Principles of Distributed Computing

Wireless Protocols

Yvonne-Anne Pignolet, May 2013

Wireless Networks

Very popular !

Biggest Advantage: No wires ☺ => fast installation => cheaper

Biggest Disdvantage:

- No wires \bigcirc
- => attenuation
- => interference
- => energy supply

Big Question

To send or not to send?

Radio Network Model

Radio Network Model

Leader Election

How long does it take until one node can transmit alone?

Initialization

How to assign IDs {1, 2,, n}?

Asynchronous Wakeup

How long for leader election if nodes wakeup up at arbitrary times?

With and without collision detection....

Def: X

X is the RV denoting the number of nodes transmitting in a given time slot

Leader Election without CD: Slotted Aloha

repeat

transmit with probability 1/n until one node has transmitted alone

But then, how can the leader know its role?

The nodes start sending the ID of the leader with 1/n

But how can the node that sent the leader ID know the leader knows?

The leader sends an acknowledgement to this node.

Distributed ACK

Leader Election without CD: Unslotted Aloha

- Slotted Aloha repeat transmit with probability 1/n until one node has transmitted alone

And without time slots?

 \Rightarrow Two partially overlapping messages collide \Rightarrow Probability for success drops to 1/(2e)

Why? Each slot is divided into t small time slots, $t \rightarrow \infty$, nodes start a new t-slot long transmision with probability 1/(2nt)

Non-Uniform Initialization without CD

Repeated Aloha

i = 1

repeat

transmit with probability 1/n

if node v transmitted alone, v gets ID i, i++, n--

until all nodes have an ID

Each ID assignment takes expected time e \Rightarrow Total expected time n*e = O(n)

But: Nodes need to known n!!!

Uniform Initialization

Subroutine Split(I)

repeat

```
choose r uniformly at random from {0, 1}, join P<sub>I+r</sub>
in the next two time slots transmit in slot r and listen in other slot
until there was at least one transmission in both slots
```

```
Initialize()

N:= 1; L := 1;

while L \ge 1 do

all nodes in P<sub>L</sub> transmit

if exactly one node v has transmitted then

v gets ID N and stops the protocol

N++; L--;

else

use Split(L) to partition P<sub>L</sub> into non-empty sets P<sub>L</sub> and P<sub>L+1</sub>

L++

end while
```

Uniform Initialization with CD

Successful: split into 2 non-empty subsets

We need 2n-1 successfull splits \approx creating a binary tree with n leaves and n-1 inner nodes.

Probability to create two

non-empty subsets from a set of size k:

$$\Pr[1 \le X \le k - 1] = 1 - \Pr[X = 0] - \Pr[X = k] = 1 - \frac{1}{2^k} - \frac{1}{2^k} \ge \frac{1}{2}$$

Thus we need time O(n) for 2n-1 splits in expectation.

(with Chernoff whp)

Uniform InitializationSubroutine Split(I)repeatchoose r uniformly at random from {0, 1}, join
$$P_{l+r}$$
in the next two time slots transmit in slot r and listen in other slotuntil there was at least one transmission in both slotsInitialize()N:= 1; L := 1;while L \geq 1 doall nodes in P_L transmitif exactly one node v has transmitted thenv gets ID N and stops the protocol, N++; L--;elseuse Split(L) to partition P_L into non-empty sets P_L and P_{L+1}L++end while

10

Uniform Initialization without CD

Uniform Initialization (no CD)

- 1. Elect a leader
- 2. Divide every slot of the protocol with CD into two slots
 - a) In the first slot, the nodes S transmit according to the protocol
 - b) In the second slot, the nodes S from a) and the leader transmit
- 3. Distinguish the cases according to the table

noise / silence : X

successful transmission: 🖌

	nodes in S transmit	nodes in $S \cup \{\ell\}$ transmit
S = 0	X	✓
$ S = 1, S = \{\ell\}$	✓	✓
$ S = 1, S \neq \{\ell\}$	 ✓ 	X
$ S \ge 2$	×	×

Overhead: factor 2 More generally, a leader brings CD to any protocol

Def: whp

An event happens with high probability if it occurs with $p \ge 1-1/n^{c}$ for some constant c.

Slotted Aloha

repeat

transmit with probability 1/n until one node has transmitted alone

The probability of not electing a leader after c*log n time slots of Slotted Aloha is

$$\left(1 - \frac{1}{e}\right)^{c \ln n} = \left(1 - \frac{1}{e}\right)^{e \cdot c' \ln n} \le \frac{1}{e^{\ln n \cdot c'}} = \frac{1}{n^{c'}}.$$

Uniform Leader Election (no CD)


```
When k \approx \log n, then p \approx 1/n \dots
```

and we have a leader whp when $i = O(\log n)$ (see previous slide)

 \Rightarrow Time complexity O(log n * log n) = O(log^2 n)

Uniform Leader Election (with CD)

Transmit or keep silent repeat transmit with probability ¹/₂ if at least one node transmitted then all nodes that did not transmit quit the protocol end if until one node transmits alone

active nodes decreases monotonically, but always \geq 1.

Successful round (SR): at most half of active nodes transmit

Assume $k \ge 2$ (otherwise we have elected a leader), then prob of SR:

$$\Pr[1 \le X \le \lceil \frac{k}{2} \rceil] \ge \frac{1}{2} - \Pr[X = 0] = \frac{1}{2} - \frac{1}{2^k} \ge \frac{1}{4}.$$

O(log n) SR for leader election. With Chernoff we can prove whp.

Faster Uniform Leader Election (with CD)

$$\begin{split} &If \ j > \log n + \log \log n, \ then \ Pr[X > 1] \leq \frac{1}{\log n}. \\ &If \ j < \log n - \log \log n, \ then \ P[X = 0] \leq \frac{1}{n}. \\ &If \ i > 2\log n, \ then \ Pr[X > 1] \leq \frac{1}{\log n}. \\ &If \ i < 2\log n, \ then \ P[X = 0] \leq \frac{1}{n}. \end{split}$$

 \Rightarrow Time for Phase 1: O(log log n) with probability > 1-1/log n \Rightarrow Time for Phase 2: O(log log n) with probability > 1-1/log n

Faster Uniform Leader Election (with CD)

Let v be such that $2^{v-1} < n \le 2^v$, i.e., $v \approx \log n$. If k > v+2, then $\Pr[X > 1] < \frac{1}{4}$. If k < v-2, then $\Pr[X = 0] \le \frac{1}{4}$. If $v-2 \le k \le v+2$, then $\Pr[X = 1]$ is constant

 \Rightarrow Time for Phase 3: O(log log n) with probability > 1-1/log n (Chernoff)

⇒ Total time: O(log log n) with probability > 1- log log n/log n (union bound to keep error probability low)

Leader Election Lower Bound

Any uniform protocol with election probability of at least 1-1/2^t must run for at least t time slots.

For 2 nodes, the probability that exactly one transmits is at most $P[X = 1] = 2 p (1 - p) \le 1/2$.

Thus after time t the election probability is at most 1-1/2^t.

If a network with more than 2 nodes could find a leader quicker of with higher probability then so could 2 nodes.

Leader Election with Asynchronous Wakeup?

Wakeup Lower Bound

Any uniform protocol has time complexity $\Omega(n/\log n)$ for leader election whp if nodes wake up arbitrarily.

Uniform => all nodes executed the same code At some point the nodes must transmit. Whp unsuccessful

First transmission at time t, with probability p, independent of n Adversary wakes up $w = \frac{c}{p} \ln n$ nodes in each time slot

$$Pr[E1] = P[X=1 \text{ at time t}] < \frac{1}{n^{c-1}} = \frac{1}{n^{c'}}.$$

P[X !=1 at time t and the following n/w time slots]

$$= (1 - Pr(E_1))^{n/w} > \left(1 - \frac{1}{n^{c'}}\right)^{\Theta(n/\log n)} > 1 - \frac{1}{n^{c''}}.$$

Leader Election

How long does it take until one node can transmit alone?

- e in expectation, knowing n
- O(log n) whp, without knowing n, no CD
- O(log log n) without knowing n, with CD, with probability 1-loglog n/log n
- I can: send / receive reach all nodes Two or more collide
- 1-1/log n election probability lower bound for O(log log n) time

Initialization

How to assign IDs {1, 2,, n}?

• O(n) with SplitInitialize (whp with Chernoff)

Asynchronous Wakeup

How long for leader election if nodes wakeup up at arbitrary times?

• $\Omega(n/\log n)$ without IDs and without knowing n