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In this lecture, we will discuss time complexity lower bounds for some distributed coloring problems.
That is, we prove that any distributed algorithm that solves the given coloring problem requires at least
so many rounds. Before that, we recall the formal definition of the model of distributed algorithms that
we are using, called the LOCAL model [Lin87, Lin92].

Definition 1. (The LOCAL model) We consider an arbitrary n-node graph G = (V, E) where V =
{1,2,...,n}, which abstracts the communication network. Unless noted otherwise, G is a simple, undi-
rected, and unweighted graph. There is one process on each node v € V' of the network. At the begin-
ning, the processes do not know the graph G, except for knowing' n, and their own unique identifier in
{1,2,...,n}. The algorithms work in synchronous rounds. Per round, each node/process performs some
computation based on its own knowledge, and then sends a message to all of its neighbors, and then
receives the messages sent to it by its neighbors in that round. In each graph problem in this model, we
require that each node learns its own part of the output, e.g., its own color in a graph coloring.

Comment: We stress that the model does not assume any limitation on the size of the messages,
or on the computational power of the processes. Because of this, it is not hard to see that, any ¢-round
algorithm in the LOCAL model induces a function which maps the ¢-hop neighborhood of each node to
its output (why?). For instance, a t-round algorithm for graph coloring maps the topology induced by
vertices within distance ¢ of a vertex v to the coloring of vertex v. The converse of this statement is
also true, meaning that if for a given graph problem, such a function exists, then there is also a t-round
algorithm for solving that problem. Hence, one can say that the LOCAL model captures the locality of
graph problems in a mathematical sense.

1 Lower Bound on Coloring Rooted Trees

We start by examining the graph coloring problem on rooted trees, where each node knows its parent.
In the first lecture of this class, we saw an O(log" n)-round algorithm for computing a 3-coloring of any
such graph. We now prove that this complexity is optimal. In particular, we show that even in a special
case of a rooted path, Q(log” n) rounds are necessary, for any (deterministic) distributed algorithm that
computes a 3-coloring. This result was first proved by [Lin87, Lin92]. We explain a somewhat streamlined
proof, based on [LS14]. The lower bound holds also for randomized algorithms [Nao91], but we will not
cover that generalization, for the sake of simplicity. Furthermore, essentially the same lower bound can
be obtained as a direct corollary of Ramsey Theory. We will have a brief explanation about that, at the
end of this subsection.

Theorem 2. Any deterministic algorithm for 3-coloring n-node directed paths needs at least @ -2
rounds.

For the sake of contradiction, suppose that there is an algorithm A that computes a 3-coloring of any
n-node directed path in ¢ rounds for ¢t < log’n _ 9 When running this algorithm for ¢ rounds, any node
v can see at most the k-neighborhood around itself for £ = 2¢ + 1, that is, the vector of identifiers for
the nodes up to t hops before itself and up to ¢ hops after itself. Hence, if the algorithm A exists, there
is a mapping from each such neighborhood to a color in {1,2,3} such that neighborhoods that can be
conceivably adjacent are mapped to different colors.

We next make this formal by a simple and abstract definition. For simplicity, we will consider only
a restricted case of the problem where the identifiers are set monotonically increasing along the path.
Notice this restriction only strengthens the lower bound, as it shows that even for this restricted case,

there is no t-round algorithm for ¢ < @ - 2.

Definition 3. We say B is a k-ary q-coloring if for any set of identifiers 1 < a3 < as < ... < ap <
ap+1 < n, we have the following two properties:

IMost often, the algorithms will use only the assumption that nodes know an upper bound N on n such that N € [n, n°]
for a small constant ¢ > 1.



P1: B(ai,azg,...,a;) € {1,2,...,q},
P2: B(ay,as, ..., ax) # Blas, ..., akt1).

Observation 4. If there exists a deterministic algorithm A for 3-coloring n-node directed paths in
t< 10ng — 2 rounds, then there exists a k-ary 3-coloring B, where k = 2t +1 < log* n — 3.

Proof. Suppose that such an algorithm A exists. We then produce a k-ary 3-coloring B by examining
A. For any set of identifiers 1 < a1 < as < ... < ax < n, define B(a,as,...,ax) as follows. Simulate
algorithm A on an imaginary directed path where a consecutive portion of the identifiers on the path
are set equal to a1, as,...,ax. Then, let B(aj,as,...,ax) be equal to the color in {1,2,3} that the node
at41 receives in this simulation.

We now argue that B as defined above is a k-ary 3-coloring. Property P1 holds trivially. We now
argue that property P2 also holds. For the sake of contradiction, suppose that it does not, meaning
that there exists a set of identifiers 1 < a1 < ag < ... < ax < a1 < n such that B(aq,as,...,ax) =
B(ag,...,akt1). Then, imagine running algorithm A on an imaginary directed path where a consecutive
portion of identifiers are set equal to aj,as,...,as 2. Then, since B(ay,as,...,a;) = B(az,...,ax+1),
the algorithm A assigns the same color to a;11 and a;1. This is in contradiction with A being a
3-coloring algorithm. O

To prove Theorem 2, we show that a k-ary 3-coloring B where k < log™ n — 3 cannot exist. The proof
is based on the following two lemmas:

Lemma 5. There is no 1-ary q-coloring with ¢ < n.

Proof. A 1-ary g-coloring requires that B(a1) # B(az), for any two identifiers 1 < a1 < as < n. By the
Pigeonhole principle, this needs ¢ > n. O

Lemma 6. If there is a k-ary q-coloring B, then there exists a (k — 1)-ary 29-coloring B'.

Proof. For any set of identifiers 1 < a1 < ag < ... < ag—1 < n, define B’'(a1,as,...,a5_1) to be the set
of all possible colors i € {1,...,q} for which Jar > a_1 such that B(ay,az,...,ax-1,a1r) = i.

Notice that B’ is a subset of {1,...,q}. Hence, it has 29 possibilities, which means that B’ has
property P1 and it assigns each set of identifiers 1 < a1 < as < ... < ar_1 < n to a number in 29. Now
we argue that B’ also satisfies property P2.

For the sake of contradiction, suppose that there exist identifiers 1 < a1 < as < ... < ax < n such
that B'(a1,as,...,ax—1) = B'(az,as,...,ar). Let ¢* = B(ay,as,...,ar) € B'(a1,a9,...,a,-1). Then,
we must have ¢* € B’(ag, as,...,ar). Thus, Jagy1 > ai such that ¢* = B(asg, as, ..., a, ar+1). But, this
means B(ay,as,...,ar) = ¢* = B(ag,as,...,ak,axt+1), which is in contradiction with B being a k-ary
g-coloring. Having reached a contradiction by assuming that B’ does not satisfy P2, we conclude that it
actually does satisfy P2. Hence, B’ is a (k — 1)-ary 2%-coloring. O

Proof of Theorem 2. For the sake of contradiction, suppose that there is an algorithm A that computes
a 3-coloring of any m-node directed path in ¢ rounds for ¢t < @ — 2. As stated in Observation 4,
if there exists an algorithm A that computes a 3-coloring of any n-node directed path in ¢ rounds for
t < @ — 2, then there exists a k-ary 3-coloring B, where k = 2t + 1 < log" n — 3. Using one iteration
of Lemma 6, we would get that there exists a (k — 1)-ary 8-coloring. Another iteration would imply that
there exists a (k — 2)-ary 2%-coloring. Repeating this, after k& < log" n — 3 iterations, we would get a
1-ary coloring with less than n colors. However, this is in contradiction with Lemma 5. Hence, such an
algorithm A cannot exist. O

An Alternative Lower Bound Proof Via Ramsey Theory:

Let us first briefly recall the basics of Ramsey Theory. The simplest case of Ramsey’s theorem says that
for any ¢, there exists a number R(¢) such that for any n > R({), if we color the edges of the n-node
complete graph K, with two colors, there exists a monochromatic clique of size ¢ in it, that is, a set of ¢
vertices such that all of the edges between them have the same color. A simple example is that among
any group of at least 6 = R(3) people, there are either at least 3 of them which are friends, or at least 3
of them no two of which are friends.

A similar statement is true in hypergraphs. Of particular interest for our case is coloring hyperedges
of a complete n-vertex hypergraph of rank k, that is, the hypergraph where every subset of size k of
the vertices defines one hyperedge. By Ramsey theory, it is known that there exists an ny such that, if
n > ng, for any way of coloring hyperedges of the complete n-vertex hypergraph of rank k with 3 colors,



there would be a monochromatic clique of size k 4+ 1. That is, there would be a set of k 4+ 1 vertices a1,
.. a in {1,...,n} such that all of their (kzl) = k subsets with cardinality & have the same color.

In particular, consider an arbitrary k-ary coloring B, and let B define the colors of the hyperedges
{a1,...,a} when 1 < a1 < ay < ... < ax < n. For the remaining hyperedges, color them arbitrarily.
By Ramsey’s theorem, we would get the following: there exist vertices 1 < a1 < ag < ... < a <
ar+1 < n such that B assigns the same color to hyperedges {ai,...,ar} and {as,...,ax4+1}. But this
is in contradiction with the property P2 of B being a k-ary coloring. The value of ng that follows from
Ramsey theory is such that k£ = O(log* ng). In other words, Ramsey’s theorem rules out o(log* n)-round
3-coloring algorithms for directed paths. See [CFS10] for more on hypergraph Ramsey numbers.

2 Coloring Unrooted Trees

In the first lecture of the class, we saw that on a rooted tree, where each node knows its parent, a
3-coloring can be computed distributedly in O(log* n) rounds. In the previous section, we proved that
this round complexity is optimal. This O(log" n)-round algorithm for rooted trees heavily relies on each
node knowing its parent.

We next prove that no such result is possible in unrooted trees, when nodes do not know which
neighbor is their parent. More concretely, we prove that any deterministic algorithm for coloring unrooted
trees that runs in o(log, n) rounds must use at least Q(A/log A) colors. Moreover, we complement this
by showing that given O(logn) rounds, we can compute a 3-coloring of any n-node tree.

2.1 The Lower Bound

Theorem 7. Any (deterministic) distributed algorithm A that colors n-node trees with mazimum degree
A using less than o(A/log A) colors has round complexity at least Q(loga n).

To prove the claimed lower bound, we will use a graph-theoretic result about the existence of certain
graphs. The proof of this lemma is based on a probabilistic method argument, but we do not cover it in
this lecture. Before stating the properties of this graph, we recall that the girth of a graph is the length
of the shortest cycle.

Fact 8 (Bollobas [Bol78]). There exists an n-node graph H* where all nodes have degree A, with girth
g(H*) = Q(loga n) and chromatic number x(H*) = Q(A/log A).

Remark We note that this lower bound on the chromatic number is asymptotically tight, because
high-girth graphs, and more generally triangle-free graphs, with maximum degree A have chromatic
number O(A/log A) [Kim95, Jam11, PS15].

Proof of Theorem 7. For the sake of contradiction, suppose that there exists a deterministic distributed
algorithm A that computes a o(A/log A)-coloring of any n-node tree with maximum degree A, in
o(loga m) rounds.

We run A on the graph H*, stated in Fact 8. Notice that H* is not a tree. However, since g(H*) =
Q(loga n), within the o(loga n) rounds of the algorithm, no one will notice! In particular, since g(H*) =
Q(loga n), for any node v, the subgraph T, of H* induced by nodes within distance o(loga n) of v is a
tree (why?). Thus, within the o(loga n) rounds of the algorithm, node v will think that the algorithm
A is being run on T, and will not realize that the algorithm is being run on a non-tree graph H*.
Similarly, none of the nodes will recognize that we are not on a tree. Hence, each node v will compute
an output as if the algorithm 4 was being run on its local tree T,,. This must produce a valid coloring
of H* with o(A/log A) colors. That is because if the algorithm creates two neighbors v and u with the
same color, then running the algorithm on the tree T, would also produce a non-valid color. However,
the fact that A is able to compute a o(A/log A)-coloring of H* is in contradiction with the fact that
x(H*) = Q(A/log A). O

2.2 The Upper Bound

Theorem 9. There is a deterministic distributed algorithm that computes a 3-coloring of any n-node
tree in O(logn) rounds.



The Algorithm for Coloring Unrooted Trees, Step 1 We first perform an iterated peeling process,
on the given tree T = (V, E). Let Ty = T and let layer Ly be the set of all vertices of T; whose degree in
T is at most 2. Then, let T, = T3 \ Ly be the forest obtained by removing from 7} all the Ly vertices.
Then, define layer Ly be the set of all vertices of T whose degree in T, is at most 2. Then, define
T5 = T3\ Lo similar to before. More generally, each T;11 is defined as T;11 = T; \ L;, which is the forest
obtained by removing from 7; all the layer L; vertices, and then layer L;,1 is defined to be the vertices
that have degree at most 2 in T;4;.

Lemma 10. The process terminates in O(logn) iterations, meaning that V' gets decomposed into disjoint
sets L1, Lo, ..., Ly for some £ = O(logn).

Proof. T; has at most |T;| — 1 edges, since it is a forest. Hence, the number of vertices of T; that have
degree at least 3 is at most (2|T;| — 1)/3. Hence, at least 1/3 of the nodes of T; are put in L;. This
means in each iteration the number of nodes reduces by a 2/3-factor, which implies that we are done
within £ = logg,, n iterations. O

The Algorithm for Coloring Unrooted Trees, Step 2 Now, we color each of the subgraphs T'[L;]
independently using 3 colors, in O(log” n) rounds. Notice that this is doable for instance using the
algorithm that we saw in the 5" lecture, because T[L;] has maximum degree at most 2. We use these
colors of the graphs T[L;] mainly as a schedule-color, for computing the final output coloring of the
vertices.

The Algorithm for Coloring Unrooted Trees, Step 3 We process the graph by going through the
layers Ly to Ly, spending 3 rounds on each. Each time, we make sure that we have a valid final-coloring
of the graph T'[U}_, L;] with 3 colors, for decreasing value of i.

Suppose we have an arbitrary final-coloring of T’ [U?Zi 1+1L;] already, with 3 colors. How do we compute
a 3-coloring for vertices of L; in a manner that does not create a violation with the colors of vertices of
TV L]?

This can be done easily using our usual trick of applying one coloring as a schedule for computing
another coloring. In particular, we will solve this part of the problem in 3 rounds. We go through the
3 schedule-colors ¢ € {1,2,3} of T[L;], one by one, each time picking a final-color in {1,2,3} for all the
vertices in L; with schedule color q.
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