
What kind of distributed system
is a multicore machine?

Stefan Kaestle
stefan.kaestle@inf.ethz.ch

Systems Group @ ETH Zurich

Stefan Kaestle stefan.kaestle@inf.ethz.ch
http://barrelfish.org

Who am I?

• PhD student with Prof. Timothy Roscoe

• Working on operating systems (Barrelfish)
– But this talk is not only about that

• I will present
– Trends of multicore hardware

– Ongoing research in the Systems Group

– Also: Opportunities for future research

Stefan Kästle <stefan.kaestle@inf.ethz.ch> 2

Some of it is preliminary work.
Lots of unknowns, feedback

welcome

MULTICORE INTRODUCTION

Stefan Kästle <stefan.kaestle@inf.ethz.ch> 3

Computer 20 years ago

Stefan Kästle <stefan.kaestle@inf.ethz.ch> 4

CPU

memory

Computer 10 years ago

Stefan Kästle <stefan.kaestle@inf.ethz.ch> 5

CPU

memory

CPU

Cache coherency protocol

Today

Stefan Kaestle <stefan.kaestle@inf.ethz.ch> 6

• Multicores:
– Increasing number of cores
– NUMA nodes

• Local memory controllers
• shared resources

– Interconnect (not exposed)

So what is this talk about?
aka why am I here?

7 Stefan Kaestle <stefan.kaestle@inf.ethz.ch>

 Looks like distributed systems

• Multicores:
– Increasing number of cores

– NUMA nodes
• Local memory controllers, shared

resources

– Interconnect (not exposed)

So what is this talk about?
aka why am I here?

8 Stefan Kaestle <stefan.kaestle@inf.ethz.ch>

 Looks like distributed systems

• Multicores:
– Increasing number of cores

– NUMA nodes
• Local memory controllers, shared

resources

– Interconnect (not exposed)

Oh great, so lets just apply traditional DS
algorithms

PROGRAM AS DISTRIBUTED
SYSTEM

Example: replication of data

Stefan Kästle <stefan.kaestle@inf.ethz.ch> 9

Interconnect characteristics

In common:
• Congestion

• Package based (internally)

• Routing

Stefan Kästle <stefan.kaestle@inf.ethz.ch> 10

SHARED NOTHING ARCHITECTURE

Stefan Kästle <stefan.kaestle@inf.ethz.ch> 11

Multikernel OS (Barrelfish)

Stefan Kästle <stefan.kaestle@inf.ethz.ch> 12

Shared memory programming

Multikernel OS (Barrelfish)

Stefan Kästle <stefan.kaestle@inf.ethz.ch> 13

Shared memory programming Message passing

Multikernel OS (Barrelfish)

Stefan Kästle <stefan.kaestle@inf.ethz.ch> 14

• No shared state
• Based on explicit message passing
• Triggers cache-coherency protocol

Shared memory programming Message passing

Multikernel OS (Barrelfish)

Stefan Kästle <stefan.kaestle@inf.ethz.ch> 15

• No shared state
• Based on explicit message passing
• Triggers cache-coherency protocol

SCALABILITY: no locks, less
synchronization overhead

Shared memory programming Message passing

Multikernel OS (Barrelfish)

Stefan Kästle <stefan.kaestle@inf.ethz.ch> 16

Shared memory programming Message passing

- Replication
- 2 Phase Commit
- Multicast trees

- for TLB shoot-down
- Machine aware

Reduce interconnect traffic

Stefan Kästle <stefan.kaestle@inf.ethz.ch> 17

Interconnect congestion (Shoal)

• Bad memory allocation • Replication/distribution

Stefan Kästle <stefan.kaestle@inf.ethz.ch> 18

Interconnect congestion (Shoal)

• Bad memory allocation • Replication/distribution

Stefan Kästle <stefan.kaestle@inf.ethz.ch> 19

- Reduces traffic on interconnect

So what is this talk about?
aka why am I here?

20 Stefan Kaestle <stefan.kaestle@inf.ethz.ch>

 Looks like distributed systems

• Multicores:
– Increasing number of cores

– NUMA nodes
• Local memory controllers, shared

resources

– Interconnect (not exposed)

Oh great, so lets just apply traditional DS
algorithms

Okay, so all good? Can we go home now?

So what is this talk about?
aka why am I here?

21 Stefan Kaestle <stefan.kaestle@inf.ethz.ch>

 Looks like distributed systems

• Multicores:
– Increasing number of cores

– NUMA nodes
• Local memory controllers, shared

resources

– Interconnect (not exposed)

Oh great, so lets just apply traditional DS
algorithms

Okay, so all good? Can we go home now?
Well, not quite ..

DIFFERENCES TO TRADITIONAL DS

Stefan Kästle <stefan.kaestle@inf.ethz.ch> 22

Interconnect characteristics

In common:
• Congestion

• Package based (internally)

• Routing

Differences:

• Complexity measures

• Reliable

• synchronous?

• Static (within a machine)

• Very concrete

• Diversity

• Hierarchical

• Hybrid

Stefan Kästle <stefan.kaestle@inf.ethz.ch> 23

And many more ..

DIFFERENCES: AN EXAMPLE
Complexity metrics

Stefan Kästle <stefan.kaestle@inf.ethz.ch> 24

Complexity metrics

25 Stefan Kaestle <stefan.kaestle@inf.ethz.ch>

receive

send

propagate

What dominates
in traditional DS?

What on a
multicore?

Complexity metrics

• Traditionally:
– propagation time dominates

– #rounds (#messages/round irrelevant)

• Multicore:
– Propagation cheap

– Send and receive expensive
• Interrupts, device driver communication, multiplexing,

(un-) marshaling, scheduling

26 Stefan Kaestle <stefan.kaestle@inf.ethz.ch>

Example: broadcast

• Broadcast to n clients:

• Traditionally: send sequentially

• Multicore: BAD
– cost(seq): O(n)

Stefan Kästle <stefan.kaestle@inf.ethz.ch> 27

Multicore/Broadcast

 Tree, NOT balanced
(ideally: topology-aware, Radix)

Stefan Kästle <stefan.kaestle@inf.ethz.ch> 28

Multicore/Broadcast++

• Leverage shared resources

• Hybrid algorithm:
– Message passing across nodes

– Shared memory inside of nodes

• Compose algorithm at runtime
– machine-aware

– scheduling-aware

Stefan Kästle <stefan.kaestle@inf.ethz.ch> 29

Conclusions

• Multicores look like traditional DS
– Apply ideas from DS

• But behave differently
– Need to re-evaluate distributed algorithms

Stefan Kästle <stefan.kaestle@inf.ethz.ch> 30

Questions, Suggestions,
Ideas?

DIFFERENCES
Failure Model

Stefan Kästle <stefan.kaestle@inf.ethz.ch> 31

Consensus

• RAFT/Paxos

• Need to reduce number of messages

• Treat some clusters of cores as failure-domain
– Allows to use weaker algorithms inside

Compose algorithms

Stefan Kästle <stefan.kaestle@inf.ethz.ch> 32

Failure model: TODAY

• Today: machine is reliable
– Interconnect

• Messages do not get lost

• Upper bound on propagation time (synchronous)

Stefan Kästle <stefan.kaestle@inf.ethz.ch> 33

Consensus: 2PC

• 2 Phases (1 RTT each)
– Prepare

– Commit

• Interconnect reliable

 No ACKs in Commit Phase

Stefan Kästle <stefan.kaestle@inf.ethz.ch> 34

Request prepare

prepare

commit

done

Consensus: Paxos

• Do we want Paxos?
– probably not, sends too many messages

• But what then?
– Ongoing research, e.g. 1Paxos (EPFL, claims to be

multicore aware)

• Failure domians?

Stefan Kästle <stefan.kaestle@inf.ethz.ch> 35

Failure model: near FUTURE

• Parts of the machine can fail
– Industry is very interested in this

• But: what is the unit of failure?
– Parts of the machine can be treated as one failure

domain (e.g. because the share resources)
 again: hierarchy

Stefan Kästle <stefan.kaestle@inf.ethz.ch> 36

	What kind of distributed system is a multicore machine?
	Who am I?
	Multicore introduction
	Computer 20 years ago
	Computer 10 years ago
	Today
	So what is this talk about?�aka why am I here?
	So what is this talk about?�aka why am I here?
	Program as distributed system
	Interconnect characteristics
	Slide Number 11
	Multikernel OS (Barrelfish)
	Multikernel OS (Barrelfish)
	Multikernel OS (Barrelfish)
	Multikernel OS (Barrelfish)
	Multikernel OS (Barrelfish)
	Slide Number 17
	Interconnect congestion (Shoal)
	Interconnect congestion (Shoal)
	So what is this talk about?�aka why am I here?
	So what is this talk about?�aka why am I here?
	Differences to traditional DS
	Interconnect characteristics
	Differences: an example
	Complexity metrics
	Complexity metrics
	Example: broadcast
	Multicore/Broadcast
	Multicore/Broadcast++
	Conclusions
	Differences
	Consensus
	Failure model: TODAY
	Consensus: 2PC
	Consensus: Paxos
	Failure model: near FUTURE

