Principles of Distributed Computing

Wireless Protocols

Yvonne-Anne Pignolet, May 2013

Wireless Networks

Very popular!

Biggest Advantage:
No wires ©
=> fast installation
=> cheaper
Biggest Disdvantage:
No wires ©
=> attenuation
=> interference
=> energy supply
Big Question
To send or not to send?

Radio Network Model

send XOR receive

reach all other nodes

Radio Network Model
send XOR receive
reach all other nodes

But two or more simultaneous transmissions collide

Today

Leader Election

How long does it take until one node can transmit alone?

Initialization

How to assign IDs $\{1,2, \ldots ., n\}$?

Asynchronous Wakeup

How long for leader election if nodes wakeup up at arbitrary times?

With and without collision detection....

Def: X

\mathbf{X} is the RV denoting the number of nodes transmitting in a given time slot

Leader Election without CD: Slotted Aloha

Slotted Aloha

 repeattransmit with probability $1 / n$
until one node has transmitted alone

Expected time complexity: e

$$
\operatorname{Pr}[X=1]=n \cdot \frac{1}{n} \cdot\left(1-\frac{1}{n}\right)^{n-1} \approx \frac{1}{e}
$$

But then, how can the leader know its role?
The nodes start sending the ID of the leader with $1 / n$
But how can the node that sent the leader ID

Distributed ACK

The leader sends an acknowledgement to this node.

Leader Election without CD: Unslotted Aloha

Slotted Aloha

repeat

transmit with probability $1 / n$ until one node has transmitted alone

And without time slots?
\Rightarrow Two partially overlapping messages collide
\Rightarrow Probability for success drops to $1 /(2 e)$
Why? Each slot is divided into t small time slots, $\mathrm{t} \rightarrow \infty$, nodes start a new t-slot long transmision with probability $1 /(2 n t)$

Non-Uniform Initialization without CD

Repeated Aloha $\mathrm{i}=1$
 repeat

transmit with probability $1 / n$
if node v transmitted alone, v gets ID $i, i++, n--$ until all nodes have an ID

Each ID assignment takes expected time e
\Rightarrow Total expected time $\mathrm{n}^{*} \mathrm{e}=\mathrm{O}(\mathrm{n})$
But:
Nodes need to known n!!!

Uniform Initialization with CD

Uniform Initialization

Subroutine Split(I)

repeat

choose r uniformly at random from $\{0,1\}$, join P_{1+r}
in the next two time slots transmit in slot r and listen in other slot until there was at least one transmission in both slots

Initialize()
$\mathrm{N}:=1 ; \mathrm{L}:=1$;
while $L \geq 1$ do
all nodes in P_{L} transmit
if exactly one node v has transmitted then
\checkmark gets ID N and stops the protocol
N++; L--;
else
use Split(L) to partition P_{L} into non-empty sets P_{L} and P_{L+1} L++
end while

Uniform Initialization with CD

Successful:
 split into 2 non-empty subsets

```
Uniform Initialization
Subroutine Split(I)
repeat
    chooser uniformly at random from {0, 1}, join P}\mp@subsup{P}{1+r}{
    in the next two time slots transmit in slot r and listen in other slot
until there was at least one transmission in both slots
Initialize()
N:= 1; L:= 1;
while L\geq1 do
    all nodes in P}\mp@subsup{P}{\textrm{L}}{}\mathrm{ transmit
    if exactly one node v has transmitted then
        v gets ID N and stops the protocol, N++; L--;
    else
    use Split(L) to partition P}\mp@subsup{P}{\textrm{L}}{}\mathrm{ into non-empty sets }\mp@subsup{P}{\textrm{L}}{}\mathrm{ and }\mp@subsup{P}{\textrm{L}+1}{
    L++
end while
```


Probability to create two

 non-empty subsets from a set of size k :$$
\operatorname{Pr}[1 \leq X \leq k-1]=1-\operatorname{Pr}[X=0]-\operatorname{Pr}[X=k]=1-\frac{1}{2^{k}}-\frac{1}{2^{k}} \geq \frac{1}{2}
$$

Thus we need time $\mathrm{O}(\mathrm{n})$ for $2 \mathrm{n}-1$ splits in expectation.
(with Chernoff whp)

Uniform Initialization without CD

Uniform Initialization (no CD)

1. Elect a leader
2. Divide every slot of the protocol with CD into two slots
a) In the first slot, the nodes S transmit according to the protocol
b) In the second slot, the nodes S from a) and the leader transmit
3. Distinguish the cases according to the table noise / silence : X
successful transmission:

	nodes in S transmit	nodes in $S \cup\{\ell\}$ transmit
$\|S\|=0$	\boldsymbol{x}	$\boldsymbol{\swarrow}$
$\|S\|=1, S=\{\ell\}$	$\boldsymbol{\checkmark}$	$\boldsymbol{\swarrow}$
$\|S\|=1, S \neq\{\ell\}$	$\boldsymbol{\checkmark}$	\boldsymbol{x}
$\|S\| \geq 2$	\boldsymbol{x}	\boldsymbol{x}

Overhead: factor 2

More generally, a leader brings CD to any protocol

Leader Election With High Probability

Def: whp

An event happens with high probability if it occurs with $p \geq 1-1 / n^{\wedge} c$ for some constant c.

Slotted Aloha

repeat
transmit with probability $1 / n$
until one node has transmitted alone

The probability of not electing a leader after $\mathrm{c}^{*} \log \mathrm{n}$ time slots of Slotted Aloha is

$$
\left(1-\frac{1}{e}\right)^{c \ln n}=\left(1-\frac{1}{e}\right)^{e \cdot c^{\prime} \ln n} \leq \frac{1}{e^{\ln n \cdot c^{\prime}}}=\frac{1}{n^{c^{\prime}}}
$$

Uniform Leader Election (no CD)

Decrease Prob
 for $k=1,2,3, \ldots$ do
 for $i=1$ to $c k$ do
 transmit with probability $p:=1 / 2^{k}$
 At the beginning: p too high and many collisions
 if node v was the only node which transmitted then
 v becomes the leader
 break
 end if
 end for
 end for

When $k \approx \log n$, then $p \approx 1 / n \ldots$
and we have a leader whp when $\mathrm{i}=\mathrm{O}(\log \mathrm{n})$ (see previous slide)
\Rightarrow Time complexity $\mathrm{O}\left(\log \mathrm{n}^{*} \log \mathrm{n}\right)=\mathrm{O}\left(\log ^{\wedge} 2 \mathrm{n}\right)$

Uniform Leader Election (with CD)

Transmit or keep silent repeat
 transmit with probability $\frac{1}{2}$
 if at least one node transmitted then
 all nodes that did not transmit quit the protocol end if
 until one node transmits alone

\# active nodes decreases monotonically, but always ≥ 1.
Successful round (SR): at most half of active nodes transmit
Assume $\mathrm{k} \geq 2$ (otherwise we have elected a leader), then prob of SR:

$$
\operatorname{Pr}\left[1 \leq X \leq\left\lceil\frac{k}{2}\right\rceil\right] \geq \frac{1}{2}-\operatorname{Pr}[X=0]=\frac{1}{2}-\frac{1}{2^{k}} \geq \frac{1}{4} .
$$

O(log n) SR for leader election. With Chernoff we can prove whp.

Faster Uniform Leader Election (with CD)

Guess, guess, walk

1. Get raw estimate of $n, i \approx(1 \pm 1 / 2) \log n$
2. Get better estimate with binary search, $j \approx \log n \pm \log \log n$
3. Do a biased random walk, $\mathrm{k} \approx \log \mathrm{n} \pm 2$
```
i:=1
repeat
    i:=2 - i
    transmit with probability 1/2 2
until no node transmitted
```

$u:=2^{i} \quad l:=2^{i-2}$
while $l+1<u$ do
$j:=\left\lceil\frac{l+u}{2}\right\rceil$
transmit with probability $1 / 2^{j}$
if no node transmitted then
$u:=j$
else
$\quad l:=j$

$k:=u$
repeat
transmit with probability $1 / 2^{k}$
if no node transmitted then
$\quad k:=k-1$
else
$\quad k:=k+1$
end if
until exactly one node transmitted

If $j>\log n+\log \log n$, then $\operatorname{Pr}[X>1] \leq \frac{1}{\log n}$.
If $j<\log n-\log \log n$, then $P[X=0] \leq \frac{1}{n}$.
If $i>2 \log n$, then $\operatorname{Pr}[X>1] \leq \frac{1}{\log n}$.
If $i<\frac{1}{2} \log n$, then $P[X=0] \leq \frac{1}{n}$.
\Rightarrow Time for Phase 1: $O(\log \log n)$ with probability $>1-1 / \log n$
\Rightarrow Time for Phase 2: $\mathrm{O}(\log \log n)$ with probability $>1-1 / \log n$

Faster Uniform Leader Election (with CD)

Guess, guess, walk

$|$| $i:=1$
 repeat
 $i:=2 \cdot i$ |
| :--- |
| \quad transmit with probability $1 / 2^{i}$ |
| until no node transmitted |

$u:=2^{i} \quad l:=2^{i-2}$
while $l+1<u$ do
$j:=\left\lceil\frac{l+u}{2}\right\rceil$
transmit with probability $1 / 2^{j}$
if no node transmitted then
$u:=j$
else
$\quad l:=j$

$k:=u$
repeat
transmit with probability $1 / 2^{k}$
if no node transmitted then $k:=k-1$
else
3.
$k:=k+1$
end if
until exactly one node transmitted
$i \approx(1 \pm 1 / 2) \log n \quad j \approx \log n \pm \log \log n \quad k \approx \log n \pm 2$
Let v be such that $2^{v-1}<n \leq 2^{v}$, i.e., $v \approx \log n$. If $k>v+2$, then $\operatorname{Pr}[X>1]<\frac{1}{1}$.
If $k<v-2$, then $P[X=0] \leq \frac{1}{4}$.
If $v-2 \leq k \leq v+2$, then $\mathrm{P}[\mathrm{X}=1]$ is constant

\Rightarrow Time for Phase 3: $\mathrm{O}(\log \log n$) with probability $>1-1 / \log n$ (Chernoff)
\Rightarrow Total time: $\mathrm{O}(\log \log n)$ with probability $>1-\log \log n / \log n$ (union bound to keep error probability low)

Even Faster Uniform Leader Election?

- Leader Election Lower Bound

Any uniform protocol with election probability of at least $1-1 / 2^{\wedge} t$ must run for at least t time slots.

For 2 nodes, the probability that exactly one transmits is at most $P[X=1]=2 p(1-p) \leq 1 / 2$.

Thus after time t the election probability is at most $1-1 / 2^{\wedge} \mathrm{t}$.
If a network with more than 2 nodes could find a leader quicker of with higher probability then so could 2 nodes.

Leader Election with Asynchronous Wakeup?

Wakeup Lower Bound

Any uniform protocol has time complexity $\Omega(\mathrm{n} / \log \mathrm{n})$ for leader election whp if nodes wake up arbitrarily.

Uniform => all nodes executed the same code At some point the nodes must transmit.

Whp unsuccessful

First transmission at time t, with probability p, independent of n Adversary wakes up $w=\frac{c}{p} \ln n$ nodes in each time slot
$\operatorname{Pr}[E 1]=\mathrm{P}[\mathrm{X}=1$ at time t$]<\frac{1}{n^{c-1}}=\frac{1}{n^{c^{c}}}$.
$P[X!=1$ at time t and the following n / w time slots]

$$
=\left(1-\operatorname{Pr}\left(E_{1}\right)\right)^{n / w}>\left(1-\frac{1}{n^{c^{\prime}}}\right)^{\Theta(n / \log n)}>1-\frac{1}{n^{c^{\prime \prime}}}
$$

Summary

Leader Election

How long does it take until one node can transmit alone?

- e in expectation, knowing n
- O(log n) whp, without knowing n, no CD
- O(log $\log n)$ without knowing n, with CD,
 with probability $1-\log \log n / \log n$
- 1-1/log n election probability lower bound for $O(\log \log n)$ time

Initialization

How to assign IDs $\{1,2, \ldots ., n\}$?

- O(n) with SplitInitialize (whp with Chernoff)

Asynchronous Wakeup

 How long for leader election if nodes wakeup up at arbitrary times?- $\Omega(\mathrm{n} / \log \mathrm{n})$ without IDs and without knowing n

