 
– NUMA nodes 

• Local memory controllers 
• shared resources 

– Interconnect (not exposed) 
 
 
 
 



So what is this talk about? 
aka why am I here? 
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 Looks like distributed systems 
 

• Multicores:  
– Increasing number of cores 

– NUMA nodes 
• Local memory controllers, shared 

resources 

– Interconnect (not exposed) 
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 Looks like distributed systems 
 

• Multicores:  
– Increasing number of cores 

– NUMA nodes 
• Local memory controllers, shared 

resources 

– Interconnect (not exposed) 

 

 

 

 

Oh great, so lets just apply traditional DS 
algorithms 



PROGRAM AS DISTRIBUTED 
SYSTEM 

Example: replication of data 
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Interconnect characteristics 

In common: 
• Congestion 

• Package based (internally) 

• Routing 
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SHARED NOTHING ARCHITECTURE 
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Multikernel OS (Barrelfish) 
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Shared memory programming 



Multikernel OS (Barrelfish) 
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Shared memory programming Message passing 



Multikernel OS (Barrelfish) 
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• No shared state 
• Based on explicit message passing 
• Triggers cache-coherency protocol 

Shared memory programming Message passing 



Multikernel OS (Barrelfish) 
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• No shared state 
• Based on explicit message passing 
• Triggers cache-coherency protocol 

SCALABILITY: no locks, less 
synchronization overhead 

Shared memory programming Message passing 



Multikernel OS (Barrelfish) 

Stefan Kästle <stefan.kaestle@inf.ethz.ch> 16 

Shared memory programming Message passing 

- Replication 
- 2 Phase Commit 
- Multicast trees  

- for TLB shoot-down 
- Machine aware 



Reduce interconnect traffic 
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Interconnect congestion (Shoal) 

• Bad memory allocation • Replication/distribution 
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Interconnect congestion (Shoal) 

• Bad memory allocation • Replication/distribution 
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- Reduces traffic on interconnect 



So what is this talk about? 
aka why am I here? 
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 Looks like distributed systems 
 

• Multicores:  
– Increasing number of cores 

– NUMA nodes 
• Local memory controllers, shared 

resources 

– Interconnect (not exposed) 

 

 

 

 

Oh great, so lets just apply traditional DS 
algorithms 

Okay, so all good? Can we go home now? 
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 Looks like distributed systems 
 

• Multicores:  
– Increasing number of cores 

– NUMA nodes 
• Local memory controllers, shared 

resources 

– Interconnect (not exposed) 

 

 

 

 

Oh great, so lets just apply traditional DS 
algorithms 

Okay, so all good? Can we go home now? 
Well, not quite ..  



DIFFERENCES TO TRADITIONAL DS 
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Interconnect characteristics 

In common: 
• Congestion 

• Package based (internally) 

• Routing 

 

Differences: 

• Complexity measures 

• Reliable 

• synchronous? 

• Static (within a machine) 

• Very concrete 

• Diversity 

• Hierarchical 

• Hybrid 
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And many more ..  



DIFFERENCES: AN EXAMPLE 
Complexity metrics 
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Complexity metrics 
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receive 

send 

propagate 

What dominates 
in traditional DS? 

What on a 
multicore? 



Complexity metrics 

• Traditionally: 
– propagation time dominates 

– #rounds (#messages/round irrelevant) 

• Multicore: 
– Propagation cheap 

– Send and receive expensive 
• Interrupts, device driver communication, multiplexing, 

(un-) marshaling, scheduling 
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Example: broadcast 

• Broadcast to n clients: 

 

• Traditionally: send sequentially 

• Multicore: BAD 
– cost(seq): O(n) 
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Multicore/Broadcast 

 Tree, NOT balanced 
(ideally: topology-aware, Radix) 
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Multicore/Broadcast++ 

• Leverage shared resources 

• Hybrid algorithm: 
– Message passing across nodes 

– Shared memory inside of nodes 

 

• Compose algorithm at runtime 
– machine-aware 

– scheduling-aware 
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Conclusions 

• Multicores look like traditional DS 
– Apply ideas from DS 

 

• But behave differently 
– Need to re-evaluate distributed algorithms 
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Questions, Suggestions, 
Ideas? 



DIFFERENCES 
Failure Model 
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Consensus 

• RAFT/Paxos 

• Need to reduce number of messages 

• Treat some clusters of cores as failure-domain 
– Allows to use weaker algorithms inside 

 

Compose algorithms 
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Failure model: TODAY 

• Today: machine is reliable 
– Interconnect 

• Messages do not get lost 

• Upper bound on propagation time (synchronous) 
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Consensus: 2PC 

• 2 Phases (1 RTT each) 
– Prepare 

– Commit 

 

• Interconnect reliable 

 No ACKs in Commit Phase 
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Request prepare 

prepare 

commit 

done 



Consensus: Paxos 

• Do we want Paxos? 
– probably not, sends too many messages 

 

• But what then?  
– Ongoing research, e.g. 1Paxos (EPFL, claims to be 

multicore aware) 

 

• Failure domians? 
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Failure model: near FUTURE 

• Parts of the machine can fail 
– Industry is very interested in this 

 

• But: what is the unit of failure? 
– Parts of the machine can be treated as one failure 

domain (e.g. because the share resources) 
 again: hierarchy 
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