
����������	

��
������

Computer Engineering 2

Roger Wattenhofer

wattenhofer@ethz.ch

Spring 2016

ii

Contents

1 Network Layer 3
1.1 Graphs . 3
1.2 Spanning Trees . 5
1.3 Shortest Path . 6
1.4 Addressing . 7
1.5 Packets . 8
1.6 Routing . 9
1.7 Tunnels & NATs . 13
1.8 Beyond IP . 14

2 Transport Layer 17
2.1 Flows . 17
2.2 Linear Programming . 18
2.3 Fairness . 21
2.4 UDP . 24
2.5 TCP . 25

3 Application Layer 29
3.1 HTTP . 29
3.2 HTML . 33
3.3 DNS . 35
3.4 Mail . 37
3.5 Socket API . 39
3.6 Protocol Layers . 41

6 Dictionaries 45
6.1 Search Trees . 45
6.2 Hashing . 46
6.3 Static Hashing . 49
6.4 Collisions . 52
6.5 Worst Case Guarantees . 54

7 Databases 59
7.1 Relational Databases . 59
7.2 SQL Basics . 60
7.3 Modeling . 63
7.4 Joins . 65
7.5 Keys & Constraints . 67

iii

iv CONTENTS

7.6 Indexing . 68
7.7 Transactions . 72
7.8 Programming with Databases . 73

10 Link Layer 77
10.1 Addressing . 77
10.2 Wireless Phenomena . 80
10.3 Medium Access Control (MAC) 82
10.4 Physical Layer (PHY) . 86

11 Markov Chains & PageRank 93
11.1 Markov Chains . 94
11.2 Stationary Distribution & Ergodicity 96
11.3 PageRank Algorithm . 100
11.4 Simple Random Walks . 102

12 Security 107
12.1 Transport Layer Security . 107
12.2 Key Exchange . 107
12.3 Public Key Cryptography . 111
12.4 Secret Sharing & Bulk Encryption 114
12.5 Message Authentication & Passwords 117

Introduction

What are Operating Systems?

Computers come in all shapes and sizes: servers, laptops, tablets, smartphones,
smartwatches, all the way down to that tiny microcontroller in a washing ma-
chine. People buy a computer because (i) it gives them access to the Internet, (ii)
it provides storage, and probably also because (iii) it computes. While having
network access seems to be vital, advanced storage and computing capabilities
more and more move to designated servers (”the cloud”). In this lecture, we
learn how computers provide networking, storage, and computation by means
of an operating system.

We start out with networking, and discuss the internet protocol, addressing,
routing, transport layer protocols, flows, some representative application layer
protocols, and how to implement these with sockets. We also discuss the link
and physical layer, Markov chains and PageRank, and selected topics in security.
Regarding storage, we talk about the memory hierarchy, file systems, caching,
efficient data structures such as hashing, and data base principles. Concerning
computation, we discuss the virtualization of the processing units with pro-
cesses and threads. We focus on concurrency and examine scheduling, locking,
synchronization, mutual exclusion, deadlocks, and consistency.

Course Overview

The lecture will use various teaching paradigms. The majority of the lecture will
be based on blackboard discussions, supported by a script. Where appropriate
we will also use slides or demonstrations. A few lectures will be flipped classroom
style. The lecture will feature weekly paper exercises.

However, some of the course material is best learned in front of an actual
computer. In addition to the lecture we offer exciting hands-on exercises in a
lab environment.

Have fun!

1

2 CONTENTS

Chapter 1

Network Layer

How is data navigated between the billions of computers of the internet?

1.1 Graphs

A graph is an abstract model for communication networks, and many other
types of networks.

Definition 1.1 (Graph). A graph G is a pair (V,E), where V is a set of nodes
and E ⊆ V × V is a set of edges between the nodes. The number of nodes is
denoted by n and the number of edges by m.

Remarks:

• In the Internet, there are many types of nodes: Computers or smart-
phones that communicate over an infrastructure that consists of routers
or switches. These nodes are connected by wired or wireless edges.

• A typical way to store a graph is an adjacency matrix. An adjacency
matrix is a binary n×n square matrix with a 1-entry in location (i, j)
if and only if nodes i and j are connected by an edge.

v1

v3

v4

v2

v1 v2 v3 v4

v1 0 1 1 0

v2 1 0 1 0

v3 1 1 0 1

v4 0 0 1 0

Figure 1.2: A graph G = (V,E) with node set V = {v1, v2, v3, v4} and edge set
E = {{v1, v2}, {v1, v3}, {v2, v3}, {v3, v4}}, and the adjacency matrix of G.

3

4 CHAPTER 1. NETWORK LAYER

Remarks:

• We say that node u is incident to edge {u, v} ∈ E and we say that
nodes u and v are adjacent. The neighborhood N(v) of node v is the
set of nodes adjacent to v, i.e., N(v) = {u ∈ V | {u, v} ∈ E}. The
size |N(v)| = δ(v) of the neighborhood of node v is referred to as the
degree of v. In Figure 1.2, δ(v1) = 2.

• A directed graph G = (V,E) is a graph, where each edge has a direc-
tion, i.e., we distinguish between edges (u, v) and (v, u). If all edges
of a graph are undirected, then the graph is called undirected. The
matrix representation of an undirected graph is always symmetric,
whereas an asymmetric matrix can also encode undirected edges.

Definition 1.3 (Weighted Graph). A weighted graph G = (V,E, ω) is a graph,
where ω : E → R assigns a weight ω(e) for each edge e ∈ E. The weight of
graph G is ω(G) =

∑
e∈E ω(e).

Remarks:

• To capture weighted graphs, the adjacency matrix representation can
be extended by replacing the 1-entries by the weights of the corre-
sponding edges.

• If the graph is sparse, i.e., has few edges, the matrix representation can
take a lot of unnecessary space. Such a sparse matrix can be stored
as an adjacency list. In an adjacency list, every element corresponds
to an edge of the graph identified by its endpoints.

Definition 1.4 (Path). Let G = (V,E) be a graph. A path between nodes
v1 and vk is a sequence of nodes (v1, v2, . . . , vk), where {vi, vi+1} ∈ E for all
1 ≤ i < k. The length of the path is k − 1.

Definition 1.5 (Connected Graph). A graph G = (V,E) is connected if there
exists a path between any two nodes u, v ∈ V .

Definition 1.6 (Cycle). Let G = (V,E) be a graph. A cycle is a sequence of
nodes (v1, v2, . . . , vk, v1) such that {vk, v1} ∈ E, {vi, vi+1} ∈ E for all 1 ≤ i < k,
and no node appears twice.

Definition 1.7 (Tree). A tree is a connected graph that contains no cycles.

Remarks:

• Trees are connected graphs with n − 1 edges. By removing any edge
in a tree, the tree becomes disconnected.

• A rooted tree is a tree with a special root node r. Every other node v
has a parent, that is the node adjacent to v and closer to r.

• Next, we will discuss ways to construct spanning trees. A spanning
tree is a tree that connects all nodes in a graph.

1.2. SPANNING TREES 5

1.2 Spanning Trees

Definition 1.8 (Subgraph). Let G = (V,E) be a graph. A subgraph G′ =
(V ′, E′) of G is a graph such that V ′ ⊆ V and E′ ⊆ E.

Definition 1.9 (Spanning tree). Given a graph G = (V,E), a spanning tree
T = (V,E′) is a subgraph of G that is a tree.

Definition 1.10 (MST). Given a weighted graph G = (V,E, ω), a minimum
spanning tree (MST) T is a spanning tree that minimizes the total weight ω(T).

Remarks:

• In the beginning of the 20th century, at the time of electrification,
engineers were faced with the problem of designing an efficient network
of power lines. In particular, a Moravian (Czech) academic called
Otakar Bor̊uvka defined this problem abstractly, and observed that
the power grid should have the following properties: (1) it should
connect all the nodes; (2) building lines is expensive, thus redundant
edges (edges which can be removed without disconnecting the power
grid), should be avoided; (3) the cost should be minimized. In other
words, he defined the Moravian Spanning Tree (MST) problem.

Algorithm 1.11 MST Algorithm

1: Given a weighted graph G = (V,E, ω)
2: Let S = {u} be a set of visited nodes, initialized with any node u ∈ V
3: Let T be a tree just consisting of the single node u ∈ S, no edges
4: while S 6= V do
5: Find minimum weight edge e = {v, w} with v ∈ S and w ∈ V \ S
6: Add node w to S
7: Add edge e to T
8: end while

Lemma 1.12. Algorithm 1.11 outputs a minimum spanning tree.

Proof. In every iteration of the while loop, a new edge is added. Since the new
edge connects the current tree to a new unseen node, it does not produce a
cycle, and the output is indeed a tree. Since nodes are added until S = V , the
tree is a spanning tree.

Now for minimum weight: To simplify the proof, let us assume that no two
edges have the same weight. Assume (for the sake of contradiction) that our
tree T is not of minimum weight, and the true minimum spanning tree T ∗ has
weight ω(T ∗) < ω(T). Let e be the first edge added to T that is not in T ∗.
Edge e is the cheapest edge that connects a node in set S with a node in V \S.
Since T ∗ is not using e, it must use another edge e∗ to connect the nodes in S
with the nodes in V \ S, with ω(e∗) > ω(e) Replacing e∗ with e in T ∗ improves
ω(T ∗) by ω(e∗) − ω(e) > 0, a contradiction to the assumption that ω(T ∗) was
minimum.

Theorem 1.13. The time complexity of Algorithm 1.11 is O(m log n).

6 CHAPTER 1. NETWORK LAYER

Proof. We use a heap data structure to memorize the edges which are eligible,
i.e., edges which connect nodes in S with nodes in V \ S. Whenever a node
v is added to set S, we add all edges adjacent to v to the heap. Adding an
edge e to the heap costs time O(logm), as there are at most m edges in the
heap. Removing the minimum-weight edge e from the heap also costs time
O(logm). Testing whether the current minimum-weight edge e is still eligible
(one of its adjacent nodes still in V \ S) costs constant time. As such, every
edge e enters and leaves the heap at most once, with m edges this gives a total
cost of O(m logm). With m < n2, we have logm < 2 log n, and a total runtime
of O(m log n).

Remarks:

• The term O() used in Theorem 1.13 is called “big O” and is often used
in math. Roughly speaking, O(f) means “in the order of function f ,
ignoring constant factors and smaller additive terms”. More formally,
for two functions f and g, it holds that f ∈ O(g) if there are constants
x0 and c so that |f(x)| ≤ c|g(x)| for all x ≥ x0. For an elaborate
discussion on the big O notation we refer to other introductory math
classes, or Wikipedia.

1.3 Shortest Path

Definition 1.14 (Shortest path). Let G = (V,E, ω) be a weighted graph. The
shortest path between nodes u ∈ V and v ∈ V corresponds to the path P between
u and v of minimum total weight ω(P).

Definition 1.15 (Distance). Let G = (V,E, ω) be a weighted graph and let P
be the shortest path between nodes u ∈ V and v ∈ V . The distance d(u, v)
between u and v is ω(P).

Remarks:

• In the unweighted case, the distance corresponds to the length of the
shortest path.

• A shortest path tree (SPT) is a spanning tree T , rooted at node r, of
graph G = (V,E, ω), where the distance from any node v ∈ V to r in
T equals to the distance d(r, v) in G.

Lemma 1.17. Algorithm 1.16 computes the shortest path between node r and
every other node v.

Proof. By induction, we assume that every node v in set S with dv ≤ d has
the correct distance dv and parent pv. This is true initially, with only root r
in set S. In every iteration of the while loop, a new node w is added to set S.
The new node w we add to S has the minimum distance dw = dv + ω(e) to the
root. As such, node w is the nearest node that is directly reachable from set
S. The nodes not directly reachable from S cannot be closer than w because
any (shortest) path must go through some node reachable from S. So node w
can be added to S, with v being the correct parent, and dw being the correct
distance. Since nodes are added until S = V , every node will be included.

1.4. ADDRESSING 7

Algorithm 1.16 SPT Algorithm

1: Given a weighted graph G = (V,E, ω) and a node r ∈ V
2: Set a parent node pv = null for every node v ∈ V
3: Set dr = 0 and dv =∞ for every node r 6= v ∈ V
4: Let S = {r} be the set of visited nodes
5: while S 6= V do
6: Find edge e = {v, w} with v ∈ S and w ∈ V \S with minimum dv +ω(e)
7: Set pw = v
8: Set dw = dv + ω(e)
9: S = S ∪ {w}

10: end while

Theorem 1.18. Algorithm 1.16 runs in time O(m log n).

Proof. The proof is similar to the proof of Theorem 1.13. We use a heap data
structure to memorize the edges which are eligible, i.e., which nodes in S connect
with which nodes in V \ S. Whenever a node w is added to set S, we add all
edges adjacent to w to the heap. Adding an edge e to the heap costs time
O(logm), as there are at most m edges in the heap. Removing the minimum-
weight edge e from the heap also costs time O(logm). Testing whether the
current minimum-weight edge e is still eligible (one of its adjacent nodes still in
V \ S) costs constant time. As such, every edge e enters and leaves the heap at
most once, with m edges this gives a total cost of O(m logm). With m < n2,
we have logm < 2 log n, and a total runtime of O(m log n).

Remarks:

• Runtime can be improved to O(m + n log n) by using a so-called Fi-
bonacci heap.

1.4 Addressing

To allow unambiguous node to node communication, every node requires a
unique address.

Definition 1.19 (Address). Every node in a graph has an address.

Remarks:

• In the graph model, the nodes can be addressed by their unique names
v1, v2, . . . , vn. What about the Internet?

Protocol 1.20 (IPv4). Every node in the network is assigned a unique 32-bit
label. For readability, the 32 bits are grouped into 4 chunks of 8 bits, i.e., the
addresses range between 0.0.0.0 and 255.255.255.255.

8 CHAPTER 1. NETWORK LAYER

Remarks:

• Some IPv4 addresses have a special meaning. The IPv4 address
127.0.0.1, for example, is reserved for the localhost, i.e., an address
for a computer back to itself.

• A prefix of k bits of an IPv4 address corresponds to the first k bits
of the address. An address block is the set of addresses that share a
prefix. The set of (private) addresses sharing the first 12 bits between
172.16.0.0 and 172.31.255.255 is denoted by 172.16.0.0/12. In the early
days of the Internet, IPv4 addresses were assigned in huge blocks, e.g.,
MIT owns the address block 18.0.0.0/8. This waste of addresses (as
well as the need for hiearchical addressing) resulted in the need for
more IP addresses, giving rise to the IPv6 protocol.

• Soon many devices will be Internet capable, including specialized
heart-rate pacemakers. There are estimates that there will be over
25 billion devices connected to the Internet by 2020. These devices
have to be reachable by an address.

Protocol 1.21 (IPv6). Every node in the network is assigned a unique 128-bit
label. In the IPv6 notation, the address is represented as 8 chunks of 16 bits
separated by colons, where each chunk is written as 4 hexadecimal digits.

Remarks:

• Since IPv6 has a huge number of addresses, nodes often have more
than one address.

• To simplify the IPv6 notation, the standard is to leave out leading
zeros in every chunk. Furthermore, a consecutive section of zeros can
be replaced by a double colon. However, the double colon notation
can only be used once in an address to preserve unambiguity. There-
fore, the IPv6 address 6666:0db8:0000:0000:ff00:0000:0042:8329 can be
written as 6666:db8::ff00:0:42:8329.

• Every IPv4 address is included in the IPv6 domain as :: ffff : abcd :
efgh, where ab.cd.ef.gh is the (hexadecimal) IPv4 address.

• IP addresses are not really user friendly. When browsing the In-
ternet, a site is accessed by another address, the hostname, e.g.,
www.netflix.com. The Domain Name System (DNS) is a service
that translates the hostname into an IP address. We will learn about
it in Chapter 3.

• There are many more examples of real world addressing. For example,
every land line phone has a unique address, the phone number.

1.5 Packets

In the Internet, the communication is based on packets.

1.6. ROUTING 9

Definition 1.22 (Packet). Every network packet contains a header and a pay-
load. The payload of a packet corresponds to the actual data of the packet. The
header contains information for delivering the payload.

Remarks:

• The size of an IPv4 packet is theoretically limited to 65, 535 bytes and
thus, to send a lot of information, the nodes need to send a lot of
packets.

• The IPv4 header contains at least 160 bits of information. The header
contains, e.g., the source and the destination IPv4 address. One field
of 4 bits is reserved for the version number, e.g., for IPv4, this field
contains the binary value 0100. Furthermore, an IPv4 header contains
a checksum (for error checking the contents of the header), and a
number of possible options that can be used, e.g., for debugging. Due
to the variable amount of options, the header contains a field for the
length (in bytes) of the header, up to 480 bits. There is also a field
for the total length (in bytes) of the packet.

• Some nodes or edges can handle larger packets than others and some-
times, a packet has to be split into smaller fragments before forwarding
it. The header contains an identification number of 16 bits for identify-
ing a group of fragments plus more fields for ordering of the fragments,
and whether or not there are more fragments to come. Fragmenting
is unpopular, so in practice, packets are usually smaller than 1, 500
bytes.

• To prevent packets from traveling in the Internet indefinitely (due to
routing misconfigurations), the header contains an 8 bit time-to-live
(TTL) field, which specifies how many hops a packet is allowed to
travel before it is dropped. Every node decrements the TTL by one
and drops the packet if TTL = 0.

• Some of the IPv4 header fields are rarely used and, perhaps surpris-
ingly, the IPv6 header contains less fields than the IPv4 header. For
example, the IPv6 header does not contain a checksum. In total, the
IPv6 header has 320 bits, most of these for source and destination
address.

• In the literature, a packet is sometimes referred to as a datagram.

1.6 Routing

The task of a routing protocol is to decide along which path(s) a packet travels
from its source to its destination.

Definition 1.23 (Routing). Every node v has a routing table that maps every
destination address to a neighbor of v.

10 CHAPTER 1. NETWORK LAYER

Remarks:

• The process of an intermediate node receiving a packet and sending
it to the next node along the path to the destination is referred to as
forwarding. To perform forwarding, every node has to know to which
neighbor to forward each packet.

Routing table of v1

Destination Next node

v1 deliver

v2 v2

v3 v3

v4 v3

v1

v3

v4

v2

Table 1.24: A simplified routing table.

Remarks:

• Since there are millions of devices connected to the Internet, it is in-
feasible for every node to store an entry in the routing table for every
destination. Towards this end, close-by nodes often have similar ad-
dresses, i.e., they share a common prefix. Thanks to this “hierarchical”
addressing, routing table sizes remain manageable, as often enough a
single entry for all addresses with the same prefix is sufficient. Nodes
just match a destination address to longest matching prefix in their
routing table – this is known as longest prefix matching.

• Assigning addresses that minimize the maximum routing table storage
needed per node is an interesting question. In the literature, this
problem is known as the compact routing problem.

Algorithm 1.25 Link-State (LS) Routing Algorithm.

1: Given a weighted graph G = (V,E, ω)
2: Learn ω(e) for every edge e ∈ E
3: Compute shortest paths to between all nodes, e.g., by using Algorithm 1.16

Remarks:

• The nodes eventually discover changes in the network topology and
update their routing information.

• Link-State routing is used in practice, for example, by the Open Short-
est Path First (OSPF) protocol. On top of Algorithm 1.25, OSPF of-
fers advanced features such as routing along multiple paths to increase
performance.

1.6. ROUTING 11

• A drawback of LS routing is that the nodes need to know the whole
topology of the network and therefore, LS routing is not feasible on
a larger scale. However, autonomous systems in the Internet are rel-
atively small and therefore, LS algorithm is useful for routing within
autonomous systems.

Definition 1.26 (Autonomous System). Let G = (V,E) be a graph. An au-
tonomous system (AS) is a collection of nodes owned by one company, i.e., a
subgraph G′ = (V ′, E′) of G, where every u ∈ V ′ has the knowledge of the whole
topology of G′.

Remarks:

• Every autonomous system is identified by a unique autonomous sys-
tem number (ASN), which helps to unify multiple blocks of addresses
(that do not share the same prefix) given to the same AS. The ASN
is used, e.g., by the Border Gateway Protocol (BGP) to advertise
connections between distinct autonomous systems.

• The number of autonomous systems in the Internet is relatively small,
below 100, 000.

Algorithm 1.27 Distance-Vector (DV) Routing Algorithm.

1: Given a weighted graph G = (V,E, ω) and a node u ∈ V
2: Initialize a distance estimate D(u → v) = ω({u, v}) for all neighbors N(u)

and D(u→ w) =∞ for all other nodes
3: Send distance vector D(u) = {D(u→ v) | v ∈ N(u)} to all neighbors N(u)
4: while true do
5: Upon receiving a distance vector D(v) from a neighbor v, update the

distance estimate to all destinations accordingly
6: if D(u→ w) changed for any w then
7: Send the updated distance vector D(u) to all neighbors
8: end if
9: end while

Remarks:

• Overhead in the packet size can be reduced by only sending the up-
dated entries in the distance vector in Line 7.

• DV routing is distributed, i.e., the nodes do not need to acquire the
knowledge of the whole network topology to perform routing.

• On the negative side, the DV algorithm has troubles if (the weights of)
the network links are subject to change. Imagine a network with nodes
u, v, w and edges with weights ω({u, v}) = ω({v, w}) = 1. Eventually
Algorithm 1.27 will compute D(u → w) = 2 and D(v → w) = 1.
Now, we set a new weight ω({v, w}) = 100 and let v detect the weight
change. According to Algorithm 1.27, node v still thinks that there
is a path to from u and w that has a cost of 2, since u reported that
D(u → w) = 2. Thus, v tells u that its cost of the path to w is now

12 CHAPTER 1. NETWORK LAYER

3. Once u learns this new cost, it will similarly update its estimate to
4 and so on. This is known as the count-to-infinity problem.

• Distance-Vector routing is used for example by the Routing Informa-
tion Protocol (RIP). In RIP, the cost to the destination if defined sim-
ply by the number of hops, i.e., the underlying graph is unweighted. In
the RIP protocol, the distance vectors are exchanged between nodes
approximately every 30 seconds. Furthermore, RIP limits the maxi-
mum cost of a path to 15, i.e., the protocol can only be executed in a
graph where the maximum distance between nodes is 15.

Definition 1.28 (Intra-Domain and Inter-Domain). The division of the In-
ternet into autonomous systems allows for different routing protocols. Routing
within an autonomous system is known as intra-domain routing, often link-
state routing algorithms are used. Routing between different autonomous sys-
tems is known as inter-domain routing, and the routing protocol is the Border
Gateway Protocol (BGP).

Algorithm 1.29 Border Gateway Protocol (BGP)

1: Basically, BGP is a DV Routing Protocol, see Algorithm 1.27
2: BGP nodes send out annoucements about every 30 seconds
3: BGP nodes send reachability information: every node announces which ad-

dress blocks (prefixes) it can reach
4: Instead of just distance, nodes announce the whole AS path to each prefix
5: The network is not weighted, an edge between two AS nodes costs 1. If an

AS does not want other nodes to route through it, the AS will prepend its
number multiple times to make the path longer, and hence less attractive

Remarks:

• Since nodes announce whole AS paths, BGP is also called a Path
Vector Routing Protocol.

• Sending whole paths solves the count-to-infinity and other nasty prob-
lems. In our previous count-to-infinity example, node v2 immediately
sees that the path of node v1 goes through v2 itself, so it is not a viable
alternative.

• BGP allows outbound policies: If a node absolutely does not want to
attract traffic to a certain prefix from a neighbor, it simply does not
announce the prefix to this neighbor.

• BGP also allows inbound policies: If a node does not want to route
through a neighbor, the node just ignores the announcement of that
neighbor.

• Good policies allow ASs to make routing decisions. In particular large
provider ASs will only route traffic through smaller customer ASs if
necessary.

• Now to some downright nasty hacks.

1.7. TUNNELS & NATS 13

1.7 Tunnels & NATs

Definition 1.30 (Tunnel). The payload of a packet is a complete packet, with
header and payload. In other words, we have two headers.

Remarks:

• A good application for a tunnel is a virtual private network (VPN),
as defined by IPsec. Some node u wants to send a packet to node
w as if it was sent by node v. So node u prepares a packet header
with source v and destination w, and tunnels that packet in a packet
header with source u and destination v. When the first header arrives
at v, node v will forward the payload (which is itself a packet with a
correct header) to w. VPNs can be used to access a company network
(v, w) from nodes outside the company network (u). VPNs can be
used to access web services with country restrictions.

• Tunnels are used to sneak through firewalls. A firewall checks whether
a packet header is correct, i.e. source and destination addresses make
sense. If a firewall is so simplistic, one may simply tunnel an “inter-
esting” packet inside an unsuspicious packet.

• Tunnels are also used to translate back and forth between IPv4 and
IPv6 protocols. If some nodes on a path only understand IPv4, an
IPv6 packet can be tunneled through these nodes by prepending an
IPv4 header.

• Another application of tunnels is security. One can send unencrypted
traffic over a network in an encrypted tunnel.

• Tunnels are also used in Multiprotocol Label Switching (MPLS): Many
internet service providers (ISPs) implement virtual circuit style rout-
ing by prepending an MPLS header, to get more control which paths
packets are taking.

• What are virtual circuits? Packets are not the only approach to net-
work communication. In the plain old telephone service, a circuit is
established on a path for the duration of the call and disconnected
afterwards. Simulation of a circuit with packets is called a virtual
circuit.

Definition 1.31 (Network Address Translation, NAT). A node systematically
exchanges the header of packets in order to be able to route to nodes with private
addresses.

Remarks:

• The address blocks 10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16 are
reserved for private networks. In other words, addresses of these blocks
are not unique as promised in Definition 1.20, but many nodes may
have the same address. Nodes outside the private network cannot
route to such a private address.

14 CHAPTER 1. NETWORK LAYER

• In IPv6, every edge assigns a private link-local address to the two
nodes adjacent to the edge.

• Because of the shortage of IPv4 addresses, ISPs do not want to give
many IPv4 addresses to their customers, often each customer gets
exactly one IPv4 address. Instead, in a home or a small business, all
machines but the entry node (router) only get private addresses.

• We have a client node with a private address in a network with a
router, and a server. While the client can easily send a packet with a
search query to the server, how does the server send back its answer?
When the client packet arrives at the router, the router will switch
the client’s private IPv4 address with its own router IPv4 address, and
forward that to the server. When the server’s answer comes back to
the router, it will switch back the destination address to the client’s
address and forward the packet to the client.

• How does the router know which answer belongs to which client, if
several clients communication with the server at roughly the same
time? For instance by using port numbers, a concept that is not in
the network layer (and thus beyond this chapter).

1.8 Beyond IP

The network layer features other protocols, beyond the internet protocol IP.
The routing protocol RIP is such a protocol, but also the Internet Control
Message Protocol (ICMP). ICMP is used by network devices, like routers, to
send error messages indicating that a requested service is not available or that
a host could not be reached. ICMP starts with the regular IPv4 header with IP
protocol number 1, and then appends a short ICMP header. ICMP is used by
some diagnostic tools like ping or traceroute, which tell you whether a node is
online, and what the route to a node is.

Chapter Notes

Graph theory and networks are very central topics and have been studied even
before the time of modern computers. For example, Euler studied traversal
problems (among other things) already in the 18th century. Prim’s algorithm
(Algorithm 1.11) dates back to 1957 [9] and Dijkstra invented his famous al-
gorithm (Algorithm 1.16) in 1959 [2]. The algorithm by Dijkstra can also be
used to compute the shortest paths between all pairs of nodes, i.e., it solves
the all pairs shortest path (APSP) problem, instead of just a fixed pair. Not
much later than Dijkstra, the Floyd-Warshall algorithm [3, 12], that can also
deal with negative edge weights, was invented. This algorithm, however, has a
slightly worse running time of O(n3).

Due to the vastness of the modern internet, there are various textbooks
covering details of computer networks [4, 11]. More details of the IPv4 [8] and
IPv6 [1] can be found from the RFC specifications and similarly for the RIP
protocol [5], OSPF protocol [7], the BGP protocol [10] and the Domain Name
System [6].

BIBLIOGRAPHY 15

This chapter was written in collaboration with Jara Uitto.

Bibliography

[1] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6). Technical
report, RFC Editor, 1998.

[2] E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs.
Numerische Mathematik, 1(1):269–271, 1959.

[3] Robert W. Floyd. Algorithm 97: Shortest path. Communications of the
ACM, 5(6):345, 1962.

[4] Jim Kurose and Keith Ross. Computer Networking: A Top-down Approach
Featuring the Internet. Addison Wesley, 2005.

[5] G. Malkin. RIP Version 2. Technical report, RFC Editor, 1994.

[6] P. Mockapetris. Domain Names - Implementation and Specification. Tech-
nical report, RFC Editor, 1987.

[7] J. Moy. OSPF Version 2. Technical report, RFC Editor, 1991.

[8] Jon Postel. Internet Protocol. Technical report, RFC Editor, 1981.

[9] R. C. Prim. Shortest connection networks and some generalizations. Bell
System Technical Journal, 36(6):1389–1401, 1957.

[10] Y. Rekhter, T. Li., and S. Hares. A Border Gateway Protocol 4 (BGP-4).
Technical report, RFC Editor, 2006.

[11] Andrew S. Tanenbaum and David J. Wetherall. Computer Networks. Pren-
tice Hall, 2011.

[12] Stephen Warshall. A theorem on boolean matrices. Journal of the ACM,
9(1):11–12, 1962.

16 CHAPTER 1. NETWORK LAYER

Chapter 2

Transport Layer

How does the internet decide at what quality you can watch a video?

2.1 Flows

Since data flows are inherently directed, we will only consider (weighted) di-
rected graphs in this chapter. Moreover, in contrast to Chapter 1, the weights
will not indicate the latency of edges, but the bandwidth capacity.

Definition 2.1 (Flow, Rate). Let s, t be two nodes. A flow from source s to
destination t (also called an s-t-flow) is a function F : E → R≥0 such that
the following hold:

F (e) ≤ c(e) for all e ∈ E (capacity constraints)∑
e∈in(v) F (e) =

∑
e∈out(v) F (e) for all v ∈ V \ {s, t} (flow conservation)

We call F (e) the rate of F on edge e and the net flow leaving s (
∑
e∈out(s) F (e)−∑

e∈in(s) F (e)) the rate of F , also denoted by F .

Remarks:

• By in(v) resp. out(v) we denote the set of all incoming resp. outgoing
edges at node v.

• You may wonder what happens if there is not only one flow in the
graph, but if there are multiple source-destination pairs. Welcome to
the world of multi-commodity flows!

Definition 2.2 (Multi-Commodity Flow). A multi-commodity flow F =
(F1, ..., Fk) is a collection of si-ti-flows Fi such that for each edge e ∈ E the
sum of the flows’ rates on e does not exceed the capacity of e, i.e.,

k∑
i=1

Fi(e) ≤ c(e) for all e ∈ E.

17

18 CHAPTER 2. TRANSPORT LAYER

Remarks:

• A commodity is simply a source-destination (or sender-receiver) pair.

• As a multi-commodity flow consists of single-commodity flows, all Fi
must satisfy flow conservation. Note that the additional condition
regarding the sum of the flows on an edge already implies that the
capacity constraints are satisfied.

• Can we transfer single-commodity flow techniques and results directly
to the multi-commodity world? A first hint that things get a bit more
difficult is given by the max-flow min-cut theorem: It turns out that
for multi-commodity flows, the size of the maximum flow does no
longer equal the size of the minimum cut in general.

• What about augmenting paths, as used in the famous Ford-Fulkerson
algorithm? If we are given a graph with a multi-commodity flow, can
we use augmenting paths in order to increase the flow for some com-
modity (si, ti)? Figure 2.3 shows that augmenting paths and multi-
commodity flows do not go well together. What can we do instead? A
technique that solves many different multi-commodity flow problems
is linear programming.

s1 t2

s2 t1

Figure 2.3: Given the depicted graph with a flow from s1 to t1, there is
an augmenting path from s2 to t2 in the corresponding residual graph. If we
now add a flow to the graph according to the augmenting path, then the flows
starting in s1 and s2 will end up at the wrong destinations!

2.2 Linear Programming

Linear programming is a tool that is applicable for a wide range of optimization
problems. In an optimization problem, one wants to maximize (or minimize)
some function under certain restrictions, e.g., maximize the value of the term
xy given the restriction x + y ≤ 5. In order to be suitable for being solved
by linear programming, the restricting inequalities and the function have to be
linear (hence, the name).

2.2. LINEAR PROGRAMMING 19

Remarks:

• Let’s have a look at an example of a linear program. Imagine you want
to throw a party. How much booze should you buy? You can buy beer
for a liter price of 1, and self-made cocktails where the ingredients for
a liter will cost you 3. Your fridge has a capacity of 30 liters, but for
each liter of cocktail you only need half a liter of fridge space. You
figure that 50 liters in total should be enough for your friends. Here’s
the linear program for your problem:

Minimize f(x) = x1 + 3x2
subject to

1. x1 + x2 ≥ 50

2. x1 + 1
2x2 ≤ 30

3. x1 ≥ 0

4. x2 ≥ 0

Figure 2.4: Linear program for throwing a party

Remarks:

• How is a linear program defined in general?

Definition 2.5 (Linear Program, LP). A linear program (LP) consists of a
set of m inequalities

a11x1 + a12x2 + . . . + a1nxn ≤ b1

a21x1 + a22x2 + . . . + a2nxn ≤ b2

...
...

...
...

am1x1 + am2x2 + . . . + amnxn ≤ bm

and a linear function

f(x) = c1x1 + c2x2 + · · ·+ cnxn .

The aji, bi and ci are given real-valued parameters and a vector x = (x1, . . . , xn)T

is a solution to the linear program if xi ≥ 0 for all 1 ≤ i ≤ n and x maximizes
f(x).

20 CHAPTER 2. TRANSPORT LAYER

Remarks:

• If a linear program is specified as in the above definition, then we say
that it is given in canonical form. There is also a short hand notation

max{cTx | Ax ≤ b,x ≥ 0}

where A is the matrix with entries aji and b and c the vectors given
by the bi and ci, respectively.

• In general, if you have the problem of maximizing or minimizing a
linear function under constraints that are linear (in)equalities, there
is a way to formulate it in canonical form. For instance, a constraint
of the form a1x1 = b1 can be rewritten as a combination of a1x1 ≤ b1
and a1x1 ≥ b1 which itself can be rewritten as −a1x1 ≤ −b1. Also,
minimizing a linear function with coefficients c1, . . . , cn is the same as
maximizing a linear function with coefficients −c1, . . . ,−cn.

• Now we know how to transform a linear problem into a linear program,
but how do we solve LPs? Geometrically, an LP basically corresponds
to an n-dimensional convex polytope and the hyperplanes bounding
the polytope are given by the restricting inequalities. In order to solve
an LP, one has to find a point on the polytope that maximizes our
objective function f(x). It is known that there is always a vertex of
the polytope where the maximum is attained. One popular method for
finding such a vertex and thus solving the LP is the simplex algorithm.

Algorithm 2.6 Simplex Algorithm

1: choose a vertex x of the polytope
2: while there is a neighboring vertex y such that f(y) > f(x) do
3: x := y
4: end while
5: return x

Remarks:

• There are other methods for solving LPs, such as interior point meth-
ods, where a solution is approached through the interior of the poly-
tope. While the simplex algorithm performs well in practice, there are
instances where its runtime is not polynomial in n. For some interior
point methods it has been proved that the runtime is polynomial.

• In our party example, the solution of the LP uses fractional amounts
of beer and cocktail ingredients. Sometimes fractional solutions are
not possible and we need an integer solution. Solving integer linear
programs is usually NP-hard.

• LPs can solve flow problems. For simplicity, we only present the LP for
maximizing a single-commodity s-t-flow. The multi-commodity case
is similar, with the number of inequalities growing roughly linearly
with the number of commodities.

2.3. FAIRNESS 21

Maximize f(x) =
∑
e∈out(s) xe

subject to

1. xe ≥ 0 for all e ∈ E

2. xe ≤ c(e) for all e ∈ E

3.
∑
e∈in(v) xe =

∑
e∈out(v) xe for all v ∈ V \ {s, t}

4.
∑
e∈in(s) xe = 0

Figure 2.7: LP for maximizing a single-commodity s-t-flow

Remarks:

• For each edge e, xe is a variable indicating the amount of flow on
e. As our goal is to find a maximum s-t-flow, we want to maximize
the function f(x) describing the amount of flow exiting s. The first
constraint ensures that the amount of flow is non-negative on each
edge, and the second guarantees that no edge capacities are violated.
The third enforces flow conservation. The fourth is required because
we do not want any part of the flow leaving s to return to s.

• So far, a flow was allowed to split up at vertices, resulting in a branched
flow. In practice, we often want each flow to follow just a path.

Definition 2.8 (Unsplittable Flow). An s-t-flow F is called unsplittable if
the edges e ∈ E with F (e) > 0 form a path from s to t. If we do not impose this
path restriction on a flow, it is called splittable.

Remarks:

• The notion of an unsplittable flow also extends to multi-commodity
flows. Unfortunately, we cannot use a simple LP for maximizing an
unsplittable multi-commodity flow, as the additional constraint can-
not be expressed by linear inequalities.

• Maximizing an unsplittable multi-commodity flow is NP-hard, but
various algorithms solve the problem approximately.

2.3 Fairness

Definition 2.9. The demand di ∈ R≥0 of a flow Fi is the rate at which Fi
wants to transmit. The actual flow rate is always at most as large as the demand,
i.e., Fi ≤ di.

22 CHAPTER 2. TRANSPORT LAYER

Remarks:

• Due to the capacity restrictions in our network and the presence of
other flows, the rate of a flow may be considerably smaller than its
demand.

• For convenience we will assume in the following that all considered
flows are unsplittable and that, for each flow, we are given a designated
path this flow will follow.

• A fundamental problem of managing data flows in a network is how
to allocate the bandwidth of a link whose capacity is not sufficient for
simultaneously accomodating all flows (at full demand) which are to
be routed along this link. On one hand, it may seem reasonable to
allocate the available resources in a way that throughput is maximized.
On the other hand, if throughput is maximized, some flows may starve.
A certain fairness is desirable.

u v w
1 1

F1

F2

F3

Figure 2.10: We have three flows, all with demand 1.

Remarks:

• What is a fair bandwidth allocation in Figure 2.10? Throughput is
maximized if flow F2 is ignored and F1 and F3 are allocated a band-
width of 1. A fairer allocation that still takes the throughput into
account is to allocate a bandwidth of 2/3 to F1 and F3 each and
of 1/3 to F2. There is an argument for allocating F2 only half of
the bandwidth of F1 and F3 since it uses twice as many edges. If
we ignore throughput completely, then allocating a bandwidth of 1/2
to each flow is simple and fair. How can we formalize this intuitive
concept of fairness?

Definition 2.11 (Max-Min-Fairness). A bandwidth allocation is called max-
min-fair if increasing the allocation of a flow would necessarily decrease the
allocation of a smaller or equal-sized flow.

2.3. FAIRNESS 23

Remarks:

• There is only one max-min-fair allocation for a given set of flows in a
network. It can be found by Algorithm 2.12.

Algorithm 2.12 Max-Min-Fair Allocation

1: Given a graph G, a set F = {F1, . . . , Fk} of flows with initial rate 0 on all
edges, paths p1, . . . , pk along which the respective flows are to be routed and
demands d1, . . . , dk

2: while F 6= ∅ do
3: repeat
4: increase rate of all flows in F evenly, but at most up to the respective

demands
5: until there is an edge e ∈ E such that

∑
i:e∈pi Fi = c(e)

6: for all such edges e do
7: for all i such that e ∈ pi do
8: F := F \ {Fi}
9: end for

10: E := E \ {e}
11: end for
12: end while

Remarks:

• Small networks indeed adopt centralized approaches for finding good
allocations, e.g., using Software Defined Networking (SDN) or Mul-
tiprotocol Label Switching (MPLS). However, for large networks with
quickly changing data flows, such as the internet, calculating and
maintaining a good allocation in a centralized way is difficult. Even
more so, who should do it?! There is no central authority for band-
width allocation. We need a distributed way of avoiding congestion.
How can we achieve this?

• One such congestion control mechanism commonly used is the AIMD
algorithm, where AIMD stands for additive increase/multiplicative de-
crease. When using AIMD, the rate of any flow continuously changes
as follows: As long as no congestion is reported, each flow repeatedly
increases its rate additively. When congestion occurs on some edge,
the affected flows decrease their rates by a multiplicative factor. The
function describing the rate of a flow thus roughly follows a sawtooth
behavior.

• To be precise, congestion occurs in a node (router), and not on an
edge. When the router’s buffers are full while data packets come in,
those packets are dropped and packet loss occurs. Such a packet loss is
used as indicator that the affected flow has to perform a multiplicative
decrease.

• If the bandwidth allocation is performed according to AIMD, then it
roughly converges to a max-min-fair allocation (roughly because ac-
cording to AIMD the allocation never reaches a stable state). Consider

24 CHAPTER 2. TRANSPORT LAYER

what happens if a router used by two flows becomes congested: If both
flows drop packets, then their rates are multiplied by the same factor,
e.g. 1/2, and the absolute difference between the two rates decreases.
The subsequent additive increase does not change this difference and
when the next congestion occurs on this link, the rates converge again.

• It is possible that only one flow drops a packet during congestion, but
this only improves the convergence rate as the probability of packet
loss is larger for the larger flow.

• AIMD is used for congestion avoidance in an omnipresent distributed
transport protocol called TCP.

2.4 UDP

As multiple applications running on the same computer want to use a network
at the same time, it is necessary to distinguish between those applications (and
their respective data flows). This distinction is provided by ports.

Definition 2.13 (Port). A port is a numeric identifier used in transport pro-
tocols to identify which application sent the packet and which application should
receive it on the destination computer.

Definition 2.14 (Client-Server Model). In the client-server model, the sender
is called client and the receiver server. The client is regarded as a consumer
of the services offered by the server.

Remarks:

• When communicating with a server, a client transmits its port so that
the server knows where to reply, if needed.

• There exists a multitude of protocols used when communicating be-
tween applications, with various tradeoffs in terms of latency, security
and consistency. The most common ones are UDP and TCP.

Protocol 2.15 (UDP). The user datagram protocol (UDP) is a no-frills
transport protocol that allows an application to send packets from client to
server.

Remarks:

• In Chapter 1 you learned that IP packets consist of header and pay-
load. In the transport layer (when using UDP) the IP payload is
divided further into the UDP header and the actual data.

• In the UDP header, the source and destination ports are specified
along with a checksum and a packet length.

• UDP does not include any protection against packet loss.

• Furthermore, UDP does not guarantee any order on the delivery of
packets.

2.5. TCP 25

• Dealing with these issues is delegated to the client application. How-
ever, UDP also has very little overhead in terms of packet size and
latency, hence it is commonly used in scenarios where the application
requires low overhead, e.g., real-time applications.

2.5 TCP

Definition 2.16 (Connection). A connection is a bidirectional long-term re-
lationship established between a client and a server in order to transmit data
reliably.

Protocol 2.17 (TCP). The transmission control protocol (TCP) is a
connection-oriented transport protocol guaranteeing that lost packets are being
retransmitted and that packets are delivered in the same order they are sent.

Remarks:

• Like UDP, TCP introduces the notion of ports to address a specific
application on a computer. In addition to UDP, the header also in-
cludes a sequence number, an acknowledgement number, a window
size, and a number of binary flags.

• In TCP, the partitioning of data into packets is abstracted into a
continuous data stream from sender to receiver. For applications ex-
changing data it is not visible where the actual packets begin and
end.

• In the literature, the TCP packets are also called segments.

• While UDP simply sends packets, TCP establishes a connection be-
tween source and destination before starting to send packets contain-
ing the actual data to be transmitted.

Definition 2.18 (Acknowledgement). An acknowledgement (ACK) is the
confirmation that a sent packet has actually been received. The ACK is sent
from the receiver of the packet to the sender.

Remarks:

• In TCP, each data byte is specified by a sequence number. The se-
quence number of a packet is the number of the first data byte in
the packet. Upon receiving a packet, the receiver sends back a packet
where the acknowledgement number is set to the number of the last
data byte of the received packet plus 1, i.e., the sequence number of
the first byte of the packet it expects to receive next. By sending
this acknowledgement packet, the receiver confirms to have received
all data up to the specified byte. The acknowledgement packet may
be void of any actual data.

• In addition, TCP often also supports non-cumulative acknowledge-
ments known as selective ACKs (SACKs).

Protocol 2.19 (Establishing a Connection).

26 CHAPTER 2. TRANSPORT LAYER

• The client sends a SYN (synchronize) packet to the server.

• The server acknowledges the packet by sending back a SYN/ACK packet.

• The client acknowledges the reception of the SYN/ACK packet by sending
an ACK packet itself.

Remarks:

• Terminating a connection can be done by a similar process where the
SYN packets are replaced by FIN packets.

• A packet is specified as a SYN, FIN, or ACK packet by setting the
respective binary flag in the header.

• The sequence number x of the first SYN packet is not simply set
to 0 (for security reasons), but to some arbitrary number. Based
on this number the subsequent data is numbered (bytewise). The
rules explained above for the used sequence and acknowledgement
numbers also apply for establishing the connection. Consequently,
the server’s SYN/ACK packet has acknowledgement number x + 1
and the client’s ACK packet, containing also the first actual data, has
sequence number x+ 1.

Definition 2.20 (Flow Control). Avoiding congestion on the recipient’s side
which occurs, e.g., because the recipient is a device processing relatively slowly,
is called flow control.

Remarks:

• For flow control, the server uses the window size field in the header
to specify how many packets it can receive before its buffer is full.
The client accordingly adjustes its rate so that no more packets are in
flight than specified by the window size.

Definition 2.21 (Round-Trip Time). The time it takes a packet to travel from
sender to receiver and back is called round-trip time (RTT).

Definition 2.22 (Congestion Control). Avoiding congestion on a link (or, more
precisely, in the router transmitting over the link) in the network is called con-
gestion control.

Remarks:

• Congestion control is exercised by implementing a congestion window.
The actual window size used for determining the rate of a flow is the
minimum of the size of the congestion window and the window size
specified in the header of packets received by the client.

• Basically, the congestion window implements AIMD. Congestion in
the network causes packet loss which is then reported to the affected
sender, who decreases the congestion window by a factor of 1/2. Af-
terwards, the congestion window is increased by (the maximum size
of) one packet per RTT, resulting in a linear increase.

BIBLIOGRAPHY 27

• In TCP, recognition of dropped packets on the sender side is imple-
mented by timeouts, i.e., if a packet is not acknowledged in some time
frame it is considered as lost. Thus, some time elapses between a
congested router dropping a packet and the affected flow decreasing
its rate which in turn causes other flows to suffer packet loss in the
congested router since the congestion is not remedied immediately.

• How long a sender should wait for the acknowledgement of a sent
packet depends on the RTT. For determining the waiting time, a vari-
able called smoothed RTT (SRTT), set initially to the RTT of the
first acknowledged packet, is used. The new SRTT is the weighted
(“smoothed”) mean of the last SRTT and the RTT of the last ac-
knowledged packet.

• Over time, various heuristics have been incorporated into TCP to
improve performance, e.g., the slow-start algorithm which governs the
initial growth of the size of the congestion window. According to slow-
start, whenever a packet is acknowledged, the window size is increased
by one packet. Thus, the initially small window grows exponentially
in size until a certain threshold is reached upon which the additive
increase part of AIMD starts. Thereby, the time where the network
is not used close to full capacity is reduced.

• TCP relies on the goodwill of the senders as this is where the adjust-
ment of the flow rates takes place. You may tweak your local version
of the TCP protocol in order to obtain more bandwidth for yourself,
e.g., by simply ignoring the multiplicative decrease.

Chapter Notes

As Leighton and Rao show in [4], for multi-commodity flows, the size of the
maximum flow does not equal the size of the minimum cut in general. The NP-
hardness of maximizing an unsplittable multi-commodity flow can be inferred
from [1].

Two of the first researchers who formulated applied problems from logis-
tics/economics as linear programs were Kantorovich and Koopmans who later
received the Nobel Prize in economics for their contributions. The simplex algo-
rithm was developed by Dantzig in 1947. In 1979, Khachiyan showed that linear
programs can be solved in polynomial time. In 1984, Karmarkar developed an
interior point algorithm that not only had a polynomial-time runtime, but was
also practically feasible.

TCP was developed by Cerf and Kahn, based on their work [2]. Analysis of
the AIMD algorithm can be found in [3].

This chapter was written in collaboration with Sebastian Brandt.

Bibliography

[1] Georg Baier, Ekkehard Köhler, and Martin Skutella. The k-splittable flow
problem. Algorithmica, 42(3-4):231–248, 2005.

28 CHAPTER 2. TRANSPORT LAYER

[2] V. Cerf and R. Kahn. A protocol for packet network intercommunication.
IEEE Transactions on Communications, 22(5):637–648, May 1974.

[3] Dah-Ming Chiu and Raj Jain. Analysis of the increase and decrease algo-
rithms for congestion avoidance in computer networks. Computer Networks,
17:1–14, 1989.

[4] Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems
and their use in designing approximation algorithms. J. ACM, 46(6):787–
832, November 1999.

Chapter 3

Application Layer

If you ever write internet code, almost surely it will be application layer code.

3.1 HTTP

Today a large majority of all data is transferred using the HTTP protocol, with
a share of over 80%. HTTP is used by websites such as Facebook, Wikipedia,
or Google, but also by popular content streaming services such as Netflix or
Youtube.

Definition 3.1 (URL). A Uniform Resource Locator (URL) is a string that
uniquely identifies a resource on a server. In its most common form it consists
of a scheme detailing the protocol to use, the host identifier on which the
resource is located and a path detailing the location on the server.

Remarks:

• The scheme in this section will either be http for unencrypted HTTP
or https for HTTP over an encrypted connection. If the scheme is
http, then by default the client will contact the server on port 80. For
https the client uses port 443.

• HTTPS and HTTP only differ in the underlying transport protocol.
While HTTP directly communicates over a TCP connection, HTTPS
further encrypts its traffic by inserting an encryption layer between
HTTP and the TCP connection. Please refer to Section 3.6 for more
details on layers and Chapter 12 for the encryption. for details about
encryption.

• The host identifier may either be the server’s IP address or a domain
name, which would then be translated to the IP address using a DNS
lookup. Refer to Section 3.3 for details about DNS.

• There are a number of optional fields that may also be part of a URL.
These are username and password for simple authentication, a port if
a non-default port is used, a query-string to pass arguments to a re-
source, and a fragment describing which part of the resource is of inter-
est: scheme://user:password@host:port/path?query#fragment.

29

30 CHAPTER 3. APPLICATION LAYER

Protocol 3.2 (HTTP). The Hypertext Transport Protocol (HTTP) is a network
protocol built on top of TCP, used by a client to interact (retrieve, store, etc.)
with resources on a server.

Remarks:

• HTTP has simple request-response semantics, i.e., the client issues a
request and the server responds. The requests and responses are in a
human readable format.

• HTTP is a client-server protocol, in which the client requests an oper-
ation, called method, on the resource and the server returns a response.
The most common method for HTTP requests is GET which is used
to retrieve a resource from the server. Other methods include HEAD,
used to retrieve metadata about a resource from the server, POST and
PUT, commonly used to update an existing resource or create a new
resource on the server, and DELETE, used to remove a resource from
the server.

• Both request and response comprise a header and a payload separated
by an empty line.

• The request header contains a request line, consisting of a method, a
URL specifying which resource it should be applied to, and an HTTP
version. In addition the header may include a number of request
options, i.e., Key: Value pairs with additional information about the
client and the request, each on a new line. The request header is
terminated by two successive newline characters: \n\n.

• The PUT and POST methods include a payload, i.e., some data that is
transferred along with the request. Semantically this corresponds to
the content of the resource that the client is attempting to create or
update. If a payload is included in the request, a Content-Length

header option specifies the length of the payload in bytes, and the
payload is appended after the two newline characters.

• The server response header consists of a response line containing a
protocol version, a numeric return code and a human readable re-
sponse code. Additionally it may include response options, in the
same format as the request options. Options usually include the re-
source Content-Type and Content-Length. The response header is
terminated by two successive newline characters and is followed by
the payload, i.e., content, of the resource.

• The numeric return codes returned by the server are 3-digit numbers
organized into groups according to their first digit:

– 1xx: Informational Not used, but reserved for future use

– 2xx: Success The action was successfully received, understood,
and accepted, e.g., 200, indicating a successful request returning
the requested resource.

3.1. HTTP 31

– 3xx: Redirection Further action must be taken in order to com-
plete the request

– 4xx: Client Error The request contains bad syntax or cannot
be fulfilled, e.g., 404, indicating that a non-existing resource was
requested.

– 5xx: Server Error The server failed to fulfill an apparently valid
request

• A resource may be any content that can be serialized and returned in
response to a request. This includes textual as well as media contents.

• Most resources on the internet are HTML pages and associated me-
dia resources, such as images and videos. A browser on the user’s
computer is used to render the HTML pages and associated media
into a webpage and display it to the user. However, the pervasive de-
ployment of HTTP for user content has resulted in HTTP becoming
the primary transport mechanism for other resources as well. Stan-
dards such as Representational State Transfer (REST), XML-RPC,
Webservices (SOAP), and JSON-RPC are nowadays used to enable
application to application communication on top of HTTP.

• The server may respond to a request with a continuous stream of
data. Conceptually streaming is no different from a download, the
only difference is that the server does not announce the size of the
returned response in the response options and it does not close the
connection.

• HTTP is a stateless protocol.

Definition 3.3 (Stateless Protocol). A protocol is stateless if each request is
treated independently. In other words, the communication consists of indepen-
dent request-response pairs. A stateless protocol relieves the server from storing
information about its clients.

Remarks:

• Stateless protocols are simpler but limited in applicability. For exam-
ple, authenticating a user is tricky in a stateless protocol.

• To allow stateful applications on top of HTTP, a Cookies-option has
been introduced by browsers. This option can be used to send small
amounts of data (session identifier, authentication token, . . .) from
the client to the server with every request, allowing the server to
recognize the user, storing state about the user.

Protocol 3.4 (HTTP 1.0). HTTP 1.0 is the first version of HTTP.

32 CHAPTER 3. APPLICATION LAYER

GET /index.html HTTP/1.0

User-Agent: Mozilla/5.0

Accept: text/html

HTTP/1.0 200 OK

Content-Type: text/html; charset=UTF-8

Content-Length: 312

<html>...

Figure 3.5: Simple HTTP 1.0 interaction retrieving the index.html resource on
the server. The client request on the left is terminated by an empty line. On
the right side, the response header and content are sent back by the server.

Remarks:

• HTTP 1.0 was only intended to transfer hypertext and some embed-
ded resources such as images.

• In HTTP 1.0 a client opens a new connection for each request, which is
closed once the response is delivered. Due to the increasing number of
resources required to render a webpage, this results in a large number
of (slow start) TCP connections between client and server.

Protocol 3.6 (HTTP 1.1). HTTP 1.1 is the second released version of HTTP,
which includes a number of incremental changes such as request pipelining, pro-
tocol upgrade capabilities, range request, better support for caching and compres-
sion.

Remarks:

• Pipelining uses persistent connections that are reused for multiple re-
quests before being closed. The client opens a connection once and
issues multiple requests on that connection. A browser may still open
multiple concurrent connections, but the overall number of connec-
tions is reduced, and the overhead of establishing the connection and
the TCP slow start is amortized over multiple requests.

• If supported by the server, range requests allow the client to specify
a byte-range that is to be returned in the request options. Without
range requests it is not possible to resume an interrupted download.

• Protocol updates are used to switch to completely different protocols
over the same connection. The server responds to the current request
and then the protocol is switched to the protocol indicated in the
request options.

• One example of a protocol upgrade allows are WebSockets. For secu-
rity reasons, scripts running in the browser are not allowed to open
TCP connections to servers. Protocol upgrades allow an existing
HTTP connection to be used as a WebSocket, allowing bidirectional
communication between a client script and the server, including server-
side pushes of messages.

Protocol 3.7 (HTTP/2). HTTP/2 or HTTP 2.0 is the latest major release of
HTTP. It includes a number of changes that are not backward compatible.

3.2. HTML 33

Remarks:

• While in previous versions of HTTP headers are human readable,
HTTP/2 uses a binary format to reduce the size of the request and the
response, resulting in lower latency and a smaller protocol overhead.

• HTTP/2 introduces multiplexing of logical streams onto a single con-
nection. Each request-response pair forms a logical stream. The
streams are split into frames that may be interleaved arbitrarily and
sent over a single shared connection. This allows a single connection
between client and server to be used for an arbitrary number of concur-
rent requests, thus eliminating the need to open multiple connections
to the same server to load resources concurrently. Multiplexing fur-
thermore enables dynamic prioritization of requests and server-side
pushes, e.g., a server could push additional resources for a webpage
without waiting for the client to request them.

3.2 HTML

Definition 3.8 (HTML). Hypertext Markup Language (HTML) is a markup
language used to annotate plain text with hyperlinks and rendering instructions,
enabling the creation of structured documents.

Definition 3.9 (Element). An HTML element is a part of a document delimited
by a pair of opening and closing tags. Tags themselves are delimited by angle
brackets (< and >).

Remarks:

• Figure 3.2 displays a simple HTML document. HTML elements are
used both as rendering directives, e.g., the above tag will
result in bold text, and semantic markup, e.g., <head> delimits a
region containing the metadata of the document.

• Elements can be nested arbitrarily, e.g., a bold text as part of an italic
text. The resulting structure is a rooted tree of elements in which child
elements span parts of a parent element. Notice that this implies that
tags must be closed in the inverse order they have been opened.

• The content of a tag is defined as the text between the opening and
closing tags. The content may also be empty, i.e., the opening tag
is directly followed by a closing tag. Empty elements may use the
<tag/> shorthand instead of <tag></tag>. An example of an empty
tag is the linebreak
 which forces a line break and does not have
any content itself.

• Elements may have attributes that specify the behavior of the element.
For example a hyperlink has a content, i.e., the clickable text, and a
location which the browser should visit when clicked. Such a link has
the following markup: content

34 CHAPTER 3. APPLICATION LAYER

<html>

<head>

<title>This is a title</title>

</head>

<body>

<p>Hello world!</p>

</body>

</html>

Figure 3.10: Simple HTML document with header and a formatted body.

• Most browsers have a basic interpretation of how an element is to be
rendered. This behavior can be arbitrarily modified by applying styles
to the elements.

Definition 3.11 (Cascading Style Sheets). Cascading style sheets (CSS) can
be used to override the rendering defaults included in a browser.

Remarks:

• A cascading style sheet consists of a set of rules. Each rule has a
selector, which specifies which elements the rule should be applied to,
and a declaration, specifying how the rendering should be changed
from the browser’s defaults.

• Simple selectors could for example match all elements with a given
element, e.g., if the text in a element should also be italic.

• Selectors may make use of the tree structure of the document, e.g.,
a rule may match all elements whose parent is a <p> using
p > strong as a selector.

• The declaration is a block of key-value pairs, each specifying one as-
pect of the rendering.

• The cascading style sheet is either inlined into the HTML document
as a <style> element in the <head>, or it is stored in a separate file
and bound to the document using a <link> element in the head.

p > strong {

color: red;

}

Figure 3.12: A cascading style sheet with one rule matching all strong-elements
that are direct children of a p-element. The declaration specifies that the text
in all matched elements should be red.

3.3. DNS 35

3.3 DNS

When visiting a website, do you enter an IP address like 195.176.255.237 or do
you prefer using a name like www.google.com? In the latter case you are using
DNS.

Protocol 3.13 (DNS). The domain name system (DNS) maps human readable
domain names to the IP addresses of servers which are serving requests for those
domains.

Remarks:

• Translating a domain name to IP addresses is called resolving the
domain name.

• Besides mapping domain names to IP addresses, DNS also provides
the inverse mapping from IP addresses to domain names.

Definition 3.14 (Nameserver). A server in the domain name system is called
a nameserver. It offers the domain name resolution service to its clients.

Remarks:

• DNS is a request-response based protocol. The client sends a request
packet to the nameserver, which looks up the matching record and
returns it as a response to the client. The protocol is not human
readable and is composed of two single packets which hold all fields
for both request and response.

• Despite being part of the core functionality of the internet, DNS is
implemented in the application layer, as a protocol on top of UDP.

• DNS is implemented as a distributed database in order to guard
against single points of failure, to distribute traffic over a large num-
ber of servers, and to enable local caching for faster domain name
resolution.

• The distributed database stores resource records (RRs). Resource
records may have a multitude of types. Common types are A and AAAA

for domain name to IPv4 and IPv6 mappings respectively, CNAME for
canonical names, NS to delegate the domain name to another name-
server, and MX to locate the mailserver responsible for the queried
domain.

• There is no single server holding all the database’s records, instead
each nameserver only knows a subset of domain names.

Definition 3.15 (Authoritative Nameserver). A server that is responsible for a
domain name is called the domain’s authoritative nameserver. The authoritative
nameserver is the server in which the mapping can be configured by the domain
name owner. It is the server that should be contacted to ultimately resolve the
domain name.

36 CHAPTER 3. APPLICATION LAYER

Remarks:

• In order to resolve the domain name of a server we first need to locate
the authoritative nameserver for that domain name. This chicken-
and-egg problem is solved by introducing a hierarchy of nameservers
that delegate the resolution of domain names until the authoritative
nameserver is found.

• The hierarchy results in a tree structure with well known static name-
servers at the root, which then delegate the resolution to their descen-
dants.

Definition 3.16 (Root Nameserver). A root nameserver is a nameserver that
serves as the reliable point of contact when resolving a domain name. A list of
root nameserver IPs is included with the operating system of all nameservers.
Root nameservers are contacted if no better nameserver is known.

Remarks:

• There are a total of thirteen root nameservers in the world, operated
by a multitude of organizations. Having the root nameservers oper-
ated by a diverse group of organizations should ensure that the system
is resilient against failures.

• Some root nameservers share the same IP address. IP anycast routing
assures that the closest server is reached.

• Upon receiving a request, a nameserver checks whether it has the
required information to respond to the request. Should the nameserver
not have the necessary information, it will delegate the request to
another nameserver, or drop the request if it does not know a better
nameserver. The delegating server returns a NS response containing
the next nameserver the client should contact.

• The first level below the root servers are the regional nameservers
responsible for the top level domains (TLDs). Regional nameservers
then delegate to a number of registrars which cater to the end users.
Further levels are introduced to divide the load and the responsibility
of a domain to a number of nameservers.

• If we were to always perform resolution by contacting the root name-
servers, they would become bottlenecks. For this reason clients and
nameservers cache the responses and return these if a matching re-
quest is received. To this end each response contains a time-to-live
(TTL) field which specifies how long, in seconds, the response may
be cached. The higher levels in the hierarchy specify a high TTL,
since they have very few changes over time. Lower levels, where the
majority of changes are performed specify lower TTL values.

• It is desirable for some nameservers to act as a local cache, e.g., an
ISP nameserver may directly serve its customers to reduce latency
and reduce the number of requests. Instead of delegating the request
to another nameserver, these nameservers perform the resolution on

3.4. MAIL 37

behalf of the client. This mechanism is called recursive resolution and
allows the nameserver to cache the response and later serve similar
requests locally.

3.4 Mail

Definition 3.17 (Mailserver). A mailserver is a server that routes mail mes-
sages from the sender to the recipient and stores incoming mail messages for its
users.

Remarks:

• A mail address is composed of a username and a domain, separated
by an @. Mail destined to users of the same domain is delivered to
the same mailserver. The mailserver that is responsible for handling a
domain’s mail is specified by an MX record returned by the nameserver
of that domain. Mail on a mailserver awaiting to be retrieved by the
user is said to be spooled.

• When sending a mail, the sending user will look up the responsible
mailserver for the recipient’s domain through DNS and contacts it to
deliver the mail. The delivery from the user to the receiving mailserver
is done using SMTP.

• Most modern clients may be configured to use a single mailserver for
outgoing mail. When sending a mail the client contacts its outgo-
ing mailserver instead of the destination mail server. The outgoing
mailserver then delivers the mail on behalf of the client, allowing a
number of advanced features such as sender authentication and auto-
matically reattempting delivery should the destination mailserver be
unreachable. In this scenario SMTP is used in both interactions, from
the client to the outgoing mailserver and the outgoing mailserver to
the destination mailserver.

Protocol 3.18 (SMTP). The simple mail transfer protocol (SMTP) is a pro-
tocol used to deliver mails from a client to a mailserver.

Remarks:

• SMTP is an interactive human readable protocol over TCP connec-
tions. A mailserver listens to port 25 for unencrypted incoming con-
nections, while port 465 is commonly used for encrypted incoming
connections. Similar to HTTPS the encryption is implemented by
adding an SSL layer inbetween the TCP layer and the SMTP layer.
An interactive succession of requests and responses is called a session.

• The client issues requests in the form of text commands, while the
server responds with a numerical response code and a textual response.

• Common commands include HELO to initiate a session, RCPT TO to
specify the mail recipient, MAIL FROM to specify the mail sender and
DATA to specify the mail content.

38 CHAPTER 3. APPLICATION LAYER

• With the exception of DATA, the commands are terminated by a new-
line. The DATA command is followed by the content of the mail, hence
it allows multiple lines to follow, and is terminated by a \n.\n, i.e., a
punctuation mark on an otherwise empty line.

• Similar to HTTP, the response codes are grouped into function groups:

– 2xx: Success The command issued by the client succeeded.

– 3xx: Start mail input In response to a DATA command, the client
may send the mail body.

– 4xx: Client error The client issued an invalid command.

– 5xx: Server error The server failed to act on the command.

• Initially SMTP did not include any form of authentication, since it is
solely used for mail delivery, i.e., it is not possible to retrieve someone
else’s mails over SMTP. The destination mailservers often still accept
mails from unauthenticated sessions, however outgoing mailservers to-
day require the user-agent to authenticate to reduce the risk of denial-
of-service attacks and spam.

• Multipurpose Internet Mail Extensions (MIME) is a standard that
describes how the content of a mail may be encoded. MIME enables
HTML formatted messages, attachments, and avoids some problems
with plaintext mails.

Protocol 3.19 (POP). The post office protocol (POP) is a protocol that enables
a client to retrieve and manipulate spooled mail messages on a mailserver.

Remarks:

• The first version of POP was introduced in 1984. Later versions in-
troduced incremental changes. The latest version, POP3, includes an
extension mechanism and a flexible authentication mechanism.

• POP3 is the retrieval counterpart of SMTP. It is therefore not sur-
prising that the protocols are very similar with text based commands
and text based responses. However, unlike SMTP, the responses do
not contain a numeric response code, instead responses are prefixed
with +OK if the command succeeded and failure causes the connection
to be closed.

• Common commands include USER and PASS for authentication, STAT
to retrieve overall statistics of the mailbox, LIST to retrieve a list of
messages including the message ID and its length, RETR to retrieve a
message and DELE to delete a message.

• Similar to the DATA command in SMTP, some responses may return
multiple lines, in which case they are terminated using a punctuation
mark on an otherwise empty line.

• Using SMTP and POP3, the mailserver is used for temporary storage
of mails until they are retrieved. If a user uses multiple computers,
mails retrieved on one client will not be synchronized with the other
client.

3.5. SOCKET API 39

• Modern alternatives to POP3 include the Internet Message Access
Protocol (IMAP) and web-based mail clients.

Protocol 3.20 (IMAP). The Internet Message Access Protocol (IMAP) is a
protocol used by mail clients to access mail messages from a mailserver over
a TCP connection. IMAP was designed with the goal of permitting complete
management of a mailbox by multiple mail clients, therefore, clients generally
leave messages on the server until the user explicitly deletes them.

Remarks:

• An IMAP server typically listens on port number 143. IMAP over
SSL (IMAPS) is assigned port number 993.

• In contrast to POP, IMAP focuses on organizing the mail directly on
the mailserver as opposed to downloading them and organizing them
locally. For this purpose IMAP introduces the concept of folders into
which mail can be organized and retrieved from. Keeping the mail on
the mailserver furthermore allows multiple synchronized clients.

• IMAP is a human readable protocol that follows a similar format as
POP. IMAP prefixes the last line of a request-response pair with an
alphanumeric unique tag. The tag is generated by the client and sent
with the request, and the server will reply with the same tag in its
response. This uniquely identifies the last line of a response and hence
reduces the ambiguity of having some responses span multiple lines.

3.5 Socket API

Definition 3.21 (Socket). A socket is the principal abstraction for network
communication exposed in programming languages. A socket exposes the neces-
sary information and methods to a user application, to exchange data between
clients and servers.

Remarks:

• A socket is endpoint of a connection between two applications. Data
sent through a socket on one end is received by the socket on the other
end.

• In order to establish a connection, the server must have a socket lis-
tening for incoming connections, and the client creates an outgoing
socket connecting to the listening server socket.

• TCP and UDP are the most common transport layer protocols used
when communicating between applications, however a multitude of
other protocols exist with various tradeoffs in terms of latency, security
and consistency.

40 CHAPTER 3. APPLICATION LAYER

1 import java . i o . ∗ ;
2 import java . net . ∗ ;
3
4 public class Hel loWorldCl ient {
5 public stat ic void main (St r ing [] a rgs) throws

IOException {
6 i f (args . l ength != 3) {
7 System . e r r . p r i n t l n (
8 ”Usage : java Hel loWorldCl ient <name> <host

> <port number>”) ;
9 System . e x i t (1) ;

10 }
11 St r ing name = args [0] ;
12 St r ing host = args [1] ;
13 int port = In t eg e r . pa r s e In t (args [2]) ;
14
15 Socket sock = new Socket (host , port) ;
16 Pr intWriter out = new PrintWriter (
17 sock . getOutputStream () , true) ;
18 BufferedReader in = new BufferedReader (
19 new InputStreamReader (sock . getInputStream ())) ;
20
21 out . p r i n t (name + ”\n”) ;
22 out . f l u s h () ;
23 System . out . p r i n t l n (in . readLine ()) ;
24 }
25 }

Listing 3.22: Simple greeting client in Java.

Remarks:

• Our example client (Listing 3.22) takes three arguments: a name, a
host and a port. The client connects to the specified host and port
(line 15), sends the provided name (line 21), and reads the server’s
response (line 22). Both the request and response are terminated by
a newline character, which allows the use of the readLine method to
retrieve the contents.

• Java buffers most of its I/O operations. This includes network com-
munication. After calling the print method of the PrintWriter on line
21, the written data is buffered as more data may be added. Calling
flush instructs the underlying socket implementation to construct a
TCP packet and send the data that was buffered so far. Manually
flushing is not always necessary and happens automatically if the size
of the buffered data exceeds the maximum packet size or a timeout
is triggered. Splitting data into individual packets requires that the
data is reassembled on the receiving side.

3.6. PROTOCOL LAYERS 41

1 import java . net . ∗ ;
2 import java . i o . ∗ ;
3
4 public class Hel loWorldServer {
5 public stat ic void main (St r ing [] a rgs) throws

IOException {
6 int portNumber = 31337;
7
8 ServerSocket s e rve rSocke t = new ServerSocket (
9 portNumber) ;

10 Socket c l i e n t S o c k e t = se rve rSocke t . accept () ;
11
12 PrintWriter out = new PrintWriter (
13 c l i e n t S o c k e t . getOutputStream () ,
14 true) ;
15 BufferedReader in = new BufferedReader (
16 new InputStreamReader (
17 c l i e n t S o c k e t . getInputStream ())) ;
18
19 St r ing name = in . readLine () . tr im () ;
20 out . p r i n t (”He l lo ” + name + ”\n”) ;
21 out . c l o s e () ;
22 in . c l o s e () ;
23 }
24 }

Listing 3.23: Simple greeting server in Java.

Remarks:

• The server in Listing 3.23 listens for an incoming connection on port
31337. Once a connection is established, the server reads a line, i.e.,
the name of the client terminated by a newline character, responds
with a greeting terminated by a newline, and closes the connection.

• Our program only accepts a single connection and then terminates.
Real servers continually accept incoming connections and hand off the
actual interaction to a thread.

• Notice that the server does not flush the buffered data, but the close
method on the PrintWriter also causes the buffered data to be flushed.

3.6 Protocol Layers

The structure of network protocols (Chapter 1), transport protocols (Chapter 2)
and application protocols (Chapter 3) is similar. Let’s formalize this similarity
by introducing a layered architecture for network communication.

Definition 3.24 (Internet Protocol Suite). The internet protocol suite is a
computer networking model, and set of communications protocols, used in the
internet as well as similar computer networks. It divides the responsibility of

42 CHAPTER 3. APPLICATION LAYER

individual protocols into layers that expose an abstract interface to higher up
protocols.

Ethernet header IP header TCP header HTTP header Payload

Figure 3.25: An example of nested layers for an HTTP request. Each layer has
its own header and a payload consisting of the next higher layer.

Remarks:

• The internet protocol suite defines the following layers:

– Application layer

– Transport layer

– Network layer

– Link layer

• Layers are stacked so that higher layer protocols do not need to deal
with the implementation details of lower layers, instead they may rely
on the abstract interface exposed by those layers. Protocols in a layer
should be designed in such a way that they are interchangeable. For
example the format of an IP packet is independent of the physical
medium it is transferred on, e.g., wire or air.

• The layering is implemented by repeatedly nesting packets of a layer
in the next lower layer. Each layer is composed of a header and a
payload. The payload simply contains the next higher layer packet.
Figure 3.25 shows an example of how a link layer packet, Ethernet in
this case, looks like.

• Over time the network has consolidated to just a few protocols that
are in use, and the predominant network layer protocol is IP.

HTTP

TCP

IP

802.11

Browser

802.11 Eth.

Wifi Access Point

IP IP

Eth. Eth.

Router

HTTP

TCP

IP

Eth.

Server

Figure 3.26: The browser issues an HTTP request over Wifi (802.11 link layer
protocol) which is received by an access point and forwarded over Ethernet to
a router. The router reads the IP header to identify the next hop and forwards
the packet accordingly. Only the server needs to parse the entire stack of layers
to get the original HTTP request.

BIBLIOGRAPHY 43

Remarks:

• Separating the protocols into layers also allows keeping routing devices
simple: a network switch does not need to understand the application
protocol in order to correctly route a packet.

• Figure 3.26 shows an example of how packets can be routed without
parsing the entirety of the packets.

• It may not always be possible to uniquely assign a protocol to a layer.
Lower layer protocols may sometimes be tunnelled by higher layer
protocols. In Section 1.7 we have seen that IP packets can be tunnelled
through a VPN connection with IPsec by wrapping IP packets in IPsec
packets. If we were to establish a TCP connection over IP tunnelled
through IPsec, then the IP layer may be categorized as the transport
layer or the network layer depending on whether we consider the point
of view of the TCP connection or the IPsec connection.

Chapter Notes

Application layer protocols are specified in Requests for Comments (RFCs)
which are the canonical specification of internet protocols. This allows a number
of manufacturers to implement these protocols and guarantee compatibility.

Mail is one of the earliest applications, it even predates DNS. Mail relies
on a number of protocols, some of which we have discussed in this chapter.
SMTP was introduced in 1982 with RFC 821 [6], and initially required users to
log into the nameserver where the mails were stored in a file structure to read
and send mails. POP was introduced in 1984 with RFC [7], allowing users to
retrieve mail on a mailserver and read it locally, while still using SMTP to send
outgoing mails.

DNS was introduced in 1983 in RFC 883 [5]. It initially did not include any
authentication of the responses, meaning that it was trivial for an intermediary
nameserver to impersonate authoritative nameservers and redirect users to the
wrong server. Domain Name System Security Extensions (DNSSEC) published
in RFC 2065 [3] introduces authentication through digital signatures authen-
ticating responses, and a public key infrastructure to authenticate the domain
name owners.

HTTP 1.0 was released in 1996 in RFC 1945 [2] and was quickly superseded
in 1997 by version 1.1 in RFC 2068 [4]. In 2009 Google announced a new
transport protocol called speedy (SPDY) between its Chrome browser and its
own services. After successful deployment of SPDY by Google it was picked up
by the IETF and evolved into HTTP/2, which will eventually supersede both
HTTP/1 and SPDY. HTTP/2 was finalized and published in 2015 as RFC
7540 [1].

This chapter was written in collaboration with Christian Decker.

Bibliography

[1] M. Belshe, R. Peon, and M. Thomson. RFC 7540: Hypertext Transfer
Protocol Version 2 (HTTP/2), 2015.

44 CHAPTER 3. APPLICATION LAYER

[2] T. Berners-Lee, R. Fielding, and H. Frystyk. RFC 1945: Hypertext Transfer
Protocol – HTTP/1.0, 1996.

[3] D. Eastlake and C. Kaufman. RFC 2065: Domain Name System Security
Extensions, 1997.

[4] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. RFC 2068:
Hypertext Transfer Protocol – HTTP/1.1, 1997.

[5] P. Mockapetris. RFC 883: Domain Names - Implementation and Specifica-
tion, 1983.

[6] Jonathan B. Postel. RFC 821: Simple Mail Transfer Protocol, 1982.

[7] J. K. Reynolds. RFC 918: Post Office Protocol, 1984.

Chapter 6

Dictionaries

You manage a library and want to be able to quickly tell whether you carry a
given book or not. We need the capability to insert, delete, and search books.

Definition 6.1 (Dictionary). A dictionary is a data structure that manages
a set of objects. Each object is uniquely identified by its key. The relevant
operations are

• search: find an object with a given key

• insert: put an object into the set

• delete: remove an object from the set

Remarks:

• There are alternative names for dictionary, e.g. key-value store, asso-
ciative array, map, or just set.

• If the dictionary only offers search, it is called static; if it also offers
insert and delete, it is dynamic.

• For our purposes, we will ignore that we actually have a set of ob-
jects, each of which is identified by a unique key, and just talk about
the set of keys. With regard to the library example, books are glob-
ally uniquely identified by a key called ISBN. Whenever we say we
insert/delete/search a key, we can just drag the key’s object along via
encapsulation.

• The classic data structure for dictionaries is a binary search tree.

6.1 Search Trees

Definition 6.2 (Binary search tree). A binary search tree is a rooted tree
(Definition 1.7), where each node stores a key. Additionally, each node may
have a pointer to a left and/or a right child node. For all nodes, if existing, the
left child stores a smaller key, and the right stores a larger key.

45

46 CHAPTER 6. DICTIONARIES

Algorithm 6.3 Search Tree Search

Input : key k, root r of search tree
Output: k if it is in the tree, else ⊥
1: If r contains key k, return k
2: If k is smaller than the key of r, set r to left child and recurse
3: If k is larger than the key of r, set r to right child and recurse
4: Return ⊥

Remarks:

• The symbol ⊥ (“bottom”) signifies null or undefined.

• The cost of searching in a binary search tree is proportional to the
depth of the key, which is the distance (Definition 1.15) between the
node with the key and the root.

• There are search trees called splay trees that keep frequently searched
keys close to the root. There may be keys with linear depth in a splay
tree, but on average the cost of a search is logarithmic in the number
of keys.

• Using balanced search trees, we can maintain a dictionary with worst-
case logarithmic depth for all keys, and thus worst-case logarithmic
cost per insert/delete/search operation.

• Is there a way to build a dictionary with less than logarithmic cost?

6.2 Hashing

Definition 6.4 (Universe, Key Set, Hash Table, Buckets). We consider a uni-
verse U containing all possible keys. We want to maintain a subset of this
universe, the key set N ⊆ U with |N | =: n, where |N | � |U |. We will use a
hash table M , i.e. an array M with buckets M [0],M [1], . . . ,M [m− 1].

Remarks:

• The standard library of almost every widely used programming lan-
guage provides hash tables, sometimes by another name. In C++,
they are called unordered map, in Python dict, in Java HashMap.

• The translation from virtual memory to physical memory uses a piece
of hardware called translation lookaside buffer (TLB), which is a hard-
ware implementation of a hash table. It has a fixed size and acts like
a cache for frequently looked up virtual addresses.

• Compilers make use of hash tables to manage the symbol table.

Definition 6.5 (Hash Function). Given a universe U and a hash table M , a
hash function is a function h : U →M . Given some key k ∈ U , we call h(k)
the hash of k.

6.2. HASHING 47

Remarks:

• A hash function should be efficiently computable, e.g. h(k) = k
mod m for a key k ∈ N.

• If we use ISBN mod m as our library hash function, can we insert/de-
lete/search books in constant time?!

• But what if two keys k and l have h(k) = h(l)?

Definition 6.6 (Collision). Given a hash function h : U → M , two distinct
keys k, l ∈ U produce a collision if h(k) = h(l).

Remarks:

• There are competing objectives we want to optimize for with regard
to the size of a hash table. On the one hand, we want to make the
hash table small since we want to save memory. On the other hand,
small tables will have more collisions. How many collisions will we get
for a given n and m?

Theorem 6.7 (Birthday Problem). If we throw a fair m-sided dice n ≤ m
times, let D be the event that all throws show different numbers. Then D satisfies

Pr[D] ≤ exp

(
−n(n− 1)

2m

)
.

Proof. We have that

Pr[D] =
m

m
· m− 1

m
· . . . · m− (n− 1)

m
=

n−1∏
i=0

m− i
m

=

n−1∏
i=0

(
1− i

m

)
= exp

(
n−1∑
i=0

ln

(
1− i

m

))

We can use ln(1 + x) ≤ x for all x > −1:

Pr[D] = exp

(
n−1∑
i=0

ln

(
1− i

m

))
≤ exp

(
n−1∑
i=0

− i

m

)
= exp

(
−n(n− 1)

2m

)

Remarks:

• Theorem 6.7 is called the “birthday problem” since traditionally, peo-
ple use birthdays for illustration: In order to have a chance of at least
50% that two people in a group share a birthday, we only need 23
people.

• If we insert more than roughly n ≈
√
m keys into a hash table, the

probability of a collision approaches 1 quickly. In other words, unless
we are willing to use at least m ≈ n2 space for our hash table, we will
need a good strategy for resolving collisions.

48 CHAPTER 6. DICTIONARIES

• Theorem 6.7 assumes totally random hash functions — for non-random
distributions of hashes, we might have more collisions. In particular,
if we fix a hash function, then we can always end up with a key set N
that suffers from many collisions. E.g., if many books have an ISBN

that ends in 000, then ISBN mod 1,000 is a terrible hash function.

• Maybe we can use modulo, but with a different m? In particular,
we might apply a simple function to the ISBN first to introduce some
randomness, then use a moderately large prime number for m since
primes are less likely to cause collisions?

• However, for any hash function there are bad key sets.

• On the other hand, for every key set there are good hash functions!
How do we efficiently pick a good hash function, i.e. one that is likely
to distribute hashes evenly?

Definition 6.8 (Universal Hashing). Let H ⊆ {h : U → M} be a family of
hash functions from U to M . H is called universal if for any two distinct keys
k, l ∈ U , if we choose h ∈ H uniformly, then the probability of a collision is
Pr[h(k) = h(l)] = 1

m .

Remarks:

• In other words: if we choose a hash function from a universal family,
we can expect the hashes to be distributed well, regardless of the key
set.

• We cannot just pick a random function from U to M because there
are |M ||U | many, so we need |U | log |M | bits to encode such a random
function. That is even more bits than keys in our huge universe U .

Theorem 6.9 (Universal Hashing). Let m be prime and r ∈ N. For U = [b]r+1

where [b] = {0, . . . , b − 1} and M = [m] with b ≤ m and a = (a0, . . . , ar) ∈
[m]r+1, define

ha(k0, . . . , kr) =

r∑
i=0

ai · ki mod m.

Then H := {ha : a ∈ [m]r+1} is a universal family of hash functions.

Proof. Let (k0, . . . , kr) = k 6= l = (l0, . . . , lr) ∈ U . Since k and l are different,
there must be a smallest index 0 ≤ j ≤ r such that kj 6= lj . For a given
a ∈ [m]r+1, consider

ha(k) = ha(l)⇔
r∑
i=0

ai · ki ≡
r∑
i=0

ai · li mod m

⇔ aj(kj − lj) ≡
∑
i6=j

ai · (li − ki) mod m

⇔ aj ≡ (kj − lj)−1 ·
∑
i 6=j

ai · (li − ki) mod m

where (kj− lj)−1 exists because kj− lj 6= 0. There are mr choices for all ai with
i 6= j; for each of those choices, there is a unique aj for the hashes to be equal

6.3. STATIC HASHING 49

since [m] is a field, and in fields linear equations have unique solutions. Since
there are a total of mr+1 choices for (a0, . . . , ar), this gives us a probability of
mr

mr+1 = 1
m for the hashes to be equal.

Remarks:

• Theorem 6.9 gives us a general method for constructing universal hash
functions in an efficient manner. We simply choose a prime number
m and uniformly at random some factors a0, . . . , ar. Thus, we can
represent our hash function as the tuple (m, a0, . . . , ar).

• In practice, hash tables perform really well, and if we detect that we
had bad luck in choosing our hash function, we just choose a new one
and rebuild our table with the new function — this is called rehashing.

• In Java, creating an int as the hash of an Object is the job of the
JVM. In OpenJDK for example, the first time hashCode() is called on
an Object, the JVM creates a random number as its hash and stores
it with the Object.

• Hash functions are usually defined on classes, not by the hashing struc-
tures themselves. For classes in the Java standard library that have
fields (e.g., Strings have a char[] as a field), hashCode() is imple-
mented such that the hash is derived from the fields that are con-
sidered when deciding whether one instance equals() another. This
is called the contract between hashcode() and equals(): if two in-
stances of the same class are equal, then they have to have the same
hash. On the other hand, two objects with the same hash need not
be equal.

• In Theorem 6.9 we assume that U = [m]r+1. In applications, we often
want to find hashes for keys that are not numbers, and keys of different
“sizes”, e.g. Strings of different lengths.

• The Java standard library uses a fixed version of a weaker form of this
type of hashing for String. Instead of choosing (a0, . . . , ar) ∈ [m]r+1,
Java fixes a value a0 ∈ int and uses (a00, a

1
0, .., a

r
0) instead, where r is

the number of characters in the String. In Java, a0 = 31 was chosen
since it produced comparatively few collisions on English language test
data. Also, this hash function can be represented as a single value a0,
regardless of how long the strings we want to hash are, and it will
also work to manage Strings with different lengths in the same hash
table.

6.3 Static Hashing

How can we state the tradeoff between space and collisions more precisely?

Definition 6.10 (Number of Collisions). Given a hash function h : U → M
and a key set N ⊆ U , define the number of collisions that h produces on N as

C(h,N) := |{{k, l} ⊆ N : k 6= l, h(k) = h(l)}|.

50 CHAPTER 6. DICTIONARIES

Lemma 6.11 (Space vs. Collisions). If we uniformly sample a hash function
from a universal family, given an upper bound b on the number of collisions, we
only need to sample a constant number of times in expectation to find a hash

function hb that satisfies C(hb, N) < b in m = dn(n−1)b e space for a fixed key set
N of size n.

Proof. There are
(
n
2

)
pairs of distinct keys in N , and each of those produces a

collision with probability at most 1/m since h is chosen from a universal family.
Together, using the linearity of expectation we get

E[C(h,N)] ≤
(
n

2

)
· 1

m
=
n(n− 1)

2m
.

The Markov inequality states that for any random variable X that only takes
on non-negative integer values, we have Pr[X ≥ k · E[X]] ≤ 1

k . Hence,

Pr[C(h,N) ≥ 2 · E[C(h,N)]] ≤ 1

2

and so

Pr[C(h,N) < 2 · E[C(h,N)]] ≥ 1

2

If we choose m such that 2 · E[C(h,N)] ≤ b, then we only need to sample 2
hash functions in expectation. Solving for m, we get

2 · E[C(h,N)] ≤ b⇔ n(n− 1)

m
≤ b⇔ n(n− 1)

b
≤ m.

Remarks:

• According to Lemma 6.11, if we want no collisions, we set b = 1 and

choose m = dn(n−1)1 e = n(n− 1).

• Similarly, if we can tolerate n collisions, we find that a hash table of
size m = n− 1 suffices.

• Algorithm 6.12 defines perfect static hashing, which applies the result
of Lemma 6.11.

6.3. STATIC HASHING 51

Algorithm 6.12 Perfect Static Hashing

Input : fixed set of keys N
Output : Primary hash table M and secondary hash tables Mi

Function: Ni := {k ∈ N : h(k) = i}
Function: ni := |Ni|
1: M := hash table with n buckets
2: repeat
3: h := hash function N →M
4: until C(h,N) < n
5: for i ∈M do
6: Mi := hash table with 2

(
ni

2

)
= ni(ni − 1) buckets

7: repeat
8: hi := hash function Ni →Mi

9: until C(hi, Ni) < 1
10: end for
11: return (M,h, (Mi)i∈[m], (hi)i∈[m])

Remarks:

• In a first stage (Lines 1 to 4), we find a hash function h with at most
n collisions in linear space according to Lemma 6.11.

• In a second stage (Lines 5 to 10), we find a hash function hi per bucket
i without collisions by using an amount of space that is quadratic in
the number of keys in the bucket ni as per Lemma 6.11.

Theorem 6.13 (Perfect Static Hashing). When Algorithm 6.12 returns, the
size of M and all Mi together is less than 3n.

Proof. Due to Line 1, the size of M is exactly n.

The number of collisions produced by the keys in bucket i is
(
ni

2

)
since any

two of them produce one. We know that 2
(
ni

2

)
= ni(ni − 1). As two keys in

different buckets cannot produce a collision, we can sum the number of collisions
per bucket over all buckets to get the number of all collisions, and so

m−1∑
i=0

ni(ni − 1) =

m−1∑
i=0

2

(
ni
2

)
= 2

m−1∑
i=0

(
ni
2

)
= 2C(h,N) < 2n.

We used that C(h,N) < n due to Line 4. Because of the choice of the size
of Mi in Line 6, all buckets Mi together use less than 2n space. In total, M and
all Mi together have a size of less than n+ 2n = 3n.

Remarks:

• We now have a hashing algorithm that can be built in linear space
and expected linear time, and offers worst-case constant time search
for a static set N .

• But what about a dynamic dictionary?

52 CHAPTER 6. DICTIONARIES

6.4 Collisions

Definition 6.14 (Hashing with Chaining). In hashing with chaining, every
bucket M [i] stores a pointer to a secondary data structure that manages all keys
k with h(k) = i. Insertion, search, and deletion of k are all relegated to those
data structures. In the simplest implementation, we can use linked lists.

Remarks:

• Algorithm 6.12 is an instance of hashing with chaining with the Mi

being the secondary data structures managing the buckets.

• The Java standard library uses hashing with chaining to resolve colli-
sions.

• From Java 7 to Java 8, the standard library changed from HashMap

always using a linked list for a bucket to using a linked list as long as
the bucket contains less than a certain number of keys, and building
a search tree once the bucket reaches that number.

• More concretely: HashMap applies its own hash function to the hash
supplied by the keys (remember, each class defines hashCode(), ei-
ther by overriding it or by inheriting it from Object) to determine
each key’s bucket. For the ordering within the trees, there are two
possibilities: the class implements Comparable or it does not.

• If the class of the keys implements Comparable, then the natural or-
dering of the keys is used.

• If the keys are not Comparable, then the tree uses the values re-
turned by System.identityHashCode(Object x) to order keys; this
method returns the same value that the default implementation of
Object.hashCode() returns. This means that if your class is not
Comparable and does not override hashCode(), then System.identi-

tyHashCode(Object x) is equal for all keys within a given tree; this
makes the trees degenerate to lists.

Definition 6.15 (Load Factor). The fraction n
m =: α is called the load factor

of the hash table.

Remarks:

• The performance of all three operations (insert/delete/search) de-
pends on the load factor for all collision resolution strategies discussed
in this section.

• Hashing with chaining allows for a load factor α > 1 since the size
of the table is the number of secondary data structures; performance
deteriorates with growing α.

• If we use linked lists as secondary structures and use a hash function
chosen from a universal family, the cost for an unsuccessful search is
1+α in expectation, while that for a successul search is roughly 1+ α

2
in expectation.

6.4. COLLISIONS 53

• If we use one of the strategies of this section and α grows too large, we
should rehash with a bigger m in order to maintain expected constant
time cost. In the Java standard library, if a hash table surpasses a
load factor of 0.75, it is rehashed into a hash table with twice the size
of the old one.

Definition 6.16 (Hashing with Probing). Algorithm 6.17 defines how to search
for a key in hashing with probing. Line 5 is a successful search, and
Lines 7 and 11 are the two cases of an unsuccessful search. We call the
sequence (hi(k) mod m)i≥0 the probing sequence of k, and each step of the
iteration a probe.

Algorithm 6.17 Hashing with Probing: Search

Input : key k to search for
Output : key k if found, else ⊥
Function: parametrized hash function hi
1: i := 0
2: while i < m do
3: j := hi(k) mod m
4: if M [j] = k then
5: return M [j]
6: else if M [j] = ⊥ then
7: return ⊥
8: end if
9: i := i+ 1

10: end while
11: return ⊥

Remarks:

• To insert a key, we adapt Algorithm 6.17: with an unsuccessful search
in Line 7 we insert in the empty bucket. Therefore, the cost of an
insert is roughly the cost of an unsuccessful search. An unsuccessful
search in Line 11 triggers a rehash.

• Table 6.18 describes three different types of hashing with probing, each
together with the approximate time that a successful or unsuccessful
search takes in expectation. More generally, linear probing uses some
linear function hi(k) = h(k)+ci for some c 6= 0, and quadratic probing
uses some quadratic function hi(k) = h(k) + ci + di2 with d 6= 0. As
long as we guarantee that hi(k) is integer for all i ∈ [m], the constants
c and d can be rational.

54 CHAPTER 6. DICTIONARIES

Type hi(k) ≈ cost successful ≈ cost unsuccessful

Linear probing h(k) + i 1
2

(
1 + 1

(1−α)2

)
1
2

(
1 + 1

1−α

)
Quadratic probing h(k) + i2 1

1−α + ln 1
1−α − α 1 + ln 1

1−α −
α
2

Double hashing h1(k) + i · h2(k) 1
1−α

1
α ln

(
1

1−α

)
Table 6.18: Different types of hashing with probing together with the expected
number of probes per search. α is the load factor of the table, and for hashing
with probing, it has to satisfy α < 1 since we cannot store more keys in the
table than it has buckets. Each of h, h1, h2 is a hash function drawn from a
universal family.

Remarks:

• The main reason for the differences in access times is clustering.

• Linear probing suffers from primary clustering : from some point on,
the probing sequences of any two keys will become identical.

• Quadratic probing does not suffer from primary clustering, but it is
subject to secondary clustering : if two keys have the same hash, then
their probing sequences will still be identical.

• The form of quadratic probing defined in Table 6.18 has one additional
issue: the probing sequence of a key does not necessarily cover the
whole table. Assume the size of the table is m = 7 and h(k) = 0, then
the probing sequence of k is (0, 1, 4, 2, 2, 4, 1) — buckets 3, 5, 6 do not
appear.

• Double hashing does not suffer from either version of clustering. One
can show that if the hash functions h1 and h2 used in double hashing
are independently drawn from a universal family, then double hashing
performs as well as an idealized hash function that assigns hashes
uniformly at random.

6.5 Worst Case Guarantees

So far, the cost of all operations has been given in expected time cost. There
are algorithms that allow us to do better and give us worst case guarantees on
some of the operations. Two widely known possibilities to achieve this are called
dynamic perfect hashing and cuckoo hashing.

Remarks:

• To adapt perfect static hashing to a dynamic setting where we can
also handle inserts and deletions, all we have to do is choose the size
of Mi twice as large as in Algorithm 6.12, and rehash appropriately:
Whenever C(hi, Ni) > 0 for some bucket i, we rehash that bucket
until there are no collisions. Once some bucket reaches n2i ≈ |Mi| due

6.5. WORST CASE GUARANTEES 55

Algorithm 6.19 Cuckoo Hashing Insert

Input : key k ∈ U we want to insert; counter limit specifying the
maximum number of tries

Data Structures: arrays M1,M2 of equal size
Functions : hash functions h1 : U →M1, h2 : U →M2; chosen indepen-

dently and uniformly at random from universal families
1: if M1[h1(k)] = k or M2[h2(k)] = k then
2: return
3: end if
4: t := 1
5: while t ≤ limit do
6: swap k with M1[h1(k)]
7: if k = ⊥ then
8: return
9: end if

10: swap k with M2[h2(k)]
11: if k = ⊥ then
12: return
13: end if
14: t := t+ 1
15: end while
16: rehash()
17: CuckooHashingInsert(k, limit)

to insertions, we rehash the entire table. This leaves us with expected
constant time insert and delete, and worst case constant time search.
To keep the table linear-sized, we rehash everything after every m
updates (inserts or deletes).

• Another option is cuckoo hashing, which is described in Algorithm 6.19.
The idea behind cuckoo hashing is to use the “power of two choices”,
which can be roughly described as: if you can choose between two
resources and use the one that is less busy, you gain efficiency.

• The counter limit used in Algorithm 6.19 has to be chosen carefully
to guarantee the expected insert cost is constant. Specifically, one can
show that we get this guranatee if we choose limit ≈ logm.

• Search and delete only need to checkM1[h1(k)] andM2[h2(k)] to figure
out whether a given key k is in the table, and so those operations are
worst case constant time.

• Cuckoo hashing gets its name from cuckoo birds: they lay their eggs
into the nests of other birds, and once the cuckoo chicks hatch, they
push the other eggs/chicks out of the nest.

Chapter Notes

Dictionaries based on search trees are useful for providing additional operations
such as nearest neighbor queries or range queries, where we want to find all

56 CHAPTER 6. DICTIONARIES

keys in a certain range. Binary search trees were first published by three in-
dependent groups in 1960 and 1962 (for references, see Knuth [9]). The first
instance of a self-balancing search tree that guarantees logarithmic cost for in-
sert/search/delete is the AVL-tree, named so after its inventors Adelson-Velski
and Landis [1]. For multidimensional keys, e.g. geometric data or images, there
are specialized tree structures such as kd-trees [2] or BK-trees [3].

Hashing has a long history and was initially used and validated based on
empirical results. One of the first publications was Peterson’s 1957 article [11]
where he defined an idealized version of probing and empirically analyzed linear
probing. Universal hashing was introduced two decades later by Carter and
Wegman in 1979 [4]. Perfect static hashing was invented in 1984 by Fredman
et al. [7] and is sometimes also referred to as FKS hashing after its inventors.
Its dynamization by Dietzfelbinger et al. took another decade until 1994 [6]. A
comprehensive study on perfect hashing by Czech at all was compiled in 1997
[5]. Cuckoo hashing is a comparatively recent algorithm; it was introduced by
Pagh and Rodler in 2001 [10].

There have been a number of other developments regarding hashing since the
late 1970s; for an overview, see Knuth [9], in particular the section on History
at the end of chapter 6.4. For a neat visualization of hashing with probing, see
[8] online.

The power of two choices paradigm has found widespread application and
analysis in load balancing scenarios. It was initially studied from the perspective
of a balls-into-bins game where we want to minimize the maximum number of
balls in any bin, and to do this we can pick two random bins and put the next
ball into the least full of the two bins. Richa et al. [12] compiled an excellent
survey on the earliest sources and numerous applications of this paradigm.

This chapter was written in collaboration with Georg Bachmeier.

Bibliography

[1] M Adelson-Velskii and Evgenii Mikhailovich Landis. An Algorithm for the
Organization of Information. Doklady Akademii Nauk USSR, 146(2):263–
266, 1962.

[2] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509–517, 1975.

[3] W. A. Burkhard and R. M. Keller. Some approaches to best-match file
searching. Commun. ACM, 16(4):230–236, 1973.

[4] J.Lawrence Carter and Mark N. Wegman. Universal classes of hash func-
tions. Journal of Computer and System Sciences, 18(2):143 – 154, 1979.

[5] Zbigniew J. Czech, George Havas, and Bohdan S. Majewski. Perfect hash-
ing. Theoretical Computer Science, 182(1 - 2):1 – 143, 1997.

[6] Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Heide, Hans Rohnert, and Robert E. Tarjan. Dynamic perfect
hashing: Upper and lower bounds. SIAM J. Comput., 23(4):738–761, 1994.

[7] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse
table with 0(1) worst case access time. J. ACM, 31(3):538–544, 1984.

BIBLIOGRAPHY 57

[8] David Galles. Closed hashing. https://www.cs.usfca.edu/~galles/

visualization/ClosedHash.html. Accessed: 2016-04-05.

[9] Donald E. Knuth. The Art of Computer Programming, Volume 3: (2Nd
Ed.) Sorting and Searching. Addison Wesley Longman Publishing Co., Inc.,
Redwood City, CA, USA, 1998.

[10] Rasmus Pagh and Flemming Friche Rodler. Algorithms — ESA 2001:
9th Annual European Symposium Århus, Denmark, August 28–31, 2001
Proceedings, chapter Cuckoo Hashing, pages 121–133. Springer Berlin Hei-
delberg, 2001.

[11] W. W. Peterson. Addressing for random-access storage. IBM J. Res. Dev.,
1(2):130–146, 1957.

[12] Andrea W Richa, M Mitzenmacher, and R Sitaraman. The power of two
random choices: A survey of techniques and results. Combinatorial Opti-
mization, 9:255–304, 2001.

58 CHAPTER 6. DICTIONARIES

Chapter 7

Databases

What is the movie with the largest cast? How many directors have directed
more than ten movies? The internet movie database (www.imdb.com) contains
the answer to such questions, but writing a new program that evaluates the data
in a specific way for every such question is laborious. Relational databases can
store large amounts of structured data and answer possibly complex questions
about it.

7.1 Relational Databases

Definition 7.1 (Table, Row, Column, Database). A table consists of rows,
so that each row (data record) contains the same fields, i.e., kinds of entries.
When the rows of a table are written line by line, the fields form the columns
of the table. Each column is referred to by a descriptive name, and is associated
with the type of the respective field, e.g., integer, floating point, string, or a date.
A database is a collection of tables.

Remarks:

• In the database context, tables are also called relations, because the
entries in each row are related to each other, namely by belonging to
the same row.

movies
title director year

12 Angry Men Sidney Lumet 1957
Raiders of the Lost Ark Steven Spielberg 1981
War of the Worlds Steven Spielberg 2005
Manos: The Hands of Fate Harold P. Warren 1966

...

Figure 7.2: A database containing a single table called “movies” storing the
title, director, and year of release for each movie.

59

www.imdb.com

60 CHAPTER 7. DATABASES

Remarks:

• Databases as we study them are accessed using the so-called structured
query language (SQL). Thus they are referred to as SQL or relational
databases.

• There are also databases for storing other data, e.g., key-value pairs
(Chapter 6), graphs, or whole documents. Such databases are some-
times called NoSQL databases.

• Some people pronounce SQL letter-by-letter, while others prefer to
say “sequel”, which stems from a predecessor with that name.

• MySQL and PostgreSQL are two popular open source SQL databases.

• MongoDB, CouchDB and Redis are popular open source NoSQL data-
bases.

• Like http servers, SQL databases typically run as a daemon process
on some server. Client applications connect to the server and authen-
ticate themselves via username and password.

• Multiple users accessing the same database may result in concurrency
issues. Some form of concurrency control is necessary!

• Other databases are tailored to single-user processing. They relieve
developers from the burden of implementing efficient data structures
for relational data. SQLite is one such example, and is used, e.g., in
Firefox, Chrome, Android, Adobe Lightroom, and Windows 10.

• How can we store the data from Figure 7.2 using a SQL database?

7.2 SQL Basics

Remarks:

• All SQL statements end with a semicolon. The SQL language is case
insensitive, but by convention keywords are often typed in upper case.

• The SQL specification is over 600 pages long. To add insult to injury
there are lots of vendor specific “SQL dialects”, i.e., modifications and
extensions.

• However, the basic set of commands for creating, manipulating, and
querying tables are largely the same across database implementations.
The same is true for the basic data types.

Definition 7.3 (SQL Data Types). SQL defines the following types of columns.
• CHARACTER(m) and CHARACTER VARYING(m) for fixed and vari-

able length strings of (maximum) length m,
• BIT(m) and BIT VARYING(m) for fixed and variable length bit strings

of (maximum) length m,
• NUMERIC, DECIMAL, INTEGER, and SMALLINT for fixed point and

integer numbers,

7.2. SQL BASICS 61

• FLOAT, REAL, and DOUBLE PRECISION for floating point numbers,
• DATE, TIME, and TIMESTAMP for points in time, and lastly
• INTERVAL for ranges of time.

Remarks:

• The range of each type includes the special value NULL. Note that
NULL is different from the string ’NULL’, the empty string, and from
the number 0 (zero). NULL indicates that the row has no value for
the corresponding field.

• For the CHARACTER VARYING type, some database systems sup-
port strings of arbitrary length.

• Many databases implement more types, e.g., geographic coordinates,
IP addresses, geometric objects, or large integers.

Listing 7.4 Creating the database moviedb containing a table movies.

1: CREATE DATABASE moviedb;
2: USE moviedb;
3: CREATE TABLE movies (

title CHARACTER VARYING(200) NOT NULL,
director CHARACTER VARYING(200) DEFAULT ’Steven Spielberg’,
year INTEGER

);

CREATE DATABASE database-name;
Additional parameters allow to set database-specific options, e.g., user-
based permissions, or default character sets for text strings. How a database
is opened depends on the implementation. Listing 7.4 shows how to do it
in MySQL.

CREATE TABLE table-name (field-name type, field-name type, . . .);
To enforce that all rows have a value for a particular field, one can add
NOT NULL to the type when creating the table. Fields have a default
value, which is NULL if not specified by adding DEFAULT value to the
type description.

Remarks:

• There are also GUI and web-based client applications (that execute
locally or on an http-server, respectively) and offer access to the
database in a more intuitive manner than the classic command line
tools. Examples for web-based interfaces are phpPgAdmin and php-
MyAdmin for PostgreSQL and MySQL, respectively.

• Such tools are especially helpful for creating the databases and tables.
They also feature importing data from various formats, e.g., CSV files,
instead of using SQL statements to populate the tables.

62 CHAPTER 7. DATABASES

Listing 7.5 Populating the movies table with data.

4: INSERT INTO movies
(title, director, year) VALUES
(’12 Angry Men’, ’Sidney Lumet’, 1957),
(’Raiders of the Lost Ark’, DEFAULT, 1981),
(’War of the Worlds’, DEFAULT, 2005),
...
(’Manos: The Hand of Fate’, ’Harold P. Warren’, 1966)

;

INSERT INTO table-name (field-name, . . .) VALUES (value, . . .);
Values must be listed in the same order as the corresponding field names.
When a field name (and thus its value) is omitted the field’s default value is
assumed. When the list of field names is omitted the field’s values must be
listed in the same order that was used when creating the table. To insert
more than one row in one statement, multiple rows may be separated by
a comma.

Listing 7.6 Querying the movies table.

5: SELECT * FROM movies;
6: SELECT * FROM movies WHERE director = ’Steven Spielberg’;
7: SELECT title FROM movies WHERE year BETWEEN 1990 AND 1999;
8: SELECT * FROM movies WHERE title IS NULL OR director IS NULL;
9: SELECT title, director FROM movies WHERE title LIKE ’%the%’;

SELECT field-name, . . . FROM table-name WHERE condition;
Lists all specified fields of all rows in the table that fulfill the condition.
The special field * lists all fields. The WHERE condition may be omitted
to list the whole table. A condition can include comparisons (<,>,=, <>)
between fields constants. The special value NULL can be tested with IS
NULL. Conditions can be joined using parenthesis and logic operators like
AND, OR, and NOT. Strings can be matched with patterns using field-
name LIKE pattern . In the pattern, an underscore () matches a single
character, whereas % matches arbitrarily many.

Listing 7.7 Aggregation with SQL.

10: SELECT MIN(year) FROM movies;
11: SELECT AVG(year) FROM movies WHERE director=’Sidney Lumet’;
12: SELECT COUNT(*) FROM movies;
13: SELECT COUNT(DISTINCT director) FROM movies;

SELECT aggregate, . . . ;
Functions for aggregation include AVG to compute the average of a certain
field, MIN and MAX for the minimum and maximum value, SUM for the
sum of a field, and COUNT to count the number of occurrences. In an
aggregation, the keyword DISTINCT indicates that only distinct values
should be considered.

7.3. MODELING 63

Remarks:

• Query 12 in Listing 7.7 returns the number of entries in the table,
whereas query 13 returns the number of different movie directors.

Listing 7.8 Grouping and sorting.

14: SELECT director, COUNT(title) FROM movies GROUP BY director;
15: SELECT director, COUNT(title) FROM movies GROUP BY director

HAVING COUNT(title)>10;
16: SELECT year, director, COUNT(title) FROM movies

GROUP BY director, year
ORDER BY year DESC, director ASC;

SELECT field-name |aggregate, . . . GROUP BY field-name,. . . ;
Aggregations may be partitioned using the group-by clause. Similar to
before, the query result can only include aggregates and fields by which
the result is partitioned.

Since WHERE clauses are applied before GROUP BY the result of aggre-
gations cannot appear in them. When the result should be conditioned
on the result of an aggregation, a HAVING clause can be used.

Remarks:

• Query 14 in Listing 7.8 reports how many movies of each director are
in the database, and query 16 breaks the same down by year.

SELECT . . . ORDER BY field-name,. . . ;
After each field-name, the keyword ASC or DESC can be used to deter-
mine ascending or descending sorting order, respectively.

Listing 7.9 Updating and removing rows.

17: UPDATE movies SET title = ’Star Wars Episode IV: A New Hope’
WHERE title = ’Star Wars’;

18: DELETE FROM movies WHERE title = ’ ’;

UPDATE table SET field-name = value,. . . WHERE condition;
Updates the specified fields in all rows fulfilling the condition.

DELETE FROM table-name WHERE condition;
Removes all rows fulfilling the condition from the table.

7.3 Modeling

The way our example table from Figure 7.2 is designed results in lots of dupli-
cate data—the director’s name is stored anew for each row, and two directors
with the same name cannot be distinguished. The situation worsens when we
want to store the cast of each movie. Clearly the way we modeled our data
can be improved. Entity-Relationship (ER) diagrams are a tool to find good
representations for data.

64 CHAPTER 7. DATABASES

Definition 7.10 (ER Diagram). Rectangles denote entities (tables), and dia-
monds with edges to entities indicate relations between those entities. On such
an edge, the number 1 or the letter n denotes whether the corresponding entity
takes part once or arbitrarily many times in the relation. Entities and rela-
tions can have attributes (columns) with a name, drawn as ellipses. Italicised
attributes are key attributes which must be unique for each such entity.

directors

id name

movies

id title year

directing

1 n

actors

id name

cast

character

n n

Figure 7.11: Model for a movie database. Movies and directors are in a 1-
to-n relation: Each movie is directed by 1 director, and a director may work
on many movies. Movies and actors are in a n-to-n relation, which has an
additional attribute: An actor may appear in many movies, and each appearance
is associated with a character in that movie, played by that actor.

Remarks:

• It is standard practice to assign a so-called key attribute, often named
id, to every entity.

• What do ER diagrams have to do with SQL? Primarily, ER diagrams
are for conceptually modeling the kind of data and relations one wishes
to store. They can be translated into databases, but not in a unique
way.

• A close relative of the ER diagram is the Unified Modeling Language
(UML). UML is used to represent the tables of a database (or classes
of object oriented software) accurately, with detailed information, e.g.
fields.

• Each entity corresponds to a table with the corresponding attributes
as columns. An n-to-n relation is represented by a table with columns
for each attribute, and a column for the key attribute of each entity
in the relation.

7.4. JOINS 65

actor
id name

1 Harrison Ford
2 Tom Cruise

...

cast
actor id character movie id

1 Indy 2
2 Ray Ferrier 3

...

Figure 7.12: The actor table and a table capturing the cast relation.

Remarks:

• The same scheme can be used for 1-to-1 and 1-to-n relations. However,
one may also include the relation in the table storing the entity on the
1-side.

directors
id name

1 Sidney Lumet
2 Steven Spielberg
3 Harold P. Warren

...

movies
id title year director id

1 12 Angry Men 1957 1
2 Raiders of the Lost Ark 1981 2
3 War of the Worlds 2005 2
4 Manos: The Hands of Fate 1966 3

...

Figure 7.13: The movie and director tables using the new database layout. The
director table simply maps ids to director names. Since the directing relationship
is 1-to-n, it can be represented by adding a column to the movies table that
stores the director for each movie.

Remarks:

• Similarly, a 1-to-1 relation can be turned into an attribute of one of
the entities.

• Tables dedicated to capturing relations are often called join tables.

7.4 Joins

How can we access the data, which is now scattered across multiple tables?

Listing 7.14 A query that returns the table presented in Figure 7.13.

1: SELECT movie.title, director.name AS director, movie.year FROM movie
INNER JOIN director ON movie.director id = director.id;

SELECT . . .
FROM left-table INNER JOIN right-table ON condition;
Returns all rows that can be formed from a row in the left-table and a
row in the right-table that satisfy the specified condition.

66 CHAPTER 7. DATABASES

Remarks:

• In a query, one can create aliases for field and table names using the
AS keyword, see Listing 7.14.

• A row in one of the tables that does not have a matching row (that
satisfies the condition) in the other table will not appear in the result.
For example, a director with id 5 would not appear, since there are
no movies that reference that director id.

• An INNER JOIN where the condition is TRUE returns the carthesian
product of both tables. This special case can also be obtained with
the CROSS JOIN clause.

• OUTER JOINs include also unmatched rows.

SELECT . . .
FROM left-table LEFT|RIGHT|FULL OUTER JOIN right-table
ON condition;
Returns all rows from the inner join. In addition, a LEFT or RIGHT
OUTER JOIN also returns all rows from the left or right table that have no
matching row on the opposite table, respectively. The fields in unmatched
rows that cannot be filled from the other table are filled with NULL values.
A FULL OUTER JOIN returns both of the above.

Remarks:

• A RIGHT OUTER JOIN lists the movies that have a director and
include all “directors” that have not directed any movie. A LEFT
OUTER JOIN includes the movies with no director instead.

• The result of a JOIN clause can be ordered, fields can be aggregated
and grouped, and conditions can be added using WHERE clauses.

• We can combine joins and aggregations to answer our initial question:

Listing 7.15 Finding the 10 movies with the largest cast.

SELECT movie.title, COUNT(*) AS cast size
FROM cast RIGHT OUTER JOIN movie ON cast.movie id = movie.id
GROUP BY movie.id ORDER BY cast size DESC LIMIT 10;

Remarks:

• The query from Listing 7.15 uses a LIMIT clause to return only the
ten first entries of the sorted results.

• We used a RIGHT OUTER JOIN to make sure also movies without
a cast are taken into account.

• Queries may use more than one JOIN clause.

7.5. KEYS & CONSTRAINTS 67

Listing 7.16 Finding all movies that Harrison Ford did not appear in.

3: SELECT movie.title
FROM actor INNER JOIN cast
ON cast.actor id = actor.id AND actor.name = ’Harrison Ford’
RIGHT OUTER JOIN movie ON cast.movie id = movie.id
WHERE cast.actor id IS NULL;

Remarks:

• The conditions for the first join in Listing 7.16 ensure that only movies
with Harrison Ford are taken into account for the second OUTER
JOIN. That second join in turn delivers all movies that cannot be
matched, yielding a NULL entry for the actor id for movies without
Harrison Ford.

• To ensure that every row in the cast table contains a value one can
specify that the fields are NOT NULL when creating the table.

7.5 Keys & Constraints

What is stopping us from inserting a row in the cast table that contains an
actor id or a movie id that does not exist? Or from creating a director with a
duplicate id?

Definition 7.17 (Key). In a table, a column (or set of columns) is a unique
key if the corresponding values uniquely identify the rows within the table. The
primary key of a table is a designated unique key. A foreign key is a column
(or set of columns) that references the primary key of another table.

Remarks:

• SQL databases can automatically enforce these constraints. For exam-
ple, a row containing a foreign key can only be inserted if it references
an existing primary key. Vice versa, a row may only be removed if its
primary key is not referenced by any foreign key.

Listing 7.18 Adding constraints to the database.

1: ALTER TABLE movies ADD CONSTRAINT UNIQUE (actor id, charac-
ter, movie id);

2: ALTER TABLE director ADD PRIMARY KEY id;
3: ALTER TABLE movies

ADD FOREIGN KEY (director id) REFERENCES director;

ALTER TABLE table
ADD CONSTRAINT UNIQUE (field-name,. . .);
The values held by the specified fields must be unique among all rows.

ALTER TABLE table ADD PRIMARY KEY (field-name,. . .);
Sets the specified fields as the primary key for the table. Doing so also
ensures that no duplicate entry is present when inserting or updating data.

68 CHAPTER 7. DATABASES

ALTER TABLE left-table ADD FOREIGN KEY (field-name,. . .)
REFERENCES right-table;
Ensures that the values in the specified fields in the left table are the
primary key of a row in the right table.

Remarks:

• Constraints for new tables can also be set using CREATE TABLE.

• Other ALTER TABLE queries add different constraints (e.g., checking
that an integer field contains only certain values), remove constraints,
and change the name, type or default value of fields.

• To ensure that checking constraints and searching for data is fast,
databases rely on index data structures.

7.6 Indexing

Definition 7.19 (Index). In the database context, an index is a data structure
that speeds up searching for rows with specific values.

Remarks:

• Without an index data structure, rows with a specific value can only
be found by scanning through the whole table.

• In Chapter 6 you learned that hash tables can retrieve the row associ-
ated with a key in expected constant time. Many databases implement
hash tables as one possible index data structure.

Listing 7.20 Adding a hash table index to our database.

1: CREATE INDEX directorid ON director USING HASH (id);

Remarks:

• The director associated with a movie is now found quickly when per-
forming a join.

• Some database implementations automatically create index data struc-
tures to speed up queries that involve frequently used fields.

• Index data structures have a name—“directorid” in Listing 7.20. This
is for referencing it later, e.g., if one decides to delete the index.

• Hash tables scatter the data across the storage (volatile or persistent),
and it is likely that every access incurs overhead. Many database
queries require scanning through ranges of the data sequentially. For
example, when searching the movies from 2000–2005. Thus, accessing
supposedly closeby rows requires accessing items at many different
places.

7.6. INDEXING 69

• B+ trees are a data structure designed to minimize the amount of I/O
operations for both searching and scanning.

Listing 7.21 Adding a B+ tree index to our database.

1: CREATE INDEX movieyear ON movies USING BTREE (year);

Definition 7.22 (B+ Tree). A B+ Tree of order b is a rooted search tree
mapping keys to rows. In a B+ Tree, every non-leaf node has between bb/2c
and b children, whereas leaf nodes have between b(b− 1)/2c and b− 1 children.
A non-leaf node v with i children contains exactly i − 1 keys, in sorted order.
The keys contained in the sub-tree rooted at v’s ith child are between the i− 1st

and ith key contained in node v.
B+ trees are balanced, i.e., all leaf nodes are at the same depth. Leaf nodes

contain all keys inserted into the tree, and the child pointer corresponding to
key k is used to point to the row associated with k. The unused child pointer of
a leaf w is used to point to w’s next sibling.

14

3 5

1 2

E
n
try

1

E
n
try

2

3 4

E
n
try

3

E
n
try

4

5 6

E
n
try

5

E
n
try

6

15

14

E
n
try

14

15 28 30

E
n
try

15

E
n
try

28

E
n
try

30

Figure 7.23: Example B+ tree of order b = 4.

Remarks:

• The root node is a special case—it may have as little as 1 child if it is
a leaf itself, or 2 children if it is an inner node.

• The order b is sometimes called branching factor. To reduce the num-
ber of necessary I/O operations, b is chosen so that all data necessary
to store a node is the size of (at least) one block on the disk/one cache
line.

• Finding the row for some key k in a B+ tree works similar to a binary
search tree.

• When inserting a key k it may happen that the leaf v that should
contain k is already full. In that case v, and possibly predecessors of
v that contain too many keys, need to be split.

70 CHAPTER 7. DATABASES

Algorithm 7.24 B+SplitUp(k, r)

1: Given a B+ tree, a key k, and a node v
2: Create a new node v′

3: Distribute k and the keys in v among v and v′ s.t. v′ gets the larger keys
and both nodes are half filled

4: Let k′ be the smallest key in v′

5: Let p be v’s parent
6: if p is full then
7: SplitUp(p, k′)
8: end if
9: Insert k with child v at node p

Remarks:

• If the root node is split into two nodes v, v′, then a new root r con-
taining key k and v and v′ as children is created, and the recursion
stops.

• Inserting a key k is now performed by first making room using B+SplitUp
if necessary, and then inserting k at the leaf.

Algorithm 7.25 B+Insert(k, r)

1: Given a B+ tree, a key k, and a row r
2: Perform a search for k to find the leaf v at which k must be inserted
3: if v contains b− 1 keys then
4: B+SplitUp(v, k)
5: Replace child of key k with row r in node v
6: else
7: Insert key k with row r into node v
8: end if

7.6. INDEXING 71

Remarks:

• Vice versa, when deleting a key, nodes with too few keys need to be
filled up or removed from the tree.

Algorithm 7.26 B+MergeUp(v)

1: Given a node v containing less than (b− 1)/2 keys
2: Let l and r be the left and right sibling of v
3: if l contains more than (b− 1)/2 keys then
4: Move largest key x from v’s left sibling to v
5: Update key in parent corresponding to v to x
6: else if r has more than (b− 1)/2 keys then
7: Move smallest key x from r to v
8: Update key in parent corresponding to r to x
9: else

10: Merge all keys of v and one of v’s siblings (use the node that is further to
the left to store the keys)

11: Remove the now empty node and its corrpesponding key from v’s parent
12: if v’s parent contains less than (b− 1)/2 keys then
13: B+MergeUp(p)
14: end if
15: end if

Remarks:

• If v does not have a left or right sibling, the corresponding if -statement
is ignored.

• The properties of B+ trees ensure that every node has at least one
sibling. Thus, the merge operation (Lines 10–14) always has two nodes
to work with.

• If no keys can be “borrowed” from a sibling, the merge may propagate
until the last two children of the root node are merged into one node.
In that case the root node is replaced by the merged node, decreasing
the height of the tree by 1.

Algorithm 7.27 B+Delete(k)

1: Given a B+ tree and a key k
2: Perform a search for k to find the leaf v containing k
3: Remove k from v
4: if v contains less than (b− 1)/2 keys then
5: B+MergeUp(v)
6: end if

72 CHAPTER 7. DATABASES

Remarks:

• The height of a B+ tree is changed only when inserting a new or
removing an old root node. Therefore, all leaf nodes are always at the
same depth, thus ensuring the balanced property.

• A B+ tree containing n keys has height at most O(logb n).

• It may happen that many nodes contain as little as b/2 keys, wasting
memory and I/O operations. B* trees ensure that nodes contain at
least 2/3b keys by cleverly “trading” entries with neighboring nodes
when they contain too many or too few keys.

7.7 Transactions

Definition 7.28 (Transaction). A database transaction is a sequence of state-
ments that is executed atomically.

Remarks:

• Why would we need transactions? Consider a bank managing cus-
tomer’s accounts using a database system. Alice wants to calculate
the liquid assets, and Bob wants to make a money transfer:

Listing 7.29 Concurrency issues in databases.

Alice’s statement:
1: SELECT SUM(balance) FROM accounts;

Bob’s statements:
2: UPDATE accounts SET balance=balance−100 WHERE customer=’Bob’;
3: UPDATE accounts SET balance=balance+100 WHERE customer=’Jim’;

Remarks:

• Assuming that the database uses multiple threads or processes to pro-
cess queries, Alice’s query may be CHF 100 short.

• To execute the queries atomically, both Alice and Bob can use trans-
actions.

BEGIN TRANSACTION; statement1; . . . ; END TRANSACTION;
Executes the statements atomically.

Remarks:

• One way to implement transactions is to keep track of all fields read
from and written to (the read- and write-set, respectively). Then,
before a transaction ends, the database system checks whether an-
other transaction wrote to any value in the read-set. If the read-set
is unchanged, the write-set can be applied atomically, e.g., by using a
global lock.

7.8. PROGRAMMING WITH DATABASES 73

• SQL offers different so-called isolation levels. The isolation level de-
fines when writes of one transaction become visible to others. The
above technique implements the repeatable reads level, ensuring that
read values were committed before and are not written by another
transaction.

• Consider some transaction A that selects all years between 1999 and
2004. What happens if another transaction B concurrently inserts an
entry for the year 2000? In the repeatable reads isolation level, A may
not see B’s data if B’s insert is scheduled after A read all other entries
for the year 2000, and A would still be allowed to finish. Repeatable
reads do not ensure atomicity . . .

• The highest isolation level is called serializable. This level ensures that
the transactions behave “as if they were executed in some sequential
order”, possibly at the cost of low concurrency.

7.8 Programming with Databases

How do you write an application that relies on a SQL database to store data?
Should you construct the necessary SQL statements by manipulating strings,
send them to the SQL server, and then parse the result?

Remarks:

• Writing such a SQL client is one possibility, but this is error-prone:
The compiler used for the application will not be able to detect errors
made in the SQL statements. Moreover, the declarative SQL most
likely does not mix well with the programming language chosen for
the application.

• One way to mitigate these issues in object oriented programming lan-
guages is object/relational mapping.

Definition 7.30 (Object/Relational Mapping). Object/Relational Mapping
(ORM) is a design pattern used in object oriented programming to store objects
in and retrieve them from relational (SQL) databases.

Remarks:

• In the simplest case, an ORM simply maps a class to a table. An ob-
ject then corresponds to a row, and the object’s attributes correspond
to the row’s fields.

• The ORM takes care of storing and retrieving object in the database
and performs type conversions where necessary. It provides object ori-
ented abstractions for database queries involving WHERE and other
clauses. ORMs also remove boilerplate code, i.e., setting up the SQL
connection, error handling, data conversion, etc.

• This way no—or only very little—SQL code “leaks” into the object-
oriented program.

74 CHAPTER 7. DATABASES

• Popular ORMs include SQLAlchemy for Python, ActiveRecord for
Ruby, Hibernate for Java, and the Entity Framework for .NET.

Listing 7.31 Using Hibernate for Java to change the personal information of
an existing director.

1: Director director = session.load(Director.class,new Long(3464377));
2: // director: id = 3464377, name = ”Larry Wachowski”, gender = ”m”
3: director.setName(’Lana Wachowski’);
4: director.setGender(’f’);
5: commit();

Remarks:

• The ORM needs to know how it should translate between objects
and rows. For that, many ORM implementations allow to specify the
database layout using object oriented methods.

• Many ORM mappers also support creating the database using the
object oriented specification. This ensures that the database and what
the ORM expects are kept in sync.

• What if you need to add or remove a column without deleting and
re-creating the database? There are so-called migration tools that
facilitate this process.

• Some concepts from object oriented programming are difficult to model
with database concepts, and vice versa. The problems arising from
combining these two paradigms are called the Object-relational impe-
dance mismatch.

Chapter Notes

In 1970, Edgar F. Codd proposed the relationad database model [5] while work-
ing at IBM research. Later in the 70s, another group at IBM developed SQL’s
predecessor SEQUEL (Structured English QUEry Language) [3]. After being
renamed SQL due to trademark issues, it was standardized by the ISO in 1987
and later revised [7]. Other companies started developing relational databases,
and nowadays there are many SQL databases implementing different feature
sets to choose from.

Around the same time, ER diagrams were conceived as a modeling tool [2, 4].
The Unified Modeling Language (UML), first standardized by the ISO in 1995
[8] and revised in 2012, also includes diagrams that model databases.

B Trees were invented in 1970 [1] for use in file systems. Many variants
were studied, among them B* Trees [9], in which at most 1/3 of the memory
is unused instead of 1/2 for B Trees. People soon realized that (also for file
systems) scanning subsequent rows is an important operation. B+ Trees require
at most one I/O operation to find the next element, cf. [9, 6].

Techniques from database systems can also be found in other areas of com-
puter science. Transactions as a parallel programming model have been adotped

BIBLIOGRAPHY 75

for other programming languages under the term transactional memory. Ideas
developed to ensure that database transactions appear atomic w.r.t. writing
data to disk were adopted by general purpose file systems under the name jour-
naling.

This chapter was written in collaboration with Jochen Seidel.

Bibliography

[1] R. Bayer and E. McCreight. Organization and maintenance of large or-
dered indices. In Proceedings of the 1970 ACM SIGFIDET (Now SIGMOD)
Workshop on Data Description, Access and Control, SIGFIDET ’70, 1970.

[2] A. P. G. Brown. Modelling a real world system and designing a schema
to represent it. In IFIP TC-2 Special Working Conference on Data Base
Description, 1975.

[3] Donald D. Chamberlin and Raymond F. Boyce. Sequel: A structured en-
glish query language. In Proceedings of the 1974 ACM SIGFIDET (Now
SIGMOD) Workshop on Data Description, Access and Control, SIGFIDET
’74. ACM, 1974.

[4] Peter Pin-Shan Chen. The entity-relationship model—toward a uni-
fied view of data. ACM Trans. Database Syst., 1976.

[5] E. F. Codd. A relational model of data for large shared data banks. Commun.
ACM, 1970.

[6] Douglas Comer. The ubiquitous B-Tree. ACM Comput. Surv., 1979.

[7] International Organization for Standardization. Information technology –
Database languages – SQL – part 1: Framework (SQL/Framework), 2011.
ISO/IEC 9075-1.

[8] International Organization for Standardization. Information technology –
Object Management Group Unified Modeling Language (OMG UML) – Part
1: Infrastructure, 2012. ISO/IEC 19505-1.

[9] Donald E. Knuth. The Art of Computer Programming, Volume 3: Sorting
and Searching. Addison Wesley Longman Publishing Co., Inc., 1973.

76 CHAPTER 7. DATABASES

Chapter 10

Link Layer

How are packets exchanged between two neighboring nodes?

10.1 Addressing

Definition 10.1 (Link Layer). The link layer deals with the transmission of
packets between two neighboring nodes, i.e., single-hop.

Remarks:

• The link layer is the bottom layer of the internet protocol suite.

• The concepts of the link layer can be grouped into two parts: the
medium access control (MAC) dictates access patterns to the under-
lying wired or wireless medium. The physical layer (PHY) specifies
the encoding of the data stream on the medium. Some layering mod-
els such as the Open Systems Interconnection (OSI) model treat these
two parts as separate layers, and some models are even more detailed
and split up both parts into multiple layers each.

Definition 10.2 (MAC Addresses). To identify nodes below the network layer,
MAC addresses are used. A MAC address consists of 6 bytes and is typically
formatted as 6 2-digit hexadecimal numbers separated by hyphens or colons, e.g.,
00:21:cc:63:e8:5f.

Remarks:

• Every network interface device is assigned a worldwide unique address
by the manufacturer. However, many devices also support overriding
this address through software.

• On the link layer only MAC addresses are valid as source and desti-
nation addresses for packets – IP addresses are a concept introduced
above the link layer and can hence not be used on the link layer.

Definition 10.3 (Link Layer Packets). Link layer packets, also called frames,
have additional fields to mark the exact frame in time they occupy during trans-
mission: a synchronization header and in some protocols also a synchronization

77

78 CHAPTER 10. LINK LAYER

footer are added, containing predefined bit sequences any listener can recognize
as the start (or the end) of a packet.

Sync.
Header

MAC
Dest.

MAC
Source

Length
Packet
Payload

Checksum Sync.
Footer

Figure 10.4: Typical link layer packet.

Remarks:

• When an IP packet is transmitted, it makes up the payload of a link
layer packet.

• Some protocols operate directly on the link layer, i.e., they do not
send IP packets and address nodes directly by their MAC addresses.
We will see an example of such a protocol below (Protocol 10.7).

• There are also devices operating strictly below the network layer. The
most prominent among them is the switch.

Definition 10.5 (Switches). A switch is a central network node with the task
of mediating traffic between its neighbors. Unlike routers, switches are unaware
of IP addresses and operate on the link layer only.

Remarks:

• Without the need for routing, subnets or port forwarding tables, switch
hardware can be a simpler and cheaper alternative to routers for con-
necting a set of nodes locally.

• In its most basic form, a switch simply copies any incoming packet to
all other connected neighbors without any inspection or modification
of the packet. A switch does not have a MAC address.

• However, typically, a switch also keeps track of what source MAC
addresses were received on each of its physical ports. If a packet arrives
with a known destination MAC address, the switch can forward the
packet to that port only.

• A port of a switch does not necessarily have to be connected to an
IP aware node – it is also possible to chain switches. This means,
a switch might need to internally assign several MAC addresses to a
single port.

• In the wireless setting, as every packet is broadcasted by the very
nature of the medium, the concept of switches is superfluous. However,
devices called repeaters may extend the reach of a wireless network by
rebroadcasting any received packets. As repeaters are not even aware
of MAC addresses, they only operate on the physical layer (PHY).

Definition 10.6 (Broadcast MAC Address). The MAC address ff:ff:ff:ff:ff:ff
is the designated broadcast address on the link layer. When used as a packet’s
destination address, any node hearing the packet will process it.

10.1. ADDRESSING 79

Protocol 10.7 (ARP). The Address Resolution Protocol is used to find
out the MAC address belonging to a given IPv4 address.

Algorithm 10.8 ARP lookup for an IP address a

1: Send a query containing a to ff:ff:ff:ff:ff:ff (broadcast)
2: if there is a node with IP address a then
3: That node responds with its MAC address
4: else
5: After some timeout, conclude that a does not exist or is not reachable
6: end if

Protocol 10.9 (NDP). The Neighbor Discovery Protocol offers the func-
tionality of ARP for IPv6. It also includes additional features, such as the
detection of duplicate addresses.

Remarks:

• Address resolution is the main way to obtain destination MAC ad-
dresses – the routing done on the network layer merely outputs IP
addresses.

• Caching is used, hence ARP/NDP look-ups are only made for new IP
addresses.

• ARP/NDP packets are not IP packets – they are their own kind of
packet.

• Nowadays often all traffic of nodes at the “edge” of the network (such
as personal computers and smartphones) is routed over a gateway
router. As the gateway is the only direct neighbor of edge nodes,
they never contact any MAC address apart from the gateway. How-
ever, when connecting nodes through a switch, e.g., at LAN parties,
ARP/NDP are vital to make newly plugged in nodes reachable.

Definition 10.10 (Global Broadcast Address, IPv4). The IP address 255.255.255.255
is the designated global broadcast address on the network layer for IPv4.
When used as a packet’s destination address, any node hearing the packet will
process it.

Remarks:

• A router receiving a packet with a broadcast destination will echo the
packet to all connected devices.

• Certain routers will drop broadcast packets, for example, routers be-
longing to an ISP – broadcasting a packet to everybody on the Internet
is not a reasonable operation.

Protocol 10.11 (DHCP). The Dynamic Host Configuration Protocol is
used to automatically assign unused IP addresses to newly connecting network
participants. To do so, one node in the network runs a designated DHCP server.

80 CHAPTER 10. LINK LAYER

Algorithm 10.12 Acquiring an unused IP address using DHCP

1: DHCP client sends a request with its MAC address to 255.255.255.255,
using source address 0.0.0.0

2: DHCP server decides on an unused IP address a and marks a as “reserved”
and replies with the offer for a

3: DHCP client notes the IP address of the DHCP server and replies, this time
directly, that it accepts a

4: DHCP server marks a as in use and replies with a final confirmation
5: DHCP client receives the confirmation and uses a as its IP from then on

Remarks:

• DHCP is strictly speaking an application layer protocol as it builds
upon UDP.

• As broadcast IP addresses cannot resolve to MAC addresses, the
broadcast MAC address ff:ff:ff:ff:ff:ff is used.

• The DHCP server may base its choice of the offered IP address on
the joining device’s MAC address, and assign a returning device its
previous IP address.

• In addition to unused IP addresses, the DHCP server often also dis-
tributes other configuration data such as its subnet mask (the block
of local addresses, e.g., 192.168.0.0/24), the gateway node’s address
and the preferred DNS server’s address.

• If no DHCP server is present, unique IP addresses as well as the
network configuration have to be set manually for every participant.

• There are two separate versions of DHCP, for IPv4 addresses and IPv6
addresses respectively, fulfilling the same purpose. IPv6 defines several
specialized broadcast addresses; for DHCP the address ff02::1:2 is
used.

10.2 Wireless Phenomena

Let us briefly discuss some of the differences between wired and wireless com-
munication.

As radio transmissions are electromagnetic waves, their propagation is rem-
iniscent of other waves we experience in everyday life such as light and sound.
For example, phenomena such as shadowing, reflection and even diffraction are
observable in radio waves.

Definition 10.13 (Half-Duplex, Full-Duplex). Half-duplex devices are not
able to both send and receive at the same time. Full-duplex devices can send
and receive simultaneously.

10.2. WIRELESS PHENOMENA 81

Remarks:

• Wireless devices are typically half-duplex, which means they cannot
receive anything while sending.

• In contrast, wired communication is usually full-duplex, i.e., both ends
of the cable may send and receive at the same time.

• The most prominent special property of the wireless medium is that
by nature any transmission is a broadcast, i.e., any wireless receiver
physically within range will receive a sent message, not just the in-
tended recipient. “Within range” means that the signal is sufficiently
stronger than the ambient electromagnetic noise as well as interfering
signals. This can be modeled by the signal-to-interference-plus-noise
ratio.

Definition 10.14 (SINR). The signal-to-interference-plus-noise ratio (SINR)
is a model for the quality of a received signal. It is defined as:

SINR =
S

I +N

!
> β

• S: the strength of the signal to be received

• I: the sum of the interference caused by other transmissions

• N : the ambient noise

• β: the SINR threshold which needs to be cleared for successful signal
reception.

Remarks:

• This formula may be evaluated at each receiver separately to deter-
mine whether it can correctly decode the signal.

• The SINR threshold β depends on hardware and encoding.

• Physics dictate that in vacuum an electromagnetic signal’s strength
diminishes quadratically with distance traveled. When permeating
other materials such as air or concrete walls the signal is weakened
even more quickly. This effect is called fading.

• There exist detailed models predicting the effect of not only fading but
also wave propagation phenomena such as shadowing and reflection,
but these are beyond the scope of this lecture.

• Due to the different travel times of the signal over different paths,
the received signal may be the sum of several components delayed by
different amounts. This is called multipath. For example, the received
signal may consist of the direct line-of-sight component of the sent
signal plus a component with a longer travel time reflected off a wall.

• By using nodes with multiple antennas, multipath can be exploited to
transmit and decode multiple signals at once, increasing throughput.
Such schemes are the foundation of the field of MIMO transmissions
(multiple-input, multiple-output).

82 CHAPTER 10. LINK LAYER

• In general, it is desirable to use lower transmit powers when possible,
as this reduces power consumption as well as interference caused to
other nearby wireless links. However, standards designed for through-
put, such as Wireless LAN, often rather prefer to use the highest
available transmit power to maximize the achieved SINR, as this al-
lows employing more efficient encodings.

10.3 Medium Access Control (MAC)

Definition 10.15 (Multiple Access). Multiple access describes a setting in
which multiple devices use a shared medium to communicate. It also describes
the problem of avoiding deterioration of service caused by the collisions of trans-
missions in such a setting.

Remarks:

• Collision mainly concerns wireless networks nowadays. In the past,
sometimes bus network structures were used, i.e., every node was con-
nected to the same bus cable, exhibiting similar problems for wired
networks.

Definition 10.16 (Medium Division). By subdividing the medium into separate
domains, in each of which only one device may send at a time, collisions can
be prevented from occurring in the first place. Such subdivisions may be done in
several ways:

• Space division: segment the area of operation such that fading prevents
any two potential senders’ signals from colliding. Examples: AM/FM
radio, GSM.

• Time division: segment time into time slots, in each of which only one
device may send as designated by some kind of schedule. Examples: Blue-
tooth, GSM.

• Frequency division: segment the available frequency spectrum into mul-
tiple frequencies bands that can be used in parallel. However, note that
usually a device cannot listen on multiple frequencies simultaneously. Ex-
amples: Wireless LAN, Bluetooth.

• Code division: stretch the signal and xor it with a pseudorandom bit se-
quence unique to each sender. Knowing the pseudorandom bit sequences, a
receiver can then distinguish simultaneously arriving superimposed signals.
Examples: GPS, UMTS/3G.

Remarks:

• Typically, multiple kinds of division are combined to reach a desired
level of sender separation. Bluetooth, for example, makes heavy use of
temporal and frequency division through the use of its strict schedul-
ing and frequency hopping.

10.3. MEDIUM ACCESS CONTROL (MAC) 83

Definition 10.17 (Carrier Sensing). Carrier sensing or clear channel as-
sessment (CCA) is a technique to prevent collisions from occurring by listening
to the medium (the “carrier”) for a short while before sending, such that one
might pick up on an already ongoing transmission.

Remarks:

• If no other transmission is detected, sending is performed immedi-
ately. If another transmission is detected, sending is postponed as it
is assumed a collision would occur wiping out both packets. Before
the next sending attempt carrier sensing is performed again.

Definition 10.18 (Hidden Terminal Problem). Due to the fading nature of
the wireless medium one may not always hear the other senders during carrier
sensing, even though at the intended recipient the signals of the senders would
collide. This is referred to as the hidden terminal problem.

A R B

Figure 10.19: The hidden terminal problem: senders A and B can reach the
recipient R, but they cannot hear each other. Hence carrier sensing cannot
avoid collisions.

Definition 10.20 (Exposed Terminal Problem). The exposed terminal prob-
lem is the opposite of the hidden terminal problem: two close senders trying to
send to different recipients may sense each others’ signals and avoid sending
simultaneously even though each receiver would be able to receive its signal per-
fectly well.

RA A B RB

Figure 10.21: The exposed terminal problem: senders A and B could send to
their respective recipients RA and RB simultaneously, but believe it would cause
collisions due to carrier sensing.

Protocol 10.22 (RTS/CTS). Request To Send / Clear To Send is a packet
exchange proposed as a solution to the hidden and exposed terminal problems.

Remarks:

• RTS/CTS solves the hidden terminal problem as a receiving node’s
CTS will allow exactly one of its neighbors to send.

• The exposed terminal problem is also solved as long as the CTS mes-
sages do not interfere with other ongoing transmissions. For instance,
assuming the setup from Figure 10.21, if B was already transmitting,
A may not be able to hear a CTS message from RA.

84 CHAPTER 10. LINK LAYER

Algorithm 10.23 RTS/CTS

1: Before sending, the sender sends out a short RTS packet
2: If the intended recipient hears the RTS packet, it answers with a short CTS

packet
3: If the sender receives the CTS packet, it begins transmission, otherwise it

assumes it is not clear to send and tries again later
4: Other nodes hearing the CTS abstain from sending for some time since they

know one of their neighbors is about to receive a packet from somewhere
else

Definition 10.24 (Collision Response). The counterpart to collision avoidance
is the approach of detecting collisions and responding to them after the fact.

Remarks:

• Collisions are usually detected by immediately following up every suc-
cessfully received packet with an acknowledgment (ACK) packet back
to the sender. If the sender does not receive the ACK it will assume
its packet got lost and try again.

• Collisions can also be detected as they occur, if the devices sup-
port simultaneous sending and receiving (i.e., are full-duplex) and the
medium guarantees for multiple senders to hear each other (common
for wired bus networks, but usually does not apply to wireless net-
works).

• Even though carrier sensing may prevent collisions from actually de-
stroying packets and thus reducing the network throughput, the re-
sponse is usually similar to reacting to a collision after it occurred:
wait for some amount of time and then retry.

• Making a good choice for the amount of time to postpone the sending
is not trivial.

Definition 10.25 (Backoff Time, Backoff Strategy). The time waited before
retrying an unsuccessful transmission is called the backoff time. Ways to
choose a backoff time are called backoff strategies.

Remarks:

• Using a fixed duration as backoff time is not advisable: If two conflict-
ing senders employ the same backoff strategy, their sending attempts
would keep conflicting. Thus, feasible backoff strategies require a ran-
dom component.

• Thought experiment: n nodes all try to send at the same time towards
a single receiver. All transmissions start at the start of a time slot
and have exactly the length of the time slot. How would a strategy
maximize the probability of exactly one node sending at a time?

Protocol 10.26 (Slotted Aloha). In every time slot, every node transmits with
probability 1/n.

10.3. MEDIUM ACCESS CONTROL (MAC) 85

Theorem 10.27. Using Protocol 10.26 allows one node to transmit alone after
expected time e.

Proof. The probability for success, i.e., that the number of transmitting nodes
X is exactly 1, is

Pr[X = 1] = n · 1

n
·
(

1− 1

n

)n−1
≈ 1

e
,

where the last approximation is a result from Theorem 10.28 for sufficiently
large n. Hence, if we repeat this process e times, we can expect one success.

Theorem 10.28. We have

et
(

1− t2

n

)
≤
(

1 +
t

n

)n
≤ et

for all n ∈ N, |t| ≤ n. Note that

lim
n→∞

(
1 +

t

n

)n
= et.

Remarks:

• The origin of the name is the ALOHAnet protocol which was devel-
oped at the University of Hawaii to wirelessly connect the islands.

• Protocol 10.26 also works in an unslotted time model, with a factor
2 penalty, i.e., the probability for a successful transmission will drop
from 1

e to 1
2e . Essentially, each slot is divided into t small time slots

with t → ∞ and the nodes start a new t-slot long transmission with
probability 1

2nt .

• Protocol 10.26 requires knowledge of the number of senders n. What
if we don’t know n?

Algorithm 10.29 Random exponential backoff

1: i← 0
2: Attempt sending
3: while sending unsuccessful do
4: i← i+ 1
5: Pick a value from the interval [0, ci] uniformly at random and wait that

many time units
6: Attempt sending again
7: end while

86 CHAPTER 10. LINK LAYER

Remarks:

• c is some constant, often 2.

• We’ve already seen random exponential backoff in Chapter 4 as a way
to deal with lock contention without queues. In the current scenario,
queues are not an option as there is no shared memory.

• Growing the range of values [0, ci] after every failed transmission
attempt allows the system to adapt dynamically to the number of
senders, as each sender spreads out its transmissions more when the
number of senders is large, but still does not waste too much time
when the number of senders is small.

• Both Aloha and random exponential backoff waste slots, in which more
or fewer than one sender send. If it is possible to coordinate a schedule
implicitly or explicitly, the frequency of successful transmissions can
be improved significantly.

Definition 10.30 (Duty Cycling). Nodes in a network may agree on periods
of time in which no messages are exchanged. During these periods the nodes
may remain in a low-power sleep mode to conserve energy. This called duty
cycling.

Remarks:

• Duty cycling is especially interesting to mobile devices without a con-
stant power supply. As wireless devices consume a significant amount
of energy both when transmitting and when only listening, shutting
down the wireless hardware when it is not needed has become a pri-
ority.

• As wireless communication requires both the sender and the receiver
to be awake at the same time to be successful, such shutting down
needs to be carefully coordinated as not to carelessly lose packets.

• In networks coordinated by a central access point, the most straight-
forward way is to have the access point synchronize all participants
and declare some wake-up schedule. Whenever a scheduled wake-up
is reached, nodes power on to exchange messages. As soon as a node
knows it won’t need to participate in any more traffic until the next
wake-up it can go to sleep.

10.4 Physical Layer (PHY)

Once we decide when to send, when not to send, and whom to address, all
that remains of the link layer are several physical considerations. The link layer
packet format used for almost all the wired connections of the Internet today
is Ethernet v2. Wireless protocols such as Wireless LAN (following the IEEE
802.11 standard) and Bluetooth define their own packet formats. Figure 10.31
shows some examples of some common packet types.

10.4. PHYSICAL LAYER (PHY) 87

Preamble

8

Destination
Address

6

Source
Address

6

Length

2

Payload

46-1,500

Checksum

4

Preamble

18

PHY
Header

6

Control
Flags

2

Duration

2

Add.
1

6

Add.
2

6

Add.
3

6

Seq.
Ctrl

2

Add.
4

6

Payload

0-2,312

Checksum

4

Preamble /
Access Code

9

Add.

3
8

Flags

7
8

Chk

1

Header

Add.

3
8

Flags

7
8

Chk

1

Header

Add.

3
8

Flags

7
8

Chk

1

Header

Payload

0-343

Ethernet

WLAN

Bluetooth

Figure 10.31: The complete physical representations of typical Ethernet, Wire-
less LAN and Bluetooth packets. The number above each field corresponds to
its length in bytes.

Remarks:

• Wireless LAN uses several address fields, to express packets being
forwarded by a base station or a repeater.

• The Bluetooth header is repeated three times and only contains one 3-
bit address, as more is not required in Bluetooth’s network topologies
of at most 8 nodes, in which all packets are either sent or received by
the network’s master node.

• All these formats have preambles and checksums in common. These
two features we will discuss in the remainder of this section.

Definition 10.32 (Syncword/Preamble). To establish clearly detectable packet
boundaries, i.e., when exactly a packet begins and when it ends, physical layer
implementations typically specify a fixed sequence of bits or bytes to be trans-
mitted at the start of every packet called syncword or preamble.

Remarks:

• To specify the end of the packet, either the length of the packet is
encoded in the packet’s header or another packet end sequence (a
“footer”) is attached to the end of the packet.

• It may be of interest to make the syncword unique, i.e., not let it
appear as part of packet’s body. This way, participants freshly joining
or just waking up can be certain a new packet started when they hear
the syncword.

Definition 10.33 (Bit/Byte Stuffing). Bit stuffing and byte stuffing are
techniques representing bit resp. byte sequences, which should be unique to the
packet boundaries (such as syncwords), within a packet’s body in a way such
that these sequences do not occur in the packet’s body.

88 CHAPTER 10. LINK LAYER

Remarks:

• Naturally, whatever technique is employed should be reversible: the
receiver should be able to restore the original content of the packet’s
body.

• For simplicity’s sake, for the remainder of this section consider the
case of a critical byte sequence consisting of only some byte X. The
results generalize to arbitrary critical bit and byte sequences.

• First, consider the naive approach: We cannot simply replace every
occurrence of X in the body with another byte Y, as we would not be
able to distinguish these Ys from bytes which were originally Y.

Definition 10.34 (Escape Sequences). Given some critical byte X, we choose a
byte Y 6= X as escape byte and use it to define two escape sequences consisting
of two bytes each, say, YA and YB (A 6= X, B 6= X, A 6= B). The sender replaces
every Y in the original body with YA and every X with YB. The receiver in turn
performs the substitution in reverse.

Remarks:

• This scheme is correct: the encoded body does not contain any X, and
decoding will always yield the original body.

• The sequence Yz in the encoded body is undefined for values of z /∈
{A, B}.

• The general concept of escape sequences is also frequently used in
software. For example, to encode a quotation mark we use a backslash
as escape character, e.g., "Herman \"Babe\" Ruth". In web addresses
% is used to escape the bytes of “illegal” characters, e.g., %20 for spaces
and %E2%98%83 for the unicode snowman.

• The main disadvantage of this simple scheme is that it may cause the
packet’s body to become a lot longer than it originally was – up to
twice as long!

Definition 10.35 (Consistent Overhead Byte Stuffing). Treat the original body
as a sequence of byte strings s0, s1, . . . , sn separated by the forbidden X byte, then
alternatingly send the length of a string and the string itself: |s0|, s0, |s1|, s1, . . . , |sn|, sn.
The receiver can then reconstruct the original body by joining the strings back
together with Xs in between.

Remarks:

• If there are multiple subsequent X in the original body, si may be an
empty string.

• The encoded body is always exactly 1 byte longer than the original,
no matter how often X occurred.

• We need to avoid using X in a length value. This can be accomplished
adding 1 to all length values ≥ X.

10.4. PHYSICAL LAYER (PHY) 89

Definition 10.36 (Checksums). Another common feature is the inclusion of a
checksum over the whole packet, including header and payload.

Remarks:

• Computing a checksum typically entails xoring together all input bits
several times following certain patterns to obtain a checksum of 1-4
bytes.

• Checksum algorithms usually require only a single pass over the data
and are simple to enough to allow performing computation and check-
ing of these checksums in hardware.

• Checksums on the link layer serve multiple purposes. For one, it
would be a shame if a lossy wireless link corrupted a packet which
traveled across the globe – resending it from its source node would be
a waste. Further, link layers are interested in also having checksums
for non-data packets (such as those for connecting and disconnecting,
synchronizing schedules or RTS/CTS).

• Higher layers in the network stack may employ additional checksums,
such that they may be used on unreliable link layers.

• IPv6, as opposed to IPv4, no longer includes a checksum and expects
the underlying link layer to employ reliable error detection.

• There also exist error correcting codes which allow not only detecting
but also correcting a certain amount of bit errors. In practice, they
are used only in certain Wireless LAN versions; usually, it is assumed
that most packets are transmitted either completely without errors or
damaged beyond repair.

Definition 10.37 (MTU). Every link layer implementation specifies a maxi-
mum transmission unit, the maximum link layer payload size this link layer
supports.

Remarks:

• For Ethernet this value is 1,500 bytes, for Wireless LAN it usually is
2,312 bytes, and for Bluetooth it usually is 672 bytes, using a higher
transmission rate for the payload.

• It is the network layer’s responsibility to ensure it creates no packets
larger than the MTU.

• IPv4 and IPv6 support fragmenting oversized transport layer packets
into several network layer packets, using fields in the IP header to
indicate the number of fragments (Definition 1.22).

• Since Ethernet and Wireless LAN packets are common, an MTU of
1,500 bytes has become commonplace in many applications and frame-
works.

• So how do we actually transmit a packet?

90 CHAPTER 10. LINK LAYER

Definition 10.38 (Line Coding). Line coding is a physical encoding represent-
ing a data bit stream as a series of values from {−1, 0,+1}. When transmitting,
each value is to be held for 1 time unit on the line before moving on to the next
value in the series.

+1

0

−1

Data 0 1 1 0 0 0 1 1 1 1 0 1 1 0 0

Figure 10.39: Simple line coding.

Remarks:

• Figure 10.39 shows the simplest kind of line coding: mapping every
‘0’ bit to −1 and every ‘1’ bit to +1.

• Such simple codings have two disadvantages when there is a long string
of equal bits: 1) It is hard to verify that a signal is still being sent
during these periods. 2) If the clocks of sender and receiver are not
running at exactly the same rate, the receiver may count a different
number of consecutively equal bits than what the sender intended to
send.

• One workaround is to have nodes agree on a maximum number of
permitted equal bits in a row. This requires encoding the data in a
way that the resulting data bit stream exhibits the desired behavior.

• Another disadvantage of this coding is that there may be an undesir-
able bias towards +1 or −1, i.e., the mean value may not be 0.

Definition 10.40 (Manchester Coding). Manchester coding is a kind of line
coding, in which every bit is represented by two values: ‘0’ bits by first −1 then
+1, and ‘1’ bits by first +1 then −1.

+1

0

−1

Data 0 1 1 0 0 0 1 1 1 1 0 1 1 0 0

Figure 10.41: Manchester coding.

Remarks:

• Manchester coding solves the aforementioned problems with long runs
of the same bit. In particular, the receiver may use the ongoing signal’s
edges to keep its clock in sync. It also exhibits no bias towards towards
+1 or −1.

10.4. PHYSICAL LAYER (PHY) 91

Definition 10.42 (Modulation). Expressing data bits as changes in the proper-
ties of a regular periodic waveform, the carrier signal, is called modulation.

Definition 10.43 (Amplitude Modulation, AM). Amplitude modulation is
a modulation which expresses data by varying the carrier signal’s amplitude.

+1

0

−1

Data 0 1 1 0 0 0 1 1 1 1 0 1 1 0 0

Figure 10.44: Amplitude modulation.

Remarks:

• The reception of amplitude modulated signals suffers greatly from
noise, shadowing and signal transposition. For example, if the signal
is reflected from a surface to reach a location behind a corner, the
signal’s power is decreased, which means the received amplitude value
also decreases.

Definition 10.45 (Frequency Modulation, FM). Frequency modulation is
a modulation which expresses data by varying the carrier signal’s frequency.

+1

0

−1

Data 0 1 1 0 0 0 1 1 1 1 0 1 1 0 0

Figure 10.46: Frequency modulation.

Remarks:

• The frequency is usually varied only by small amounts, staying within
a narrow frequency band.

• As opposed to amplitude modulated signals, frequency modulated sig-
nals are very robust to noise, which is one of the main reasons for the
popularity of FM.

Definition 10.47 (Phase Modulation, PM). Phase modulation is a modu-
lation which expresses data by varying the carrier signal’s phase.

Definition 10.49 (Symbols). Multiple data bits may be grouped into symbols
before being encoded. This allows making use of the ability to represent more
than 2 states at a time in the coding.

92 CHAPTER 10. LINK LAYER

+1

0

−1

Data 01 10 00 11 11 01 10 00

Figure 10.48: Phase modulation with 2-bit symbols.

Remarks:

• In reality, signals must be narrow-band, so “jumps” as they occur in
Figure 10.48 must be avoided.

• The three modulation schemes presented above are often combined to
express more different values with a single symbol.

• Encodings and modulations much more involved than the ones pre-
sented here have been designed optimized for parameters such as
throughput or feasible SINR thresholds.

• A modulation encoding more data bits within the same time and fre-
quency band raises the SINR threshold required for successful recep-
tion and vice versa.

Chapter Notes

This chapter was written in collaboration with Michael König.

Chapter 11

Markov Chains & PageRank

Let us try to predict the weather! How long until it is rainy the next time?
What about the weather in ten days? What is the local “climate”, i.e., the
“average” weather?

sunny cloudy rainy

2
3

1
3

1
2

1
2

1
3

1
3

1
3

Figure 11.1: According to a self-proclaimed weather expert, the above graph
models the weather in Zürich. On any given day, the weather is either sunny,
cloudy, or rainy. The probability to have a cloudy day after a sunny day is 1

3 . In
the context of Markov chains the nodes, in this case sunny, rainy, and cloudy,
are called the states of the Markov chain.

Remarks:

• Figure 11.1 above is an example of a Markov chain—see the next
section for a formal definition.

• If the weather is currently sunny, the predictions for the next few days
according to the model from Figure 11.1 are:

Day sunny cloudy rainy

0 1 0 0

1 2
3

1
3 0

2 0.611 0.222 0.167

3 0.574 0.259 0.167

4 0.568 0.247 0.185
...

...
...

...

93

94 CHAPTER 11. MARKOV CHAINS & PAGERANK

11.1 Markov Chains

Markov chains are a tool for studying stochastic processes that evolve over time.

Definition 11.2 (Markov Chain). Let S be a finite or countably infinite set of
states. A (discrete time) Markov chain is a sequence of random variables
X0, X1, X2, . . . ∈ S that satisfies the Markov property (see below).

Definition 11.3 (Markov Property). A sequence (Xt) of random variables has
the Markov property if for all t, the probability distribution for Xt+1 depends
only on Xt, but not on Xt−1, . . . , X0. More formally, for all t ∈ N>0 and
s0, . . . , st+1 ∈ S it holds that Pr[Xt+1 = st+1 |X0 = s0, X1 = s1, . . . , Xt = st] =
Pr[Xt+1 = st+1 |Xt = st].

Remarks:

• A sequence of random variables is also called a discrete time stochastic
process. Processes that satisfy the Markov property are also called
memoryless.

• The probability distribution of X0 does not depend on a previous
state (since there is none). It is called the initial distribution, and we
denote it by the vector q0 = (q0,s)s∈S with the entries Pr[X0 = s] for
every state s ∈ S. If the first day is sunny, the initial distribution is
q0 = (1, 0, 0).

Definition 11.4 (Time Homogeneous Markov Chains). A Markov chain is
time homogeneous if Pr[Xt+1 = st+1 | Xt = st] is independent of t, and in
that case pi,j = Pr[Xt+1 = i |Xt = j] is well defined.

Remarks:

• We will only consider time homogeneous Markov chains.

• Markov chains are often modeled using directed graphs, as in Fig-
ure 11.1. The states are represented as nodes, and an edge from state
i to state j is weighted with probability pi,j .

• Just like directed graphs, Markov chains can be written in matrix
form (using the adjacency matrix). In this context, the matrix is
called the transition matrix, and we denote it by P . For the example
from Figure 11.1, the transition matrix is:

to
sunny cloudy rainy

fr
om

sunny 2/3 1/3 0
cloudy 1/2 0 1/2
rainy 1/3 1/3 1/3

• Let qt = (qt,i)i∈S be the probability distribution on S for time t, i.e.,
qt,i = Pr[Xt = i]. The probability to be in state j at time t + 1 is
qt+1,j =

∑
i∈S Pr[Xt = i] ·Pr[Xt+1 = j |Xt = i] =

∑
i∈S qt,i ·pi,j . This

can be written as the vector-matrix-multiplication qt+1 = qt · P .

11.1. MARKOV CHAINS 95

• The state distribution at time t is qt = q0 · P t. We denote by p
(t)
i,j the

entry at position i, j in P t, i.e., the probability of reaching j from i in
t steps.

• Another interpretation of Markov chains is that of a random walk.

Definition 11.5 (Random Walk). Let G = (V,E) be a directed graph, and
let ω : E → [0, 1] be a weight function so that

∑
v:(u,v)∈E ω(u, v) = 1 for all

nodes u. Let u ∈ V be the starting node. A weighted random walk on G
starting at u is the following discrete Markov chain in discrete time. Beginning
with X0 = u, in every step t, the node Xt+1 is chosen according to the weights
ω(Xt, v), where v are the neighbors of Xt. If G is undirected and unweighted,
then Xt+1 is chosen uniformly at random among Xt’s neighbors and the random
walk is called simple.

Remarks:

• Random walks are a special case of Markov chains where the initial
distribution is a single state. In Section 11.4 we will study simple
random walks.

• If it is sunny today, how long will it stay sunny?

Definition 11.6 (Sojourn Time). The sojourn time Ti of state i is the time
the process stays in state i.

Remarks:

• It holds that Pr[Ti = k] = pk−1i,i · (1 − pi,i), i.e., Ti is geometrically
distributed. For example E[Tsunny] = 2.

• The sojourn time Ti does not depend on the time the process has spent
in state i already (memoryless property). The geometric distribution
is the only discrete distribution that is memoryless.

• If it is currently sunny, how long does it take until we see the first
rainy day?

Definition 11.7 (Hitting Time & Arrival Probability). Let i and j be two
states. The hitting time Ti,j is the random variable counting the number of
steps until visiting j the first time when starting from state i, i.e., the value of
Ti,j is the smallest integer t ≥ 1 for which Xt = j under the condition that X0 =
i. The expected hitting time from i to j is the expected value hi,j = E[Ti,j].
The arrival probability from i to j is the probability fi,j = Pr[Ti,j <∞].

Remarks:

• The time ci,j = hi,j + hj,i is referred to as the commute time between
i and j.

• By definition, hi,j is the sum
∑∞
i=1 i ·p

(t)
i,j . The following lemma states

that the expected hitting time can also be computed by solving a
system of linear equations.

96 CHAPTER 11. MARKOV CHAINS & PAGERANK

Lemma 11.8. If if hi,j exists for all i, j ∈ S, then the expected hitting times
are

hi,j = 1 +
∑
k 6=j

pi,khk,j .

Proof. Plugging in the definition of hi,j and applying the law of total probability
we get that

hi,j = E[Ti,j] =
∑
k∈S

E[Ti,j | X1 = k] · pi,k .

Taking the jth term out, we obtain

hi,j = E[Ti,j | X1 = j] · pi,j +
∑
k 6=j

E[Ti,j | X1 = k] · pi,k

= 1 · pi,j +
∑
k 6=j

(1 + E[Tk,j]) · pi,k .

Since pi,j together with all the values pi,k sum up to 1, we can simplify to

hi,j = 1 +
∑
k 6=j

E[Tk,j] · pi,k = 1 +
∑
k 6=j

pi,khk,j .

Remarks:

• On a sunny day it takes in expectation 8 days until it starts raining.

• Lemma 11.9 for the arrival probabilities can be established similarly
to Lemma 11.8.

Lemma 11.9. For all i, j ∈ S, the arrival probability is

fi,j = pi,j +
∑
k 6=j

pi,kfk,j .

11.2 Stationary Distribution & Ergodicity

What is the “climate” in Zürich? Often one is particularly interested in the long
term behavior of Markov chains and random walks. The mathematical notion
that captures a Markov chain’s long term behavior is the stationary distribution,
which we will introduce and study in the following.

Remarks:

• The entries in P t contain the probability of entering a certain weather
condition (state). What happens for large values of t? The matrix
seems to converge!

P 3 ≈

 0.574 0.259 0.167
0.556 0.222 0.222
0.537 0.259 0.204

 P 10 ≈

 0.563 0.250 0.187
0.562 0.250 0.187
0.562 0.250 0.188



11.2. STATIONARY DISTRIBUTION & ERGODICITY 97

• No matter what the initial weather q0 is, the product q0 ·P t seems to
approach q̃ ≈ (0.563, 0.250, 0.188) as t grows. Moreover, if we multiply
the vector q̃ with P we almost get q̃ again. In other words, q̃ is almost
an eigenvector of P with eigenvalue 1.

Definition 11.10 (Stationary Distribution). A distribution π over the states
is called stationary distribution of the Markov chain with transition matrix
P if π = π · P .

Remarks:

• Our weather Markov chain converges towards π = (9/16, 4/16, 3/16),
which is an eigenvector of P with eigenvalue 1. We conclude that
in the long run, 9 out of 16 days are sunny in Zürich. The weather
model appears to be not as accurate as the weather expert led us to
believe . . .

• Consider the sequence qi = qi−1 ·P , where q0 is the initial distribution.
In general, this sequence does not necessarily converge as t grows.
However, if it does converge to some distribution π, then it must hold
that π = π · P .

Lemma 11.11. Every Markov chain has a left eigenvector with eigenvalue 1.

Proof. Let P be the transition matrix of a Markov chain, and denote by e =
(1, . . . , 1)> the all-ones vector. Because in P the entries in each row sum up
to 1 (P is row stochastic), it holds that Pe = e. Denoting by I the identity
matrix, it follows that (P − I)e = 0. In other words, e is an eigenvector with
eigenvalue 0 for (P−I), which implies that (P−I) is singular, i.e., not invertible.
Thus, also (P − I)> is singular, and it follows that there is a vector π 6= 0 so
that 0 = (P − I)>π = P>π − Iπ. Transposing and rearranging we obtain that
π>P = π>, as desired.

Remarks:

• Using Brouwer’s fixed point theorem one can show that there is also
a left eigenvector π that corresponds to a probability distribution.

• The stationary distribution is not necessarily unique, see Figure 11.12.
The issue is that some states are not reachable from all other states.

u v w

1
1
2

1
2

1

Figure 11.12: This Markov chain has infinitely many stationary distributions,
for example π0 = (1, 0, 0), π1 = (0, 0, 1), and π0.8 = (0.2, 0, 0.8). The states u
and w are called absorbing states, since they are never left once they are entered.

Definition 11.13 (Irreducible Markov Chains). A Markov chain is irreducible
if all states are reachable from all other states. That is, if for all i, j ∈ S there

is some t ∈ N, such that p
(t)
i,j > 0.

98 CHAPTER 11. MARKOV CHAINS & PAGERANK

Lemma 11.14. In an irreducible Markov chain it holds that hi,j < ∞ for all
states i, j.

Proof. Fix some state j, and observe that due to Definition 11.13 for every

s ∈ S, there is some ts so that p
(ts)
s,j > 0. Denote by t = max{ts | s ∈ S} the

largest such value. State j can be reached from every state in at most t steps.
We partition the random walk into trials of t successive steps. Within each trial,
state j is reached with probability at least p = min{ptss,j | s ∈ S}. The number
of trials until the random walk reaches j is thus upper bounded by a geometric
distribution with parameter p. It follows that at most 1/p trials are necessary
to reach j, and we conclude that hi,j ≤ t/p for any i.

Remarks:

• Similarly, it follows that fi,j = 1 for all states i, j if the Markov chain
is irreducible.

Lemma 11.15. Every finite irreducible Markov chain has a unique stationary
distribution π. The distribution is πj = 1

hj,j
for all j ∈ S.

Proof. Denote by P the transition matrix of an irreducible Markov chain. Let
π 6= 0 be a left eigenvector of P with eigenvalue 1 as promised by Lemma 11.11.
Denote further by hi,j the expected hitting times guaranteed by Lemma 11.14.

We first consider the case that
∑
i πi 6= 0 and w.l.o.g. assume that

∑
i πi = 1.

Due to Lemma 11.8 it holds that for any j ∈ S,

πihi,j = πi

1 +
∑
k 6=j

pi,khk,j

 for all i ∈ S .

Since
∑
i πi = 1, summing up those equations over all i yields

πjhj,j +
∑
i 6=j

πihi,j = 1 +
∑
i

πi
∑
k 6=j

pi,khk,j

= 1 +
∑
k 6=j

hk,j
∑
i

πipi,k ,

by switching the summation on the right hand side. Since π is an eigenvector
with eigenvalue 1, it holds that

∑
i πipi,k = πk, and thus the equation becomes

πjhj,j +
∑
i 6=j

πihi,j = 1 +
∑
k 6=j

hk,jπk .

Noting that all hj,j > 1 we conclude that πj = 1/hj,j , as desired. In the
remaining case where

∑
i πi = 0, the equation turns into

πjhj,j +
∑
i 6=j

πihi,j =
∑
k 6=j

hk,jπk ,

yielding that πj = 0 for all j. This contradicts that π is an eigenvector.

11.2. STATIONARY DISTRIBUTION & ERGODICITY 99

Remarks:

• Irreducible Markov chains with an infinite number of states do not
necessarily have a stationary distribution.

• Depending on the choice of the initial distribution, even an irreducible
Markov chain does not necessarily converge towards its stationary
distribution, see Figure 11.16.

u v

1

1

Figure 11.16: This Markov chain is irreducible, and has the unique station-
ary distribution π = (0.5, 0.5). In this particular chain, each state can only be
reached every other step, or in other words, both states have period 2. There-
fore, the initial distribution is attained in every second step, and only q0 = π
“converges” towards the stationary distribution.

Definition 11.17 (Aperiodic Markov Chains). The period of a state j ∈ S is
the largest ξ ∈ N such that

{n ∈ N | p(n)j,j > 0} ⊆ {i · ξ | i ∈ N}

A state with period ξ = 1 is called aperiodic, and the Markov chain is aperi-
odic if all its states are.

Remarks:

• One can show that if the Markov chain is irreducible, then all states
have the same period.

• A state j with pj,j > 0 is trivially aperiodic.

• If pj,j = 0, then one can check whether state j is aperiodic by testing,
as illustrated in Figure 11.18, if the following holds: Does j lie on two
directed cycles of lengths k and l (counting the edges in the chain) so
that k and l are relatively prime, i.e., have a greatest common divisor
of 1? Or, using the kth and lth powers of P , are there relatively prime

k and l such that both p
(k)
j,j and p

(l)
j,j > 0?

Definition 11.19 (Ergodic Markov Chains). If a finite Markov chain is irre-
ducible and aperiodic, then it is called ergodic.

Theorem 11.20. If a Markov chain is ergodic it holds that

lim
t→∞

qt = π,

where π is the unique stationary distribution of the chain.

100 CHAPTER 11. MARKOV CHAINS & PAGERANK

u v

w

x

1

1
2

1
2

1

1

Figure 11.18: Starting at state v there is a cycle v → u→ v using 2 edges, and
a cycle v → w → x → v using 3 edges. Because 2 and 3 are relatively prime,
the state v is aperiodic.

Remarks:

• The theorem holds regardless of the initial distribution.

• The stationary distribution of ergodic Markov chains can thus be ap-
proximated efficiently, namely by successively multiplying a vector
with a matrix instead of computing the powers of a matrix.

11.3 PageRank Algorithm

Google’s PageRank algorithm is based on a Markov chain obtained from a vari-
ant of a random walk.

Remarks:

• Google provides search results that match the user’s search terms.
Under the hood Google maintains a ranking among websites to make
sure “better” or “more important” websites appear early in the search
results. Instead of solving the whole problem at once, this ranking is
first established globally (independent of the search terms), and only
later websites matching the search query are sorted according to some
rank. In this section we focus on the ranking part.

• The first step to ranking websites is to crawl the web graph, i.e., a
directed graph in which the nodes are websites, and an edge (u, v)
indicates that website u contains a hyperlink to website v.

u

v

w x

y

Figure 11.21: An example of a web graph with 5 websites. Website x does not
link to any other website, i.e., x is a sink.

• A näıve approach is to rank the sites by the number of incoming
hyperlinks. In the example from Figure 11.21 this yields the same

11.3. PAGERANK ALGORITHM 101

rank for websites w and x. One could, however, argue that the link
from w to x means that x is more important than w.

• Google’s idea is to model a random surfer who follows hyperlinks
in the web graph, i.e., performs a random walk. After sufficiently
many steps, the websites can be ranked by how many times they were
visited. The intuition is that websites are visited more often if they
are linked by many other sites, which should be a good measure of
how important a website is.

• Since the walk is directed, the random surfer can get stuck in sinks
(nodes with no outgoing edges). To fix this issue, a random website is
chosen for the next step whenever the random surfer reaches a sink.

• Let us denote the random surfer matrix describing this random walk
by W .

• Simulating the random walk described by W to find a stationary dis-
tribution is not feasible: There are over 1 billion websites—meaning
that a lot of steps have to be simulated to get a good estimation of the
stationary distribution. Using our knowledge about Markov chains we
can simulate many random walks at once by repeatedly multiplying
some initial distribution q0 with W .

• There is no guarantee that this process converges to a stationary dis-
tribution. We know that this can be fixed by making the Markov
chain ergodic.

• One way to make a Markov chain ergodic is to insert an edge between
every two nodes.

Definition 11.22 (Google Matrix). Let W be a random surfer matrix, and let
α ∈ (0, 1) be a constant. Denote further by R the matrix in which all entries
are 1/n. The following matrix M is called the Google Matrix:

M = α ·W + (1− α) ·R .

Remarks:

• The intuition behind R is that in every step, with probability 1 − α,
the random surfer “gets bored” by the current website and surfs to a
new random site.

• While the R-component in M ensures that the Markov chain con-
verges, it also changes the stationary distribution. To ensure the im-
pact is not too large, α should be chosen close to 1. A typical value
for α is 0.85.

• The rate at which the process converges depends on the magnitude of
M ’s second largest eigenvalue. One can show that for M the second
largest eigenvalue is at most α, and that the error decreases by a factor
of α in each step.

102 CHAPTER 11. MARKOV CHAINS & PAGERANK

• In the example from Figure 11.21, the page ranks are

Website Rank

x 0.384615

w 0.230769

u 0.153846

v 0.153846

y 0.0769231

• This initial version of the PageRank algorithm worked well at the time
it was invented. However, it can be (and has been) fooled. Consider
the following example.

u v

wx

u v

wx

uu′

u′′

v

wx

Figure 11.23: Website u wants to improve its PageRank, which is ≈ 0.23 in the
initial setting on the left. First, all outgoing links to websites that do not link
back are removed. The PageRank improves to ≈ 0.27. In a Sybil attack (right)
the owner of u creates fake websites u′ and u′′ whose purpose is to exchange
links with u. Moreover, the new websites increase the probability to visit u after
a sink. Now, website u is the highest ranked site in the network with a rank of
≈ 0.41.

• Attacks where a single party pretends to be more than one individual
are called Sybil Attacks.

• It is unknown how exactly Google ranks websites today, and specifi-
cally how the engineers at Google mitigate the effects of attacks.

• A different kind of attack on Google is Google bombing. This attack
relies on the fact that the search terms for which a website v is consid-
ered relevant also take the anchor text of hyperlinks to website v into
account. If, for instance, many websites link to http://www.ethz.ch

using the anchor text “Smartest People Alive”, then a search query
for smart people might end up presenting ETH’s website.

11.4 Simple Random Walks

In this section, all random walks are considered to be simple. This means that
the edges are undirected, and the node for the next step is chosen uniformly at
random among the current node’s neighbors.

http://www.ethz.ch

11.4. SIMPLE RANDOM WALKS 103

Lemma 11.24. Let G be a graph with m edges. The stationary distribution π
of any random walk on G is

πu =
δ(u)

2m
.

Proof. Let π be as above, and consider some arbitrary node u ∈ V . It holds
that

πu =
∑

v ∈N(u)

πv · pv,u =
∑

v ∈N(u)

δ(v)

2m
· 1

δ(v)
=
δ(u)

2m
,

i.e., the distribution is stationary. Since the Markov chain underlying the ran-
dom walk is irreducible, it is also unique.

Remarks:

• It follows from Lemma 11.15 that for a random walk, hu,u is 2m/δ(u).

• The cover time cov(v) is the expected number of steps until all nodes
in G were visited at least once.

• One could use the following Markov chain to compute the cover time
of a random walk on the graph G = (V,E). The set of states is
{(v, I) | v ∈ V and I ∈ 2V }, where v denotes the “current state” and
I denotes the visited states. The probabilities p(v,I),(w,I∪{w}) is 0 if
either I = V or {u, v} 6∈ E, and 1/δ(v) if {u, v} ∈ E. Then, the cover
time is cov(v) =

∑
w∈V h(v,{v}),(w,V).

Lemma 11.25. Let G = (V,E) be a graph with n nodes and m edges. It holds
that cov(s) < 4m(n− 1) for any starting node s ∈ V .

Proof. Let {u, v} ∈ E be an edge. It holds that

2m

du
= hu,u =

1

du

∑
w∈N(u)

(hw,u + 1) ,

and thus it must be true that hu,v < 2m. Next, observe that it is possible to
traverse all nodes in G by using no more than 2n−2 edges, e.g., by traversing a
spanning tree rooted at s. Since hu,v < 2m holds for every edge {u, v} used in
the traversal, it follows that cov(s) < (2n− 2) · 2m = 4m(n− 1), as desired.

Remarks:

• Consider the resistor network obtained from G by replacing every
edge with a 1Ω resistor. Let u and v be two nodes in the resistor
network and apply a current of 1V to them. It can be shown that
cu,v = 2m · R(u, v), where R(u, v) denotes the effective resistance
between u and v.

• Foster’s Theorem states that for every connected graph G = (V,E)
with n nodes, ∑

(u,v)∈E

R(u, v) = n− 1 ,

i.e., that adding/removing an edge in G reduces/increases the effective
resistance, respectively.

104 CHAPTER 11. MARKOV CHAINS & PAGERANK

Chapter Notes

Historic background on the development of Markov chains can be found in [1].
The short version is that in a 1902 paper [9], the theologist Pavel Alekseevich
Nekrasov, in his effort to establish free will on a mathematical basis, (falsely)
postulated that independence of events is necessary for the law of large numbers.
Markov, being an atheist and considering Nekrasov’s reasoning an “abuse of
mathematics”, set out to prove him wrong.

In 1906, Markov published his first findings on chains of pairwise dependent
random variables [7]. This work already includes a variant of Theorem 11.20,
thus disproving Nekrasov’s claim. Markov also studied the notion of irreducibil-
ity [8], proving that for irreducible Markov chains 1 is a single eigenvalue and
the largest by magnitude. Today, Markov’s ideas are widely applied in, e.g.,
physics, chemistry, and economics.

Markov chains are the basis for queueing theory, an important transport
layer concept. Another application in computer science is the PageRank algo-
rithm [10]. The bound on the Google matrix’ second eigenvalue is from [5].
Sybil attacks were originally studied in the context of peer to peer systems [3],
and PageRank’s sensitivity to such attacks was investigated in [2].

The connection from random walks to resistor networks is investigated in
depth in [4]. By associating a word with each state, random walks can be used
to generate random text [11]. More than 120 “scientific” papers were generated
using such methods [6] and later withdrawn by the publishers.

This chapter was written in collaboration with Jochen Seidel.

Bibliography

[1] Gely P. Basharin, Amy N. Langville, and Valeriy A. Naumov. The life and
work of a.a. markov. Linear Algebra and its Applications, 386:3 – 26, 2004.

[2] Alice Cheng and Eric Friedman. Manipulability of pagerank under sybil
strategies, 2006.

[3] John R. Douceur. The sybil attack. In Peer-to-Peer Systems, volume 2429
of LNCS, pages 251–260. Springer Berlin Heidelberg, 2002.

[4] Peter G. Doyle and J. Laurie Snell. Random walks and electric net-
works. http://math.dartmouth.edu/~doyle/docs/walks/walks.pdf,
July 2006. Originally published 1984. Website accessed Sep. 23, 2015.

[5] Taher Haveliwala and Sepandar Kamvar. The second eigenvalue of the
google matrix. Technical Report 2003-20, Stanford InfoLab, 2003.

[6] Cyril Labbé and Dominique Labbé. Duplicate and fake publications in
the scientific literature: How many SCIgen papers in computer science?
Scientometrics, 94(1):379–396, 2013.

[7] Andrey Andreyevich Markov. Rasprostranenie zakona bol’shih chisel na
velichiny, zavisyaschie drug ot druga. Izvestiya Fiziko-matematicheskogo
obschestva pri Kazanskom universitete, 2-ya seriya 15 (94):135–156, 1906.
(Extension of the law of large numbers to random variables dependent on
each other).

http://math.dartmouth.edu/~doyle/docs/walks/walks.pdf

BIBLIOGRAPHY 105

[8] Andrey Andreyevich Markov. Rasprostranenie predel’nyh teorem is-
chisleniya veroyatnostej na summu velichin svyazannyh v cep’. Zapiski
Akademii Nauk po Fiziko-matematicheskomu otdeleniyu, VIII seriya 25 (3),
1908. (Extension of the limit theorems of probability theory to a sum of
variables connected in a chain).

[9] Pavel Alekseevich Nekrasov. The philosophy and logic of science of mass
phenomena in human activity, Moscow 1902. In Russian.

[10] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
pagerank citation ranking: Bringing order to the web. Technical Report
1999-66, Stanford InfoLab, November 1999.

[11] Jeremy Stribling, Max Krohn, and Dan Aguayo. SCIgen - an automatic CS
paper generator. https://pdos.csail.mit.edu/archive/scigen/, 2005.
Website accessed Sep. 23, 2015.

https://pdos.csail.mit.edu/archive/scigen/

106 CHAPTER 11. MARKOV CHAINS & PAGERANK

Chapter 12

Security

Every day people order and pay online – but is it secure?

12.1 Transport Layer Security

Protocol 12.1 (Transport Layer Security, TLS). TLS is a network protocol in
which a client and a server exchange information in order to communicate in a
secure way. Common features include a key exchange protocol (Section 12.2),
the authentication of the server to the client (12.3), a bulk encryption algorithm
(12.4), and a message authentication algorithm (12.5).

Remarks:

• TLS is the successor of Secure Sockets Layer (SSL). However, some-
times in practice the term SSL includes (the newer) TLS as well.

• HTTPS (Hypertext Transfer Protocol Secure) is not a protocol on its
own, but rather denotes the usage of HTTP via TLS or SSL.

• SSH (Secure Shell), even though close in name to SSL, is something
different: It is a protocol to allow a client to remotely access a server,
e.g., for a command-line interface.

12.2 Key Exchange

How to agree on a common secret key in public, if you never met before?

Definition 12.2 (Primitive Root). Let p ∈ N be a prime. g ∈ N is a primitive
root of p if the following holds: For every h ∈ N, with 1 ≤ h < p, there is a
k ∈ N s.t. gk = h mod p.

107

108 CHAPTER 12. SECURITY

Algorithm 12.3 Diffie-Hellman Key Exchange

Input: Publicly known prime p and a primitive root g of p.
Result: Alice and Bob agree on a common secret key.

1: Alice picks kA, with 1 ≤ kA ≤ p− 2 and sends gkA mod p to Bob
2: Bob picks kB , with 1 ≤ kB ≤ p− 2 and sends gkB mod p to Alice

3: Alice calculates
(
gkB
)kA

mod p = gkBkA mod p

4: Bob calculates
(
gkA
)kB

mod p = gkAkB mod p
5: Alice & Bob have a common secret key gkAkB mod p = gkBkA mod p

Remarks:

• In crypto, it’s always Alice and Bob, with a possible attacker Eve.

• Also, we will use k for keys, m for messages, p for primes, g for primi-
tive roots, and c for ciphertext (encrypted messages). Generally speak-
ing, an encryption algorithm encrypts a plain message m by applying
a key k, resulting in ciphertext c.

• Small (not so secure) example for prime p = 5 and primitive root
g = 2: 21 = 2 mod 5, 22 = 4 mod 5, 23 = 3 mod 5, 24 = 1 mod 5.
One more primitive root for p = 5 exists. There are sophisticated
methods to quickly find primitive roots, but they are beyond the ma-
terial covered in this lecture.

• Algorithm 12.3 with p = 5 and g = 2: Alice picks kA = 2 with 22 = 4
mod 5, and Bob picks kB = 3 with 23 = 3 mod 5. Thus, Bob receives
4 and Alice receives 3. Then, Bob calculates 43 = 4 mod 5, and Alice
calculates 32 = 4 mod 5. Hence, Alice and Bob have agreed on the
common secret key of 4.

• How secure is Algorithm 12.3?

Definition 12.4 (Discrete Logarithm Problem). Let p ∈ N be a prime, and let
g, a ∈ N with 1 ≤ g, a < p. The discrete logarithm problem is defined as finding
an x ∈ N with gx = a mod p.

Remarks:

• Intuitively, the best approach to calculate the common secret key of
Algorithm 12.3 from the publicly known p, g, gkA , gkB is to solve the
discrete logarithm problem. This is also the best known attack.

• However, for some classes of primes there are better attacks, which is
why one often resorts to so-called safe primes p, where p′ = (p− 1)/2
is also a prime.

• How to find big enough primes though? Deterministic methods are
still too slow in practice. Thus, let’s go probabilistic with the following
primality test.

12.2. KEY EXCHANGE 109

Algorithm 12.5 Probabilistic Primality Testing

Input: An odd number p ∈ N.
Result: Is p a prime?

1: Let j, r ∈ N and j odd with p− 1 = 2rj
2: Select x ∈ N uniformly at random, 1 ≤ x < p
3: Set x0 = xj mod p
4: if x0 = 1 or x0 = p− 1 then
5: Output “p is probably prime” and stop
6: end if
7: for i = 1, . . . r − 1 do
8: Set xi = x2i−1 mod p
9: if xi = p− 1 then

10: Output “p is probably prime” and stop
11: end if
12: end for
13: Output “p is not prime”

Lemma 12.6. Algorithm 12.5 is correct with probability 75% if it outputs “p is
probably prime”, and 100% correct if it outputs “p is not prime”.

Corollary 12.7. The runtime of Algorithm 12.5 is O(r) ∈ O(log p)

Remarks:

• The proof for the probabilistic correctness of the primality test in
Algorithm 12.5 goes beyond the material covered in this lecture.

• Algorithm 12.5 is a Monte Carlo algorithm as its (fast) runtime is
deterministic, but the output can be wrong with bounded probability.
However, running the algorithm again on the same p, but with dif-
ferent x, produces an independent result, allowing to bound the error
probability by 1

4r in r runs.

• A simple method to find big primes is thus as follows: Pick a big
random number p, with p being odd. Run Algorithm 12.5 until p
is prime with the desired probability of 1 − ε. If p is not prime,
pick another p. According to the prime number theorem, the average
distance between two primes of size at most n is just lnn, i.e., there
is a good chance to find a big prime.

Definition 12.8 (Man in the Middle Attack). A man in the middle attack is
defined as an attacker Eve deciphering or changing the messages between Alice
and Bob, while Alice and Bob believe they are communicating directly with each
other.

Theorem 12.9. The Diffie-Hellman Key Exchange from Algorithm 12.3 is vul-
nerable to a man in the middle attack.

Proof. Assume that Eve can intercept and relay all messages between Alice and
Bob. That alone does not make it a man in the middle attack, Eve needs to be
able to decipher or change messages without Alice or Bob noticing. However,

110 CHAPTER 12. SECURITY

Eve can emulate Alice’s and Bob’s behavior to each other, by picking her own
k′A, k′B , and then agreeing on common keys gkAk

′
B , gkBk

′
A with Alice and Bob,

respectively. Thus, Eve can relay all messages between Alice and Bob while
deciphering and (possibly) changing them, while Alice and Bob believe they are
securely communicating with each other.

Remarks:

• It is a bit like concurrently playing chess with two grandmasters: If
you play white and black respectively, you can essentially let them
play against each other by relaying their moves.

• How do we fix this? One idea is to personally meet in private first,
exchange a common secret key kA,B , and then use this key for secure
communication. Now a man in the middle cannot change the key.

Definition 12.10 (Forward Secrecy). A sequence of secured communication
rounds has the property of forward secrecy, if discovering the secret key(s) of a
single communication round does not reveal the content of past communication
rounds.

Remarks:

• So Alice and Bob cannot use the same secret key multiple times.

Algorithm 12.11 Diffie-Hellman Key Exchange with Forward Secrecy

Input: Alice’s and Bob’s common secret key kA,B .
Result: A Diffie-Hellman key exchange not vulnerable to a man in the middle
attack, and with forward secrecy.

1: Alice and Bob run Algorithm 12.3 to obtain round key gkAkB

2: Alice sends a random number 1 ≤ xA ≤ p − 2 encrypted with kA,B as cA
to Bob, and Bob sends Alice a random number 1 ≤ xB ≤ p − 2 encrypted
with kA,B as cB a challenge, respectively

3: Alice and Bob decrypt the respective messages, and Alice sends xB + 1
encrypted with kA,B to Bob as a response (and Bob as well with xA + 1)

4: If decryption yields xA + 1 for Alice, or xB + 1 for Bob, respectively, they
accept the round key gkAkB

Lemma 12.12. Algorithm 12.11 has the property of forward secrecy and is not
vulnerable to a man in the middle attack, if encryption with kA,B is secure.

Proof. For a man in the middle attack, Eve needs to be able to decrypt and
encrypt with kA,B to convince Alice and Bob that they directly communicated
with each other, which is a contradiction to the security assumption.

Regarding forward secrecy, if the attacker Eve gathers the secret key gkAkB

of a communication round, she can decrypt the messages of this communication
round. Even if Eve gains access to kA,B , she cannot gain access to the keys
generated in past communication rounds.

12.3. PUBLIC KEY CRYPTOGRAPHY 111

Remarks:

• Observe that forward secrecy only applies to communication rounds
in the past. If Eve gains access to kA,B , she can perform man in the
middle attacks in future communication rounds.

• However, we have a new inconvenience: Alice and Bob need to agree
on a secret key kA,B beforehand. Furthermore, with n participants,
everyone needs n− 1 different keys.

12.3 Public Key Cryptography

“Love all, trust a few.” – William Shakespeare

Definition 12.13 (Public Key Cryptography). A public key cryptography sys-
tem uses two keys: A public key kp, to be disseminated to everyone, and a secret
(private) key ks, only known to the owner. A message encrypted with the secret
key can be decrypted with the corresponding public key. Analogously, a message
encrypted with the public key can be decrypted with the corresponding secret key.

Remarks:

• Popular public key cryptosystem include RSA and elliptic curve cryp-
tography.

• With public key cryptography, we have reduced the number of keys –
everyone just needs a secret and a public key.

• A conceptual way to think of public key cryptography is as follows:
The secret key is a physical (secret) key that opens a specific type
of padlock, and this type of padlock is freely available. The public
key is a physical key too, freely available, but it opens only a (secret)
specific type of padlock. If Alice wants to send Bob an encrypted
message, she applies his public padlock to the message container, and
only Bob can open it. Similarly, if Alice wants to authenticate her
message to Bob, she locks the container with her secret padlock, and
only Alice’s public key can unlock it. Lastly, if Alice wants to ensure
both encryption and authentication, she applies both her own secret
padlock and Bob’s public padlock to the message container.

• We will now extend the Diffie-Hellman algorithm to public key cryp-
tography.

Algorithm 12.14 Elgamal Public Secret Key Generation

Input: Publicly known prime p and a primitive root g of p.
Result: Alice generates a public and a secret key

1: Alice picks random ks with 1 ≤ ks ≤ p− 2 as her secret key
2: Alice calculates kp = gks mod p as her public key

112 CHAPTER 12. SECURITY

Remarks:

• Alice can publish p, g, kp, but should keep ks to her own.

• We will now start with encryption, before covering authentication.

Algorithm 12.15 Elgamal Public Key Encryption and Decryption

Input: Alice and Bob know p, g, kp, Alice knows ks.
Result: Bob sends Alice an encrypted message, which she can decrypt.

1: Bob picks a message 1 ≤ m ≤ p− 2 and a random 1 ≤ x ≤ p− 2
2: Bob sends gx mod p and c = m · kxp mod p to Alice

3: Alice first calculates y = (gx)
p−ks−1 mod p

4: Alice then obtains m = y · c mod p

Theorem 12.16 (Fermat’s little theorem). Let p be a prime number. Then,
for any a ∈ N holds: ap = a mod p. If a is not divisible by p, then ap−1 = 1
mod p.

Lemma 12.17. Algorithm 12.15 is correct.

Proof.

y · c = (gx)
p−ks−1 (m · kxp) mod p

= (gx)
p−ks−1

(
m ·

(
gks
)x)

mod p (using kp = gks mod p)

= (gx)
p−ks−1m · (gx)

ks mod p

= m (gx)
p−1

mod p

= m mod p (using Theorem 12.16).

Remarks:

• We can now send someone an encrypted message using public key
cryptography, but what about authentication?

• Again, we first need some number theoretic preliminaries.

Definition 12.18 (Greatest Common Divisor, gcd). The greatest common divi-
sor (gcd) of two integers i1, i2 is the largest integer that divides i1 and i2 without
a remainder.

Theorem 12.19. Let p be a prime and i be an integer with gcd(i, p) = 1. Let
a1, a2 ∈ N. If a1 = a2 mod (p− 1), then ia1 = ia2 mod p.

12.3. PUBLIC KEY CRYPTOGRAPHY 113

Algorithm 12.20 Elgamal Authentication

Input: Alice and Bob know p, g, kp, Alice knows ks.
Result: Alice signs a message 1 ≤ m ≤ p− 2, which Bob authenticates.

1: Alice picks a random 1 ≤ x ≤ p− 1, with gcd(x, p− 1) = 1
2: Alice calculates a = gx mod p and b = x−1 mod (p− 1)
3: Alice calculates d = (m− aks)b mod (p− 1)
4: Alice sends the message m and the signature (a, d) to Bob
5: Bob checks if 1 ≤ a ≤ p− 1, else he rejects
6: Bob accepts Alice’s signature for m if kapa

d = gm mod p

Remarks:

• A multiplicative inverse modulo p (in this algorithm: x−1 mod p),
can be calculated using, e.g., the extended Euclidean algorithm.

Lemma 12.21. Algorithm 12.20 is correct.

Proof. With d = (m− aks)x−1 mod (p− 1), it follows that:

dx = m− aks mod (p− 1)⇒ m = dx+ aks mod (p− 1).

Using Theorem 12.19, we now obtain gdx+aks = gm mod p. Hence,

kapa
d mod p =

(
gks
)a

(gx)
d

= gaksgdx mod p = gm mod p.

Remarks:

• The security of the Elgamal public key cryptography again depends
on the hardness of the discrete logarithm problem.

• We can now authenticate a message using public key cryptography,
e.g., we can check that the public key of Alice corresponds to Alice’s
secret key.

• However, we are back still at our old problem: How do I know that
Alice’s public key really belongs to Alice? Maybe Eve pretended to
be Alice? To use a famous saying by Peter Steiner: “On the Internet,
nobody knows you’re a dog”.

• What can we do, unless we personally meet with everyone to exchange
secret keys? The answer lies in trusting a few, in order to trust many:
Let’s say that you don’t know Alice, but both Alice and you know
Doris. If you trust Doris, then Doris can verify Alice’s public key for
you. In the future, you can ask Alice to vouch for her friends as well,
etc.

• Trust is not limited to real persons though, especially since Alice and
Doris are represented by their keys. Take a website like PayPal for
example. How do you know that you give them your credit card infor-
mation, and not some infamous Nigerian princess Eve? You probably
don’t know anybody who personally knows PayPal...

114 CHAPTER 12. SECURITY

Definition 12.22 (Web of Trust). Let G = (V,E) be a graph, where an edge
between two nodes u, v represents trust between u, v. For any two nodes u,w,
we say u trusts w if there is a path from u to w in G.

Remarks:

• Hence, if you want someone to authenticate themselves, you need to
find a path in the Web of Trust to them.

• In practice, the Web of Trust is a bit more sophisticated, as you can
assign various levels of trust – and you might only trust someone in
short distance.

• The whole situation is a bit of a chicken and egg dilemma though. In
the beginning, you don’t trust anyone, and nobody trusts you. You
may want to find some well-connected nodes and gain their trust. This
is the motivation for certificate authorities.

Definition 12.23 (Certificate Authority, CA). A certificate authority is a node
in a web of trust that is trusted by many other nodes.

Remarks:

• A main distinction between a CA (or nodes in general) and your real-
life friends is that trust is not needed to be mutual, edges in the web
of trust can also be directed. As such a node u might trust v, but v
does not necessarily need to trust u.

• You will find trust for some certificate authorities pre-installed on your
system/browser, known as root certificates. When you want to know
if you can trust a node, the node can supply you with a path (chain
of trust) from the CA. More specifically, you will be supplied with
signatures which you can check (as you trust the CA).

• Again, one can implement various levels of trust, e.g., you might only
trust short paths.

• Moreover, a CA might get compromised. This leads to the idea of
key revocation, where one can check if a key for a signature has been
compromised – the corresponding certificate can be generated by any-
one holding the respective secret key. Another idea is to also generate
expiration dates for keys.

• A totally different problem is that your own set of root certificates
might be compromised, e.g., if malicious software adds new root cer-
tificates to one’s device.

12.4 Secret Sharing & Bulk Encryption

“Three may keep a secret, if two of them are dead.” – Benjamin Franklin

Definition 12.24 (Perfect Secrecy). An encryption algorithm has perfect se-
crecy, if the encrypted message reveals no information to an attacker, except for
the possible maximum length of the message.

12.4. SECRET SHARING & BULK ENCRYPTION 115

Definition 12.25 (Threshold Secret Sharing). Let t, n ∈ N with 1 ≤ t ≤ n. An
algorithm that distributes a secret among n participants such that t participants
need to collaborate to recover the secret is called a (t,n)-threshold secret sharing
scheme.

Algorithm 12.26 (n, n)-Threshold Secret Sharing

Input: A secret k, encoded in binary representation of length l(k).

Secret distribution

1: Generate n−1 random binary numbers ki of length l(k) and distribute them
among n− 1 participants

2: Give participant n the value kn as the result of XOR of k and k1, . . . , kn−1,
i.e., kn = k1 ⊕ k2 ⊕ · · · ⊕ kn−1

Secret recovery

1: Collect all n values k1, . . . , kn and obtain k = k1 ⊕ k2 ⊕ · · · ⊕ kn−1 ⊕ kn

Theorem 12.27. Algorithm 12.26 has perfect secrecy even if n−1 participants
collaborate.

Proof. The theorem holds as applying the XOR operation ⊕ to a random bit-
string and k results in a random bitstring.

Remarks:

• How can we achieve a (t, n)-threshold secret sharing scheme with per-
fect secrecy?

Algorithm 12.28 (t, n)-Threshold Secret Sharing

Input: A secret k, represented as a real number.

Secret distribution

1: Generate t− 1 random a1, . . . , at−1 ∈ R
2: Obtain a polynomial f of degree t− 1 with f(x) = k+a1x+ · · ·+at−1x

t−1

3: Generate n distinct x1, . . . , xn ∈ R \ 0
4: Distribute (x1, f(x1)) to participant P1, . . . , (xn, f(xn)) to Pn

Secret recovery

1: Collect t pairs (xi, f(xi)) from at least t participants
2: Use Lagrange’s interpolation formula to obtain f(0) = k

Remarks:

• With at most t− 1 pairs (xi, f(xi)), there are infinitely many possible
polynomials with different values for f(0).

• There are many other (t, n)-threshold secret sharing schemes, e.g.,
with intersecting hyperplanes.

116 CHAPTER 12. SECURITY

• Note that in practice, a finite field of prime order instead of real num-
bers is used.

• We can now use the ideas in this section so far to develop a bulk
encryption algorithm with perfect secrecy.

Definition 12.29 (Bulk Encryption Algorithm). A bulk encryption algorithm
can securely encrypt a message of any size.

Algorithm 12.30 One-Time Pad

Input: A message m known to Alice, and a symmetric key k (as a random
bitstring) of length l(k) known by both Alice and Bob.

Encryption

1: Alice sends c = m⊕ k to Bob

Decryption

1: Bob obtains m by m = c⊕ k

Corollary 12.31. Algorithm 12.30 has perfect secrecy.

Remarks:

• Note that Algorithm 12.30 has one big disadvantage – Alice and Bob
need to agree on a large random number first! While this is feasible
for, e.g., secret agents, it is quite impractical for everyday usage.

• One can use padding to also remove information about the length of
the message, e.g., by adding random bits to the secret.

Definition 12.32 (Electronic Code Book, ECB). Given a method to encrypt
a block of x bits, ECB encrypts a message of length rx by splitting the message
into r blocks of length x, encrypting each block separately.

Remarks:

• Do we now have a secure method to easily encrypt a large message, if
we can encrypt small blocks, each using the same one-time pad?

• Suppose you have two message blocks m1,m2 of the same length,
encrypted with k, resulting in c1, c2. However, you can obtain m1 ⊕
m2 = c1 ⊕ c2, giving you information about m1 and m2.

Definition 12.33 (Cipher Block Chaining, CBC). Given a method f to encrypt
a block of x bits, CBC encrypts a message of length rx by splitting the message
into r blocks of length x, m1,m2, . . . ,mr, encrypting (the plaintext of) each
block XORed with the previous encrypted block, i.e., ci = f(mi ⊕ ci−1). The
first block c0 is initialized randomly.

12.5. MESSAGE AUTHENTICATION & PASSWORDS 117

Remarks:

• Are we secure now? Using the same technique as in the last remark,
you can again get, e.g., m4 ⊕m5.

• CBC is still one of the standard techniques though when encrypting
blocks successively, as more advanced algorithms are not susceptible
to this simple attack for one-time pads. An example would be the
advanced encryption standard (AES). Using AES with CBC is an
example of a bulk encryption algorithm. The operation of AES is
beyond the scope of this short chapter however.

12.5 Message Authentication & Passwords

“I’ve been imitated so well I’ve heard people copy my mistakes.” – Jimi Hendrix

Definition 12.34 (Replay Attack). In a replay attack a previously valid mes-
sage from Alice to Bob is sent again from an eavesdropper Eve to Bob.

Remarks:

• An easy way to prevent replay attacks is to include time stamps in
messages. Bob can detect a replay attack, if the time stamp is too
old or multiple messages with the same time stamp arrive. Another
idea is to use nonces (numbers only used once), with the sender and
receiver keeping track of the nonces used so far.

• Another issue is that an attacker could change an encrypted message
without knowing the content

Definition 12.35 (Malleability). If ciphertext c can be changed to c′ such that
the receiver decrypts it into a different message m′ without noticing, the encryp-
tion algorithm is malleable.

Remarks:

• The Elgamal encryption Algorithm 12.15 is malleable: An attacker
can relay c = m · kxp mod p as z · c, resulting in a valid decryption of
zm.

• Thus, we need a way to ensure that the messages cannot be changed
by an attacker. A natural solution are hash functions. However the
hash functions described in Chapter 6 are not secure.

Definition 12.36 (One-Way Hash Function). A hash function h : U → S is
called one-way, if for a given z ∈ S it is computationally hard to find an element
x ∈ U with h(x) = z.

Definition 12.37 (Collision Resistant Hash Function). A hash function h :
U → S is called collision resistant, if it is computationally hard to find elements
x 6= y, x, y ∈ U , with h(x) = h(y) ∈ S.

118 CHAPTER 12. SECURITY

Remarks:

• It can be shown that a collision resistant hash function is also a one-
way hash function.

Theorem 12.38 (Example for a Collision Resistant Hash Function). Let p =
2q + 1 be a safe prime, with primitive roots g1 6= g2 of p. The hash function
h : {0, . . . , q − 1} × {0, . . . , q − 1} → Z \ {0} with h(x1, x2) = gx1

1 gx2
2 mod p is

a collision resistant hash function.

Remarks:

• Popular hash functions used in cryptography include the Secure Hash
Algorithm (SHA) and the Message-Digest Algorithm (MD).

• For a small example, let us pick p = 5 with primitive roots g1 = 2
and g2 = 3. We choose x1 = 3 and x2 = 4, obtaining the hash
h(3, 4) = 2334 mod 5 = 3 mod 5.

• It can be shown that finding a collision for the hash function described
in Theorem 12.38 is equivalent to solving the discrete logarithm prob-
lem for logg1 g2. Thus, the hash function is a collision resistant hash
function, as we assume the discrete logarithm problem to be compu-
tationally hard.

• One might think that using a collision resistant hash function is good
enough to store passwords for a service. E.g., store the hash of each
password, and then compare it to the input of the user. Even if the
hashes are leaked, an attacker Eve cannot recover the passwords – or
can she?

• In practice, many users use short passwords, trading security for con-
venience. Eve can sample the hashes of common passwords such as
“password”, revealing the passwords of all users using these simple
passwords. To counter this attack, one uses a technique called salt-
ing : The service adds a random bitstring (the salt) to each password
before storing the hash (or, less secure, but simpler, the username).
Even if the salt is known for each user, Eve needs to attack the hash
of each user individually.

• To make life for Eve even harder, it is good practice to use hash
functions that provably need a lot of computation and memory to
execute. However, there is still a trade off as the real user wants to
log in fast as well.

• Many web services already offer secure two-factor authentication (e.g.,
via mobile phones) instead of just passwords or challenge-response sys-
tems. However, there is a trade-off between security and convenience.

• Are we resistant against malleability now, if we include a hash of
the encrypted message? No: An attacker changing the message can
change the hash as well, as the hash function is not assumed to be
secret. How do we prevent the hash from being modified without
being noticed? The answer are HMACs:

12.5. MESSAGE AUTHENTICATION & PASSWORDS 119

Definition 12.39 (Message Authentication Code, MAC). A message authen-
tication code is a bitstring that verifies that a message comes from the desired
sender and was not changed until reaching the receiver.

Definition 12.40 (Hash-Based Message Authentication Code, HMAC). A hash-
based message authentication code is a MAC that uses a collision resistant hash
function in combination with a secret key.

Algorithm 12.41 Hash-Based Message Authentication Code Generation

Input: An encrypted message c, to be sent from Alice to Bob, the publicly
known hash function h from Theorem 12.38, and a secret key 1 ≤ k ≤ c known
to Alice and Bob.
Result: An HMAC for c, checkable by Bob.

1: Alice computes hA = h(k, h(k, c)), and sends c, hA to Bob
2: Bob computes hB = h(k, h(k, c)), and checks if hA = hB

Remarks:

• In practice, if k > c, then k will be hashed to have a smaller size.
Also, the key will be padded for extra security.

• If an attacker wants to change the message, he needs to change the
HMAC too. To change the HMAC, he needs to know the secret key k

• Algorithm 12.41 can be also used with any other collision resistant
hash function.

Chapter Notes

The Diffie-Hellman Key Exchange was published in the seminal paper [6], paral-
lel unpublished work also existed from Ellis et al. at the British intelligence ser-
vice GCHQ. For some works showing the hardness of breaking the Diffie-Hellman
key exchange, we refer to, e.g., [5], [10], [17]. For some more recommendations
on how to choose the parameters of the Diffie-Hellman key exchange see RFC
3526 at http://tools.ietf.org/html/rfc3526. The currently fastest algo-
rithms to solve the discrete logarithm problem still have non-practical runtime,
e.g., [1]. The idea of challenging the other party to return an encrypted version
of one’s random number incremented by one in Algorithm 12.11 is taken from
the Kerberos protocol. The Elgamal cryptosystem was published by Elgamal
in 1984 [8], some years after RSA [14].

The first deterministic polynomial primality test, by Agrawal, Kayal, and
Saxena, was published in [9], with an improved runtime of Õ(log6 p) available
at https://math.dartmouth.edu/~carlp/aks041411.pdf. The Miller-Rabin
primality test is from Rabin [13] and Miller [11]. For an introduction to number
theory, we recommend, e.g., [15].

The idea for the web of trust was proposed by Zimmermann in 1992. For
certificate chains and key revocation, we refer to RFC 5280 at http://tools.

ietf.org/html/rfc5280.

http://tools.ietf.org/html/rfc3526
https://math.dartmouth.edu/~carlp/aks041411.pdf
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280

120 CHAPTER 12. SECURITY

The Chaum-van-Heijst-Pfitzmann hash function described in Theorem 12.38
was published in [4] by Chaum et al., for the reduction to the discrete loga-
rithm problem see, e.g., [18]. However, the runtime of the Chaum-van-Heijst-
Pfitzmann hash function is too high in practice, it is chosen in this chap-
ter as it is easier to understand compared to other related work. The sub-
sequently described HMAC Algorithm 12.41 is from RFC 2104 at https://

tools.ietf.org/html/rfc2104, with further security updates in RFC 6151,
cf. https://tools.ietf.org/html/rfc6151.

The secret sharing variant discussed in this chapter is from Shamir [16],
Blakley developed similar work in parallel in 1979 [3], and also discussed its
relation to one-time pads [2].

While CBC seems superior to ECB, there is one downside: Decryption of
ECB can be parallelized, but the decryption of CBC has to be sequential. The
in this context mentioned AES encryption is a symmetric key algorithm, based
on the Rijndael cipher of Daemen and Rijmen. Details of the Advanced Encryp-
tion Standard can be found in http://csrc.nist.gov/publications/fips/

fips197/fips-197.pdf. AES, with a key length of 128,192, or 256 bits, re-
placed DES (Data Encryption Standard), as its key length of just 56 was no
longer secure enough against brute-force attacks.

For a general overview of the topic of computer security, we recommend [12]
and [7]. Lastly, as a very general recommendation, we urge you not to implement
your own cryptosystem unless you really know what you are doing – there is
just too much that can easily be missed.

This chapter was written in collaboration with Klaus-Tycho Förster.

Bibliography

[1] Leonard Adleman. A subexponential algorithm for the discrete logarithm
problem with applications to cryptography. In Proceedings of the 20th
Annual Symposium on Foundations of Computer Science, SFCS ’79, pages
55–60, Washington, DC, USA, 1979. IEEE Computer Society.

[2] G. R. Blakley. One time pads are key safeguarding schemes, not cryp-
tosystems fast key safeguarding schemes (threshold schemes) exist. In Pro-
ceedings of the 1980 IEEE Symposium on Security and Privacy, Oakland,
California, USA, April 14-16, 1980, pages 108–113. IEEE Computer Soci-
ety, 1980.

[3] G.R. Blakley. Safeguarding cryptographic keys. In Proceedings of the 1979
AFIPS National Computer Conference, pages 313–317, Monval, NJ, USA,
1979. AFIPS Press.

[4] David Chaum, Eugène van Heijst, and Birgit Pfitzmann. Cryptographically
strong undeniable signatures, unconditionally secure for the signer. In Joan
Feigenbaum, editor, Advances in Cryptology - CRYPTO ’91, 11th Annual
International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 11-15, 1991, Proceedings, volume 576 of Lecture Notes in Computer
Science, pages 470–484. Springer, 1991.

[5] Bert den Boer. Diffie-hillman is as strong as discrete log for certain primes.
In Shafi Goldwasser, editor, Advances in Cryptology - CRYPTO ’88, 8th

https://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc6151
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

BIBLIOGRAPHY 121

Annual International Cryptology Conference, Santa Barbara, California,
USA, August 21-25, 1988, Proceedings, volume 403 of Lecture Notes in
Computer Science, pages 530–539. Springer, 1988.

[6] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Trans. Information Theory, 22(6):644–654, 1976.

[7] Niels Ferguson and Bruce Schneier. Practical cryptography. Wiley, 2003.

[8] Taher El Gamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. In G. R. Blakley and David Chaum, editors, Ad-
vances in Cryptology, Proceedings of CRYPTO ’84, Santa Barbara, Cali-
fornia, USA, August 19-22, 1984, Proceedings, volume 196 of Lecture Notes
in Computer Science, pages 10–18. Springer, 1984.

[9] Nitin Saxena Manindra Agrawal, Neeraj Kayal. PRIMES Is in P. Annals
of Mathematics, 160(2):781–793, 2004.

[10] Ueli M. Maurer. Towards the equivalence of breaking the diffie-hellman pro-
tocol and computing discrete algorithms. In Yvo Desmedt, editor, Advances
in Cryptology - CRYPTO ’94, 14th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 21-25, 1994, Proceedings,
volume 839 of Lecture Notes in Computer Science, pages 271–281. Springer,
1994.

[11] Gary L. Miller. Riemann’s hypothesis and tests for primality. J. Comput.
Syst. Sci., 13(3):300–317, December 1976.

[12] Josef Pieprzyk, Thomas Hardjono, and Jennifer Seberry. Fundamentals of
computer security. Springer, 2003.

[13] M.O. Rabin. Probabilistic algorithms for testing primality. J. Number
Theory, 12:128 – 138, 1980.

[14] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126,
February 1978.

[15] Winfried Scharlau and Hans Opolka. From Fermat to Minkowski: lectures
on the theory of numbers and its historical development. Undergraduate
Texts in Mathematics. Springer, New York, 1985.

[16] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[17] Victor Shoup. Lower bounds for discrete logarithms and related problems.
In Walter Fumy, editor, Advances in Cryptology - EUROCRYPT ’97, Inter-
national Conference on the Theory and Application of Cryptographic Tech-
niques, Konstanz, Germany, May 11-15, 1997, Proceeding, volume 1233 of
Lecture Notes in Computer Science, pages 256–266. Springer, 1997.

[18] Douglas R. Stinson. Cryptography - theory and practice. Discrete mathe-
matics and its applications series. CRC Press, 1995.

	Network Layer
	Graphs
	Spanning Trees
	Shortest Path
	Addressing
	Packets
	Routing
	Tunnels & NATs
	Beyond IP

	Transport Layer
	Flows
	Linear Programming
	Fairness
	UDP
	TCP

	Application Layer
	HTTP
	HTML
	DNS
	Mail
	Socket API
	Protocol Layers

	Dictionaries
	Search Trees
	Hashing
	Static Hashing
	Collisions
	Worst Case Guarantees

	Databases
	Relational Databases
	SQL Basics
	Modeling
	Joins
	Keys & Constraints
	Indexing
	Transactions
	Programming with Databases

	Link Layer
	Addressing
	Wireless Phenomena
	Medium Access Control (MAC)
	Physical Layer (PHY)

	Markov Chains & PageRank
	Markov Chains
	Stationary Distribution & Ergodicity
	PageRank Algorithm
	Simple Random Walks

	Security
	Transport Layer Security
	Key Exchange
	Public Key Cryptography
	Secret Sharing & Bulk Encryption
	Message Authentication & Passwords

