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1 Multiple Choice (23 Points)

Evaluate each of the following statements in terms of correctness. Indicate whether a statement
is true or not by ticking the corresponding box. Each correct answer gets 1 point, each wrong
answer gets -1 point. An unanswered statement gets 0 points. If the sum of collected points is
negative, then you get 0 points for this question set.

Statement true false

It is possible to do uniform initialization of a wireless network of n nodes
without collision detection in O(n) time in expectation.

2 2

Uniform leader election in an n-node wireless network with collision detec-
tion is possible in O(log log n) time w.h.p.

2 2

A minimum dominating set can be larger than a maximal independent set. 2 2

If a minimum dominating set is not an independent set, then nodes can be
removed from it to get a maximal independent set.

2 2

For the function ONES : {0, 1}k×{0, 1}k → {0, 1} that evaluates to 1 if the
two input k-bit strings contain the same number of ones and to 0 otherwise,
it holds that CC(ONES) ∈ Ω(log k).

2 2

If for a graph G it holds that m ∈ Ω(n2) (where m is the number of edges
and n the number of nodes of G), then the diameter of G can be computed
in O(

√
n) time.

2 2

Given a weighted graph and its MST. If we add a single edge to the graph,
a distributed algorithm can always update the MST in constant time.

2 2

Given a weighted graph and its MST. If we add a node and connect it with
a single edge to any node previously in the graph, a distributed algorithm
can always update the spanning tree in constant time.

2 2

In any anonymous graph in which we cannot deterministically find a leader,
we also cannot deterministically construct a spanning tree.

2 2

Given an undirected graph with n nodes, if we need to query whether there
exists a path between two nodes using a labeling scheme, the lower bound
of the label size is Ω((logn)2).

2 2

Consider three graphs G1 = (V,E1), G2 = (V,E2) and G = (V,E) on the
same node set, where E1 and E2 are two edge sets, and E is the union of
E1 and E2. If there are adjacency labeling schemes of size ki for Gi (for
i = 1, 2), then there exists an adjacency labeling scheme of size k1 + k2 for
G.

2 2

Synchronizer α may add a substantial overhead to the message complexity. 2 2

There exists some synchronous distributed algorithm that cannot be ex-
ecuted in an asynchronous environment without changing the asymptotic
time complexity of the algorithm.

2 2
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Statement true false

If a graph with n nodes can be colored with c < n colors, then it can also
be colored with c+ 1 colors.

2 2

When using Peterson’s Algorithm deadlocks can occur. 2 2

Compare-and-Swap is considered more powerful than Test-and-Set. 2 2

When using the Arrow algorithm: If there is a quiescent moment, then all
the arrows point towards the node holding the variable.

2 2

In the Arrow algorithm, the chosen spanning tree does not influence the
runtime.

2 2

An advantage of the Ivy algorithm over the Arrow algorithm is that it also
works in an asynchronous setting.

2 2

The self-stabilizing MIS (Algorithm 12.5) may fail to compute a locally
stable solution if the adversary is allowed to modify the network topology.

2 2

In the Democrats and Republicans problem, if initially the majority of cit-
izens votes for Democrats, there will eventually be no citizen who switches
her opinion every other day.

2 2

If a distributed problem on an n-node graph can be solved in O(n) time
when the message size is restricted to O(log n) bits, then it can also be
solved in O(log n) time when the message size is restricted to O(n) bits.

2 2

There is a bipartite graph in which deterministic anonymous leader election
is possible.

2 2
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Solutions
Statement true false

It is possible to do uniform initialization of a wireless network of n nodes
without collision detection in O(n) time in expectation.

X

Reason: The leader election algorithm without CD finishes in O(n) time
in expectation and then O(n) expected time uniform initialization with CD
can be used.
Uniform leader election in an n-node wireless network with collision detec-
tion is possible in O(log log n) time w.h.p.

X

Reason: If it finished w.h.p, then it must take log n time slots.

A minimum dominating set can be larger than a maximal independent set. X
Reason: Every maximal independent set is a dominating set so a minimum
dominating set cannot be larger.
If a minimum dominating set is not an independent set, then nodes can be
removed from it to get a maximal independent set.

X

Reason: From above, size of minimum dominating set is at most the size of
minimum maximal independent set, say x. Assume the statement is true,
then we get a maximal independent set of size less than x, a contradiction.
For the function ONES : {0, 1}k×{0, 1}k → {0, 1} that evaluates to 1 if the
two input k-bit strings contain the same number of ones and to 0 otherwise,
it holds that CC(ONES) ∈ Ω(log k).

X

Reason: This function ONES is essentially EQ on the number of ones
which is essentially a (log k)-bit number.
If for a graph G it holds that m ∈ Ω(n2) (where m is the number of edges
and n the number of nodes of G), then the diameter of G can be computed
in O(

√
n) time.

X

Reason: The lower bound example from the lecture still holds if m ∈ Ω(n2).
Also, there are graphs with m ∈ Ω(n2) and diameter Ω(n).
Given a weighted graph and its MST. If we add a single edge to the graph,
a distributed algorithm can always update the MST in constant time.

X

Reason: We need to find the blue edge for either one of the two new frag-
ments. This will require messages to propagate through at least one of the
two fragments which is not possible in constant time.
Given a weighted graph and its MST. If we add a node and connect it with
a single edge to any node previously in the graph, a distributed algorithm
can always update the spanning tree in constant time.

X

Reason: If there is only one edge connecting a node, it has to be part of the
spanning tree.
In any anonymous graph in which we cannot deterministically find a leader,
we also cannot deterministically construct a spanning tree.

X

Reason: Counter example: linked list with 4 nodes.

Given an undirected graph with n nodes, if we need to query whether there
exists a path between two nodes using a labeling scheme, the lower bound
of the label size is Ω((log n)2).

X

Reason: log n is sufficient. Just label a node by the id of the connected
component it belongs to.
Consider three graphs G1 = (V,E1), G2 = (V,E2) and G = (V,E) on the
same node set, where E1 and E2 are two edge sets, and E is the union of
E1 and E2. If there are adjacency labeling schemes of size ki for Gi (for
i = 1, 2), then there exists an adjacency labeling scheme of size k1 + k2 for
G.

X

Reason: Let li be the labeling of graph Gi (i = 1, 2). Combine these two
labelings to label G.
Synchronizer α may add a substantial overhead to the message complexity. X
Reason: O(m)

There exists some synchronous distributed algorithm that cannot be ex-
ecuted in an asynchronous environment without changing the asymptotic
time complexity of the algorithm.

X

Reason: Just use synchronizer α. 5



Statement true false

If a graph with n nodes can be colored with c < n colors, then it can also
be colored with c+ 1 colors.

X

Reason: coloring definition

When using Peterson’s Algorithm deadlocks can occur. X
Reason: see Theorem 4.6

Compare-and-Swap is considered more powerful than Test-and-Set. X
Reason: consensus number ∞ vs 2

When using the Arrow algorithm: If there is a quiescent moment, then all
the arrows point towards the node holding the variable.

X

Reason: see remarks above Theorem 6.4

In the Arrow algorithm, the chosen spanning tree does not influence the
runtime.

X

Reason: counter example: line vs star

An advantage of the Ivy algorithm over the Arrow algorithm is that it also
works in an asynchronous setting.

X

Reason: both do

The self-stabilizing MIS (Algorithm 12.5) may fail to compute a locally
stable solution if the adversary is allowed to modify the network topology.

X

Reason: if the adversary does not change the k-neighborhood within k time
steps, the self-stabilizing MIS converges to a locally stable solution
In the Democrats and Republicans problem, if initially the majority of cit-
izens votes for Democrats, there will eventually be no citizen who switches
her opinion every other day.

X

Reason: counter example: a star graph, where only the central node votes
for republicans
If a distributed problem on an n-node graph can be solved in O(n) time
when the message size is restricted to O(log n) bits, then it can also be
solved in O(log n) time when the message size is restricted to O(n) bits.

X

Reason: Take for instance the problem of leader election on a path.

There is a bipartite graph in which deterministic anonymous leader election
is possible.

X

Reason: A three-node path works.
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2 Low Cost Sorting (26 Points)

Consider a network of four nodes: v1, v2, v3 and v4. Each node is given an input number.
An algorithm on this network executes in synchronous rounds. In each round, each node can
participate in a compare-and-exchange operation with at most one neighbor. See Figure 1 for an
example.

v1 v2

v3 v4

v1 v2

v3 v4

Figure 1: An example network where all pairs of nodes have edges between them
except v2 and v3. After compare-and-exchange between a pair of nodes (represented
by an arrow), the smaller value moves to the node at the head of the arrow, the larger
to the node at the tail. In the first round, compare-and-exchange occurs between v1
and v3, the smaller value moving to node v1. In the second round, compare-and-
exchange occurs between v2 and v1, and between v3 and v4.

The cost of running an algorithm for t rounds on a network of m edges is m · t2. For questions
A) and B), give exact instead of asymptotic bounds.

A) Consider the problem of finding the minimum of the input numbers in a network with four
nodes v1, v2, v3 and v4.

1) [2] Give a lower bound on the number of edges any network needs to put the minimum
number at v1.

2) [4] Give a lower bound on the number of rounds any algorithm needs to put the
minimum number at v1.

3) [3] Give a network and an algorithm for placing the minimum number at v1 so that
the cost m · t2 is minimum.

B) Now consider the problem of sorting the input numbers in a network with four nodes v1, v2,
v3 and v4 so that node vi gets the ith smallest number.

1) [7] Give a lower bound on the number of rounds any algorithm needs to sort the
numbers.

2) [5] Give a network and an algorithm to sort the numbers minimizing the cost m · t2
(better cost gives more points).

C) [5] Now you are given n nodes. Describe how to design a network and a sorting algorithm
minimizing the cost m · t2. Please use the big-O notation for this part (better asymptotic
cost gives more points).
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Solutions

A) 1) The graph must be connected otherwise v1 and the minimum number can be in different
components. Thus, 3 edges are needed.

2) In one round, max two compare-and-exchange can happen. The minimum could be in
a node other than v1 and the node involved in compare and exchange with v1. Thus,
another round is needed to move the minimum to v1.

3)

v1 v2

v3 v4

v1 v2

v3 v4

Figure 2: Algorithm with m = 3, t = 2 and cost = 12: After Round 1 (left),
minimum is either in v1 or v2. After Round 2 (right) minimum is in v1.

B) 1) In each round, there are at most 2 swaps possible. Thus, there are 24 swaps possible in
2 rounds. The algorithm must be able to sort each of the 4! inputs. As 16 < 24 = 4!,
one more round than two is needed.

2)

v1 v2

v3 v4

v1 v2

v3 v4

v1 v2

v3 v4

Figure 3: Algorithm with m = 4, t = 3 and cost = 36: After Round 1 (left),
minimum is either in v1 or v2 and maximum is either in v3 or v4. After Round 2
(middle) minimum is in v1 and maximum in v4. After Round 3 (right), the second
largest and third largest input is at v2 and v3 respectively.

C) One can simulate batcher’s sorting network in this model where each subsequent level defines
the compare-and-exchange to be done in each subsequent round. This is valid as at any given
level a node is incident to at most one comparator.

As there are O(log2 n) levels, it takes O(log2 n) rounds. As there can be only n/2 edges
per level in the sorting network, we need O(n log2 n) edges in total. Thus, the total cost is
O(n log6 n). (Using AKS sorting network is even better but batcher’s is sufficient for full
points.)
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3 1D Land Postal System (35 Points)

1D Land occupies a thin strip of land in the middle of the ocean. Recently, its population
decided to implement a postal system. To do so the land is divided into n segments of equal
length. For a packet to travel from one segment to a neighboring segment requires one time unit.
Travel time within a segment is negligible.

To compete with modern technology such as email and delivery drones, a cannon is installed in
each segment, which can safely and rapidly transport packets k segments in one direction within
a single time unit. The cannon installations are fixed, i.e., cannons cannot turn or adjust their
angle or power – each cannon always delivers to the same segment in distance k.

In the following we are interested in the MPTT (maximum packet travel time) which is the
maximum over the shortest delivery times for every possible packet source and destination. All
results and intermediate steps may be specified asymptotically using big O notation.

A) [5] Specify a k and cannon directions achieving a low MPTT. Lower MPTTs give more
points.

Now suppose the cannon directions are chosen uniformly at random between left and right.

B) [3] For your algorithm (for your k): What are the worst possible cannon directions, and
what is the MPTT in this scenario?

We are now interested in the PTTLWHP (packet travel time limit with high probability): a time
limit in which a packet will reach its destination w.h.p., when sampling over the random cannon
directions and packet source and destination.

C) [10] Show that the PTTLWHP is in O(nk log n+ k) for any k.

D) [10] Show a lower bound of Ω(
√
n) for the PTTLWHP, for any k.

Hint: You may assume that if some predicate A does not hold in expectation, A also does
not hold w.h.p..

You may now choose both the direction and the power of each cannon freely, i.e., you may choose
any one target segment for every cannon.

E) [7] Specify a cannon configuration reaching a low MPTT (for any n). Lower MPTTs give
more points.
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Solutions

A) k =
√
n. Alternatingly point the cannons left and right. The maximum travel time is O(

√
n):

at most 2
√
n hops to reach the

√
n-neighborhood of the target segment, plus at most

√
n

hops within that neighborhood.

B) k doesn’t matter. Worst case travel time is n − 1. Example: all cannons point to the left,
but our packet starts at the left and needs to go to the right.

C) The bound consists of two terms:

• O(nk log n) represents the number of steps to reach the k-neighborhood. We need to
take at most n

k cannons facing in the correct direction. To find a cannon facing in the
correct direction takes at most log n steps “on foot” w.h.p. (proof below).

• O(k) represents the number of steps within the k-neighborhood to the final destination.

Proof:

Starting anywhere, let X =
logn∑
i=1

Xi denote the number of cannons pointing the correct

direction found within the next log n segments, and let Xi be 1 if there is a cannon pointing
in the correct direction at segment i, and 0 otherwise. Note that E[Xi = 1] = 1

2 and

E[X] = logn
2 . Using the Chernoff bound with δ = 1

2 we obtain:

Pr[X ≤ (1− δ)E[X]] ≤ e−E[X]δ2/2

Pr[X ≤ log n

4
] ≤ e− logn/16 =

1

nc
(for some constant c)

⇒ Pr[X >
log n

4
] ≥ 1− 1

nc

Hence the number of cannons in the correct direction within log n segments is at least logn
4

w.h.p..

Alternative shorter proof:
Let p = 1

2 be the probability that the next cannon points in the wrong direction. Then,
when inspecting the next c log2 n cannons, for some constant c, the probability that not all
of them point in the wrong direction is 1− pc log2 n = 1− 1

nc .

D) We show the lower bound Ω(
√
n) for any k for the expected value. From the lower bound

for the expected value, the lower bound for any k w.h.p. follows.

Randomly sampled start-destination pairs have an expected distance of Θ(n). Hence, no
matter the k and no matter the cannon configurations, the expected number of steps to
reach the goal is always at least Ω(nk + k): Ω(nk ) cannon shots to reach the k-neighborhood
of the goal, plus k steps within that neighborhood.

The term n
k +k becomes minimal for k =

√
n, in which case it evaluates to n√

n
+
√
n ∈ Ω(

√
n),

the sought lower bound.

E) For a segment interval (starting with the whole island): make sure there are cannons at each
end which shoot to the middle of the segment, and there are two cannons in the middle that
shoot to both ends. Then repeat this for both the left and the right half. It helps to always
pair left and right cannons of equal strength.

The result is a kind of balanced binary tree with its root in the middle of the island. The
MPTT is in O(log n).
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4 Galactic Neighborhood (27 Points)

In the lecture, the concept of the neighborhood graph was used to prove a lower bound for
coloring certain classes of graphs. We will look at another class of graphs here: stars. A star
consists of a central node and a number of leaves (can be 0, 1, or more), each of which is connected
with the central node, but no other nodes. Let Gk be the set of labeled stars with up to and
including k nodes. We will look at the case of one round of communication where every node will
learn exactly the labels of its immediate neighbors and nothing else, in particular not its neighbors’
degrees.

A) [5] Draw the 1-neighborhood graph N1(G3) for labeled stars with up to 3 nodes where each
star can use labels from {1, 2, 3}.

B) [5] Give a deterministic distributed algorithm that colors a star with k nodes where k ≤ 3
with labels from {1, 2, 3} with two colors in 1 round, or prove that such an algorithm does
not exist.

Now we restrict the labels that can occur in a star with k nodes to {1, . . . , k}, i.e. every label from
1 to k occurs exactly once.

C) [5] Draw the 1-neighborhood graph N1(G3) for labeled stars with up to 3 nodes where each
star with k nodes uses exactly the labels {1, . . . , k}.

D) [5] Give a deterministic distributed algorithm that colors a star with 1 ≤ k ≤ 3 nodes with
labels from {1, . . . , k} with two colors in 1 round, or prove that such an algorithm does not
exist.

E) [7] Prove or disprove that the result of D) generalizes to stars with k nodes and labels
{1, . . . , k} for arbitrarily large k.
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Solutions

A)
1 2 3

2 31 2 3 1

1 32 1 3 2

3

1

2

2

1

3

1

2

3

B) The neighborhood graph has an odd-length cycle and thus has no 2-coloring. According to
Lemma 8.6, no deterministic 1-round 2-coloring algorithm exists.

C)
1

2 31 2 3 1

1 32 1 3 2

3

1

2

2

1

3

1

2

3

Instead of drawing this, you could also mark in your solution for A) which edges and nodes
are missing here.

D) The simplest option is to give a 2-coloring of the solution to part C), and let the algorithm
hard-code this coloring.

E) A node that sees exactly one neighbor j uses the color j mod 2, and a node i that sees no
neighbor or at least two neighbors uses the color i+ 1 mod 2. Proof:

• If the star consists of 1 node, that node will be colored 1 + 1 mod 2 = 0.

• If the star consists of 2 nodes, node 1 will be colored 2 mod 2 = 0 and node 2 will be
colored 1 mod 2 = 1.

• If the star consists of at least 3 nodes, assume the center has label j. All leaves see
exactly one neighbor, namely the center j, and will get color j mod 2. The center will
see at least two neighbors and will thus get color j + 1 mod 2.
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5 Reading Assignment (9 Points)

A) [3] Show that there is an algorithm for online graph exploration that is 1-competitive on
weighted trees.

B) [3] Does the hDFS algorithm have a constant competitive ratio on weighted paths?

C) [3] Is there an algorithm for online graph exploration that has a competitive ratio of strictly
less than 16 on planar graphs with unit-weight edges?
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Solutions

A) The optimal offline algorithm has to traverse each edge twice since the graph is a tree. Since
DFS traverses each edge exactly twice, it is 1-competitive.

B) No: The lower bound in Theorem 5 holds also for paths since the used lower bound graph
is a path and it holds also for hDFS without rounded weights since the used lower bound
graph has only powers of 2 as weights.

C) Yes: hDFS (or DFS) is 2-competitive (see Theorem 4 for hDFS or introduction of reading
assignment for DFS).
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