PoDC: WiFi spying

Seeing, keylogging and hearing through walls

papers:

See Through Walls with WiFi!
Tracking Keystrokes Using Wireless Signals
We Can Hear You with Wi-Fi!

François Wirz | 23-05-2017
Motivation: Sensing with Wireless Signals

- Coarse granularity
 - tracking position in room
Motivation: Sensing with Wireless Signals

- **Coarse granularity**
 - tracking position in room

- **Fine granularity**
 - tracking gesture through walls
 - binary H2M communication through walls
Motivation: Sensing with Wireless Signals

- **Coarse granularity**
 - tracking position in room

- **Fine granularity**
 - tracking gesture through walls
 - binary communication through walls

- **Very fine granularity**
 - tracking keystrokes
 - tracking lip movements
Technical Primer

Constructive interference

Destructive interference

image sources: all images are adapted from the respective paper, except where stated otherwise
image src: http://pediaa.com/difference-between-constructive-and-destructive-interference/
Technical Primer: Interference Nulling

Interference nulling with two sources

image src: http://pediia.com/difference-between-constructive-and-destructive-interference/

Technical Primer: Beamforming

Beamforming through constructive interference
MIMO is used in:

- WiFi 802.11n standard
- LTE standard
- Power-line communication
Technical Primer: Multiple-Input Multiple-Output

- MIMO
 - allows to focus the signal emitted (beamforming)
 - allows signal to cancel out in a plane (interference nulling)
 - can use multiple senders or multiple receivers or both
 - more uniform signal that can be amplified (no receiver saturation)

Technical Primer: Flash effect

- Flash effect
 - most of the signal gets reflected by the first obstacle
 - cancels out all weaker signal from behind
 - signal from bodies is drowned in noise
 - cannot amplify signal because receiver would saturate
Technical Primer: Flash effect

- Other approaches use larger devices:
 - 2 GHz of bandwidth (UWB)
 - strong power source
 - large antenna array (2.5 m)
Technical Primer: Inverse Synthetic Aperture

- **Synthetic Aperture Sensing**
- **Inverse Synthetic Aperture Sensing**
 - use temporal signal to extract spatial information
 - obtain angle of motion

![Diagram of Antenna Array and Angle of Arrival](image src: https://people.csail.mit.edu/fadel/papers/wivi-poster.pdf)
See Through Wall: WiVi

- Applying these techniques with WiVi:
See Through Wall: WiVi

WiVi: angle and motion
WiVi: Gesture encoding

- Standard Return-to-zero encoding
 - Encode 0 bit as step forward, step back
 - Encode 1 bit as step back, step forward
See Through Wall: WiVi

- Property used
 - MIMO interference nulling at wall, first obstacle
 - Inverse Synthetic Aperture for emulated antenna array
See Through Wall: WiVi

● Property used
 ○ MIMO interference nulling at wall, first obstacle
 ○ Inverse Synthetic Aperture for emulated antenna array

● Objective achieved
 ○ Overcome flash effect
 ○ Have a portable solution
Tracking Keystrokes using Wireless Signals
Tracking Keystrokes using Wireless Signals
Tracking Keystrokes using Wireless Signals

![Graph showing 50 Key Stroke and Baseline Phase](image-url)
From phase to delay

- Get delay introduced by keystroke by converting phase shift into delay
- Capture delay effect by using cancellation at receiver
From delay to keystroke

- Measure trough location to infer change in channel
- Introduce artificial delay to make trough more significant
The keystroke tracking system

Spectrum Analyzer
1. Feedback control to adjust signal cancellation based on spectrum shape
2. Locate trough position as the index to key stroke detection

Key stroke detection Algorithm
Tracking Keystrokes: Performance

Repeated key 5 on keypad: accuracy
Tracking Keystrokes: Performance

Full key range, partially trained
Tracking Keystrokes using Wireless Signals

- Property used
 - Shift in frequency of cancellation through caused by phase shift of channel
 - Finger modeled as source of multipath signal
Tracking Keystrokes using Wireless Signals

- Property used
 - Shift in frequency of cancellation through caused by phase shift of channel
 - Finger modeled as source of multipath signal

- Objective achieved
 - first passive, single receiver keystrokes tracking system
 - agnostic of physical layer and MAC protocols
We Can Hear You with WiFi: WiHear

Device free, non-invasive remote ‘hearing’
We Can Hear You with WiFi

- Vowels and consonants
- Filtering
 - Remove Noise
 - Partial Multipath Removal
 - Profile Building
 - Wavelet Transform

Mouth Motion Profiling

- Laptop
- People
- MIMO Beamforming
- AP
Mouth motion profiling

- Locating mouth
Mouth motion profiling

- Filtering out-band interferences
 - cancel high frequency interferences
 - remove both static interferences and winking using band-pass filter (red boxes)
Mouth motion profiling

- Partial multipath removal
 - Convert Channel State Information to time domain via IFFT
Mouth motion profiling

- Partial multipath removal
 - Convert Channel State Information to time domain via IFFT
 - Remove multipath >500 ns
Mouth motion profiling

- Partial multipath removal
 - Convert Channel State Information to time domain via IFFT
 - Remove multipath >500 ns
 - Convert CSI back to frequency domain via FFT
Mouth motion profiling

- Partial multipath removal
 - Convert Channel State Information to time domain via IFFT
 - Remove multipath >500 ns
 - Convert CSI back to frequency domain via FFT

- Rational
 - mouth motion is non-rigid compared to other body movements
 - multipath reflections with similar delays do all contain information about the mouth motion
Mouth motion profiling

- Apply discrete wavelet packet decomposition
 - easier signal analysis on time and frequency domain
 - allows multi-scale analysis
Learning based lip reading
Learning based lip reading

- Word segmentation
- Inner-word segmentation
- Feature extraction
- Classification
We Can Hear You with WiFi

(a)
(b)
(c)
(d)
(e)
(f)
We Can Hear You with WiFi

- Property used
 - MIMO beamforming, focused on mouth
 - Partial multipath effect, partially remove multipath after wavelet packet transformation
We Can Hear You with WiFi

- **Property used**
 - MIMO beamforming, focused on mouth
 - Partial multipath effect, partially remove multipath after wavelet packet transformation

- **Objective achieved**
 - Lip reading and speech recognition without line of sight
 - Context aware speech recognition enhancement
Conclusion

- All three very innovative
- Early stage proofs of concept
- Novel use cases requiring NLOS sensing
- Far reaching privacy implications
- The ISM band can be used for more than machine to machine communication, e.g. indoor localization, sensing and control
Follow up results

video src: https://youtu.be/sbFZPPC7REc?t=122
Follow up results

Our device can also monitor breathing and heart rate