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1 Regularized Luby’s MIS Algorithm

Consider a regularized variant of Luby’s MIS algorithm, as follows: The algorithm consists of log ∆ + 1
phases, each made of 200 log n consecutive steps. Here ∆ denotes the maximum degree in the graph.

In each step of the ith phase, each remaining node is marked with probability 2i

10∆ . Different nodes are
marked independently. Then marked nodes who do not have any marked neighbor are added to the MIS,
and removed from graph along with their neighbors. If at any time a node v becomes isolated, thus none
of its neighbors remain, then v is also added to the MIS and gets removed from the graph.

(a) Argue that the set of vertices added to the MIS is always an independent set.

Suppose for the sake of contradiction that two neighboring nodes v and u are added to the MIS. Suppose
without loss of generality that v was added no later than u, and let t be the step in which v was added
to MIS. Node u could not have been added in the same step t, because then v and u would be two
neighboring marked nodes, and thus neither would be added. On the other hand, node u could not
have been added in any step strictly after t, because at the end of step t, node v gets removed from
the graph along with all of its neighbors, including u.

(b) Prove that with high probability, by the end of the ith phase, in the remaining graph each node
has degree at most ∆

2i .

Proof is by induction. The base case i = 0 is trivial. Consider the time at the beginning of the ith

phase, and suppose that each remaining node has degree at most ∆
2i−1 . Consider an arbitrary node v

and suppose that v has at least ∆
2i remaining neighbors, at the beginning of this phase. Per step of this

phase, either at most ∆
2i neighbors of v remain, in which case we’re done, or at least ∆

2i + 1 neighbors
remain. In the latter case, there is a constant probability that v or one of its neighbors gets marked. To

be more precise, this probability is at least 1− (1− 2i

10∆ )
∆

2i
+2 ≥ 1− (1− 2i

10∆ )
∆

2i ≥ 1− 2−1/10 ≥ 0.05.

Let u be one such marked node in the neighborhood of v. Conditioned on u being marked, the probability

that no neighbor of u is marked is at least (1− 2i

10∆ )
∆

2i−1 ≥ 4−1/5 ≥ 0.75, because u has degree at most
∆

2i−1 , by the inductive assumption. Hence, we conclude that there is at least a constant probability
0.05 ∗ 0.75 ≥ 1/50 that some node u in the neighborhood of v is marked and no neighbor of u is
marked. In that case, node u goes to MIS and thus v gets removed.

We conclude that in each step that node v has degree at least ∆
2i , node v gets removed with probability

at least 1/50. Thus, considering the 200 log n steps of the phase, the probability of v remaining with
degree above ∆

2i is at most (1− 1/50)200 log n ≤ 2−4 log n = 1/n4. A union bound over all such nodes

v shows that with probability 1− 1/n3, no such node with degree above ∆
2i remains by the end of the

ith phase.

(c) Conclude that the set of vertices added to the MIS is a maximal independent set, with high
probability.

By what we proved in part (b), by the end of the phase log ∆ + 1, each node’s degree must be at most
∆
2∆ = 1/2, with high probability. This means the degree is actually 0. Once a node reaches degree 0,
it gets added to the MIS. If the node v was removed anytime before that, it must have been that there
was a node u in the neighborhood of v, i.e., either u = v or u is a neighbor of v, was added to MIS.
Hence, the set is also maximal, with high probability.
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2 Randomized Coloring Algorithm

Consider the following simple randomized ∆ + 1 coloring algorithm: Per step, each node selects one of
the colors not already taken away by its neighbors, at random. Then, if v selected a color and none of
its neighbors selected the same color in that step, v gets colored with this color and takes this color away
permanently. That is, none of the neighbors of v will select this color in any of the future steps.

(a) Prove that in the first step, each node has at least a constant probability of being colored.

Consider a node v and let c be the color that v selects in the first step. The probability that none of
the neighbors of v selects c is at least (1− 1

∆+1 )∆ ≥ 1/4.

(b*) Prove that per step each remaining node has at least a constant probability of being colored.

(b’) If item (b) turns out to be complex, you may assume that we use d1.02∆e colors, instead of ∆ + 1.
Prove that per step each remaining node has at least a constant probability of being colored.

Consider an arbitrary step v and suppose that by the end of previous step, exactly d neighbors of v
remain uncolored. Then, the number of colors remaining unblocked for v is at least 1.02∆− (∆− d) ≥
d + 0.02∆ ≥ 1.02d. Let us say a remaining color c is bad in this step if at least one of the remaining
neighbors of v selects c in this step. Regardless of how the remaining neighbors of v select their colors
in this step, at most d colors are bad. Hence, at least 1.02d−d

1.02d > 0.01 fraction of colors are good. If
v picks a good color, it becomes colored permanently. Hence, v has a probability of at least 0.01 of
picking a good color and getting permanently colored in this step.

(c) Conclude that within 200 log n steps all nodes are colored, with high probability.

In each step, each remaining node v gets colored with probability at least 0.01. Thus, the probability that
we go for 200 log n steps and still v remains uncolored is at most (1−1/100)200 log n ≤ 2−2 log n = 1/n2.
By a union bound over all vertices v, we get that with probability at least 1 − 1/n, no node remains
uncolored by the end of step 200 log n.
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