Andr0|d Appllcatlon Talnt AnaIyS|s N
Seminar in Distributed Computing

By Jinank Jain
M.Sc Computer Science

Jinank Jain | 13-Mar-17 | 1

Introduction to Taint Analysis

= Taint analysis detects flow from sensitive data sources
to untrusted sinks.

|

'—_______M

i

?‘

|
1

2
2

\"A"}

Sensitive Data Source Untrusted Sinks

Jinank Jain | 13-Mar-17 | 2

History of Taint Analysis

Smart

Web Phones like

Operating Programming

Systems Languages Browsers Android

Jinank Jain | 13-Mar-17 | 3

Use Case of Taint Analysis

Strengths and Weakness of Taint Analysis

= Strengths
= Scales Well

= Can find bugs with high confidence for certain aspects like Buffer
Overflow, SQL Injection Flows etc.

= Weakness
= High numbers of false positives.

= Security vulnerabilities such as authentication(OAuth 2.0)
problems, are very difficult to find automatically

* Frequently can't find configuration issues, since they are not
represented in the code.

Jinank Jain | 13-Mar-17 | 5

Static V/S Dynamic Taint Analysis

Static Taint Analysis Dynamic Taint Analysis

Statically analyze source code Dynamic Debugger Approach

Does not affectthe executiontime Slows the execution of the program

Greater Code Coverage Typically lacks code coverage
Requires single run to check Requires multiple test runs to reach
complete code appropriate code coverage

Not easily detectable as code is Easily detectable by malicious app

analyzed statically and could fool the analyzer

Jinank Jain | 13-Mar-17 | 6

Why Android security is important?

Other: 0.02 %

Samsung: 0.01 %

BlackBerry: 0.37 %

Symbian: 0.85 %

Java ME: 1.09 %
Windows Phone: 1.41 %

iI0S: 29.55 %

S~ Android: 66.71 %

Android has the largest market share and it is very common for the apps
to disclose sensitive information on network

Jinank Jain | 13-Mar-17 | 7

Some insights about Sensitive Information

Trueca”er Ca“er ID & & Top Developer
Dialer

True Software Scandinavia AB Communication *hh%1 4710517 &
B PEGI3

Contains ads - Offers in-app purchases
This app is compatible with your device.

Big Security Flaw

Anyone gaining the IMEI of a device will be able to get
Truecaller users’ personal information (including phone
number, home address, mail box, gender, etc.) and
tamper app settings without users’ consent, exposing
them to malicious phishers

Jinank Jain | 13-Mar-17 | 8

Problem

= Sensitive Data Disclosures

= |eak private data through a dangerously broad set of
permissions granted by the users.

3 A @ oo:07
" Handcent SMS

“‘% \lipapers Hello FREE
) w4 IceskYsl@1sters! LA

handcent_admin

This application has access to the
following:

retrieve running applicatior A Network communication
Your messages YR RSt ICh O
BCit JEACSHS Or AN A Phone calls

A Services that cost you money

A Storage

A Storage
modify/delete SD card content Q’/ Hide
A Your personal information
Network communication

' OK I Cancel OK l Cancel

Jinank Jain | 13-Mar-17 | 9

Motivation

parties

D

© SINKS:
L Network, J

Logs, etc.

Untrusted J
unencrypted

Phone number,
Location, IMEl, etc.

{ SOURCES:

Jinank Jain | 13-Mar-17 | 10

General Problem with Static Analysis on
Android Platform

= Abstraction of the Runtime Environment
= Analyzing XML and Manifest files

= Aliasing

Jinank Jain | 13-Mar-17 | 11

Android Lifecycle

Resumed
onResume() onPause()
Started Paused
onStart()/ onResume() N\Stop()
onCreate() Created Stopped

onDestroy()

Destroyed

Jinank Jain | 13-Mar-17 | 12

XML and Manifest Files

= Lot of Ul Related Stuffis present in Layout XML
= Callbacks are registered in the XML files

= While decompiling code all those XML files are lost

Jinank Jain | 13-Mar-17 | 13

Aliasing

Aliasing describes a situation in which a data location
In memory can be accessed through different symbolic
names in the program

Jinank Jain | 13-Mar-17 | 14

Outline of Talk

- Flow Droid

DidFail: “Flow Droid + Epicc”

DFlow and Dinfer

PLDI' 14
Flow Droid: Precise Context, Flow, Field, Object-

sensitive and Lifecycle aware Taint Analysis for
Android Apps

Some basic terminology

Context Sensitivity

secret

public
f (secret);
f (public);
X 5

f (int x) { return x +42; }

Jinank Jain | 13-Mar-17 | 17

Some basic terminology

Flow Sensitivity

secret 1:

public 2:

if secret == 1:
public = 3;

else:
public = 4;

Jinank Jain | 13-Mar-17 | 18

Some basic terminology

Object Sensitivity

class A {
String Xx;
void set(String y) {
this.x = y;

}

String get() {
return this.x

}

}

class B {
A a = new A():
A al = new A():
a.set("secret"):
al.set("public");
sendNetwork(a.get());
sendNetwork(al.get());

Jinank Jain | 13-Mar-17 | 19

Some basic terminology

Field Sensitivity

Username or email

Password

AutoFill: All [Switch To twitter.com]

P 02 - argos.co.uk (Ipuser@lastpass.com) | | Fill

(3 03 - play.com (Ipuser@lastpass.com) Fill

BB 04 - marksandspencer.com (Gott) Fill

Jinank Jain | 13-Mar-17 | 20

Contributions of FlowDroid

= FlowDroid the first fully context, field, object and flow-

sensitive taint analysis

= Considers Android application lifecycle and Ul widgets,

and which features a novel approach
= DroidBench, a novel benchmark suite

= Ran FlowDroid over 500 apps from Google Play and

about 1000 malware apps from the VirusShare project

Jinank Jain | 13-Mar-17 | 21

Attacker Model

Prowdes Leaks
MaI|C|ous Data on
Internet

Attacker Malicious App Internet

Jinank Jain | 13-Mar-17 | 22

public class LeakageApp extends Activity {
EditText passwordText =

(_EditText)findViewById(R.id.pwdString);
String pwd = passwordText . toString ();

// Callback method in xml file

public void sendMessage (View view)
Password pwd = user . getpwd (); \ Password
String pwdString = pwd . getPassword (); Is read and
String obfPwd = ""; send out
// must track primitives : via SMS

for(char ¢ : pwdString . toCharArray ())
obfPwd += ¢ + "_"; // String concat .

String message = " User : " +

user . getName () + " | Pwd: " + obfPwd ;

SmsManager sms = SmsManager . getDefault ();

sms.sendTextMessage(" +44 020 7321 0905 ",
25 null , message , null , null);

Jinank Jain | 13-Mar-17 | 23

Problems in Static Analysis of Android Apps

= Precise Modeling of Android Lifecycle
= Multiple Entry Points
= Asynchronously executing components

= Callbacks

Problem 1: Precise Modeling of Lifecycle

(Activity \
\ launched /

\L /

——

& onCreate()

v

onStart() B — onRestart()

‘ A

onResume() ‘-

User navigates
to the activity

/- Y

|"" App process "'| ""‘ Activity ""]
. killed , .~ running

N "
- / M

Another activity comes

nto the foreground
9 User returns

+ to the activity
—— onPause() I —

The activity is
no longer visible

Apps with higher priority
need memory

User navigates
+ to the activity
J

onStop()
[

The activity is finishing or
being destroyed by the system

v

onDestroy()

\ shut down / Jinank Jain | 13-Mar-17 | 25

Problem 2: Multiple Entry Points

(Activity
\ launched

g S
> onCreate()

v

onStart() B — onRestart()

A .)
v [J] Testjava 22
User navigates
tivi -—
to the activity onResume()

‘ 1 package com.journaldev.java.examplesl;

& App process = [Activity 3 public class Test {
\ killed .' '..\ running |
' [o 5 public static void main(String args[]) {
Another activity comes i
nto the fireg'o“nd User returns 7 System.out.println("Hello World");
to the activity Q

onPause() I —) }
' 0}
The activity is
no longer visible

User navigates
+ to the activity

onStop() J
[

The activity is finishing or
being destroyed by the system

v

onDestroy()

Apps with higher priority
need memory

Jinank Jain | 13-Mar-17 | 26

Problem 3: Asynchronously executing
components

Jinank Jain | 13-Mar-17 | 27

Problem 4: Callbacks

= Register callbacks for various purposes like location

update, Ul interaction etc.

= FlowDroid does not assume any order on registration of

callback

= Callback can be registered in two ways:

= XML files of an activity and

= Using well known calls to specific system methods

Jinank Jain | 13-Mar-17 | 28

Brief Implementation Overview of FlowDroid

: .) Use SuSi Tool
source, sink and /

entry-point detection

: generate
parse manifest file — Hain method
parse .dex files build call graph

y
l perform taint
analysis

parse layout xmls ——

i |

Figure 4: Overview of FLOWDROID

Jinank Jain | 13-Mar-17 | 29

FlowDroid’s Approach

= FlowDroid Analysis is based upon Soot (Android Code
Analyser) and Heros(IFDS Solver)

= Build a dummy main method which take care of all the

problems mentioned previously.

= Accurate and efficient alias search is crucial for

context-sensitivity in conjunction with field-sensitivity

Jinank Jain | 13-Mar-17 | 30

IFDS Solver

A S.S<xfa>
‘ P
declare g: integer e
' ¥ main i ‘p
. ENTER main !;' , ENTERP
gerg{g;am main AS.(xg) ' ASS
- 3 ni ; : nd
dec:la;m)e x: integer - /o -
reaalx / ! ASS
call P (x) ASS5-(x} / ? \
/ ns
end C:iL P / ‘ AS.S READG)
IFDS Solver - e [s
AS.5-(g) e 53 6
) . '.'_‘ o
procedure P (value a: integer) - w3 . s:=a-g
begin %ﬂg *.-.x. \ J ls.lirl’lgesﬁ)&r](gw)
. -\\ Ay n? else S-{a)
if (a > 0) then Ass \ o
read(g) — e TS5
call P(a) X el [e =
¢ 4 /- FROM P
print(aI g) ";‘ lss_(a’ !. ‘)'3.8
ﬁ %l '/".‘ n9
end ASS-(a) § / PRINT(a,g)
" ' / Ass

Input Output \-=

Jinank Jain | 13-Mar-17 | 31

Solving Aliasing Problem

void mainQ) { 977 iy w000y f Y zag.f

@ a = new AQ; / X = 2.9; e’

b =a.g; ¥~ ! e

)@ / w = source();
bfifoo(a); <\~_’,' x.f ‘\\ x.f=W; < >w

. sink(b.f); 1 @¢X.F
(2)

Figure 2: Taint analysis under realistic aliasing

Statements are examined in the reverse order and learn
that z.g.f, a.g.f and b.f are aliases of x.f. The sink method
takes b.f as input parameter, so there is a source-to-sink
connection.

Jinank Jain | 13-Mar-17 | 32

Experimental Evaluation

* How does FlowDroid compare to commercial taint
analysis tools for Android in terms of precision and recall?

DroidBench

= Android specific test-suite, keeping in Android specific
problems

= 39 hand-crafted Android apps

= Precision of 86% and recall 93% which is much better
than AppScan Source and FortifySCA.

Precision = correct warning / (correct warning + false warning)
Recall = correct warning / (correct warning + missed leak)

Jinank Jain | 13-Mar-17 | 33

Cont. Experimental Evaluation

= Performance on InsecureBank

InsecureBank is basically a vulnerable App designed to test
analysis tools

* Analysis of App: 31 seconds

« Detects all 7 data leaks

« No false positive or false negatives

* Performance on Real-World Applications
= Ran FlowDroid on 500 Google Play apps = no leaks

= Again ran on 1000 known malware samples from Virus Share
project = average 2 leaks

Jinank Jain | 13-Mar-17 | 34

Cont. Experimental Evaluation

= SecuriBench Micro
Intended for web-based applications

The number of actual leaks reported (11/7/121) and false
positives (9) gives good results for FlowDroid

Test-case group TP FP

Aliasing 11/11 0
Arrays 9/9 6
Basic 58/60 0
Collections 14/14 3
Datastructure 5/5 0
Factory 3/3 0
Inter 14/16 0
Pred n/a n/a
Reflection n/a n/a
Sanitizer n/a n/a
Session 3/3 0
StrongUpdates 0/0 0
Sum 117/121 9

Table 2: SecuriBench Micro test results

Jinank Jain | 13-Mar-17 | 35

Limitations

= Resolves reflective calls only if their arguments are string
constants

= Handles arrays imprecisely

= Cannot detect Inter Application security leaks
= Cannot detect network leaks

= Big Flawed Assumption :

Threads execute in any arbitrary but sequential order and
thus does not account for multiple threads

Jinank Jain | 13-Mar-17 | 36

SOAP’ 14

Android Taint Flow Analysis for App Sets

Motivation

= Detect malicious apps that leak sensitive data
= E.g., leak contact list to marketing company
= “All or nothing” permission model

= Apps can collude to leak data
= Evades precision detection if only analyzed individually

= Build upon FlowDroid

= FlowDroid alone handles only intra-component flows.
= Extend it to handle inter-app flows

Jinank Jain | 13-Mar-17 | 38

Quick Recap about Android

= Android apps have four types of components
= Activities (main focus)
= Services
= Content Providers
= Broadcast Receivers

* Intents are messages to components

i-——‘—--.
|
'
!

- -

Intents

Jinank Jain | 13-Mar-17 | 39

Contributions

= Developed a static analyzer called “DidFail”
= Find flows of sensitive data across app boundaries

= Two phase analysis
= Analyze each app in isolation

= Use the result of Phase-1 analysis to determine inter-app
flows

= Tested analyzer on two set of apps

Jinank Jain | 13-Mar-17 | 40

Motivating Example

= App SendSMS.apk sends an intend (a message) to
Echoer.apk which sends a result back

Device ID SendSMS.apk Echoer.apk
(Source)

Vi < setResult
Text Message % onActivityResult()

(Sink)

Jinank Jain | 13-Mar-17 | 41

Analysis Design

= Phase 1: Each app analyzed once, in isolation

= Each intent is given a unique ID

= Phase 2: Analyze a set of apps

= For each intent sent by a component, determine which components

can receive the intent

= Generate & solve taint flow equations.

iApp 1:+—» Phasel

.........

§App2:~—> Phasel [—

iApp3i—»{ Phasel —————F Phase2 [—>
""""" >
<
Y >
o >
[J
iAppn: LRI Jinank Jain | 13-Mar-17 | 42

Implementation: Phase 1

= APK Transformer

= Assigns unique Intent ID to each call site of intent-sending
methods

= Uses Soot to read APK, modify code and write new APK

Phase 1

Original APK
I TransformAPK

| Extract manifest |

— | Epicc >

FlowDroid
(modified)

Jinank Jain | 13-Mar-17 | 43

Implementation: Phase 1

= FlowDroid Modifications

= Extract intent IDs inserted by APK Transformer, and include in
output.

= When sink is an intent, identify the sending components

Phase 1
— | Epicc >

> FlowDroid e
Y (modified)

| Extract manifest |

Original APK

> | TransformAPK

Jinank Jain | 13-Mar-17 | 44

Implementation: Phase 2

= Phase 2

= Take the Phase 1 output
= Generate and solve the data-flow equations
= Qutputs:

= Directed graphs indicating information flow between sources, intent,
intent results, and sinks

= Taintedness of each sink

App1i—» Phasel

App 2 +—» Phase 1

.........

App 3 +—» Phase 1

.........

éAppn —» Phasel |

.........

Jinank Jain | 13-Mar-17 | 45

Use of Two-Phase Approach in App Stores

= An app store runs the phase-1 analysis for each app it has

= \When the user wants to download new app, the stores runs the
phase-2 analysis and indicates new flows

= Fast Response to user

A r ri m Provider

Check(AppZ, List_MyApps) Stored Phase 1 analysis | s
= App;: TaintFlowInfo,,, Intentinfo,, App,
o App.: TaintFlowInfoaz, Intentinfoa; App,
ya Apps
e < Appy: TaintFlowInfo,y, Intentinfo,y App,
“Flows possible are : Apps

[POSSIBLE_FLOWS]. Phase 2 analysis
Do you want to install AppZ?” Output: potential tainted flows ApPx

Jinank Jain | 13-Mar-17 | 46

Limitations

= Unsoundness
* |nherited from FlowDroid/Epicc
= Native code, reflection etc
= Imprecision
= |nherited from FlowDroid/Epicc
= DidFail doesn’t consider permissions when matching intents

= All intents received by a component are conflated together as a

single source

Jinank Jain | 13-Mar-17 | 47

ISSTA 15
Scalable and Precise Taint Analysis For Android

Basic Ildea about Type System

A type system is a set of rules that assign a property called
type to various constructs a computer program consists of,
such as variables, expressions, functions or modules.

Main Purpose: Reduce possibilities of bug in computer
program

For ex: stringa=stringb
stringa #intb

Jinank Jain | 13-Mar-17 | 49

Motivating Example [From DroidBench]

public class Data ({
String
String get() { return £; }
void set(String p) { £ = p; }
}
public class FieldSensitivity3 ({
protected void onCreate (Bundle b) {
Data dt = new Data() ;

String sim = tm.getSimSerialNumber() ;

dt.set (sim) ; . >
String sg = dt.ge : L‘Leak!<J

sms . sendTextMessage (..7sg,..) ; // sink

}

Jinank Jain | 13-Mar-17 | 50

Solution — DFlow/Droidinfer

public class Data ({ Subtyping:
String £; safe <:tainted

String get() { return £; }
void set(String p) { £ = p; }

}

public class FieldSensitivi
protected void onCreate (Bun

Source: the return

value is tainted
) 1

tm.getSimSerialNumber () Sink:the parameterj
dt.set(sim) ;

tainted String sg =
sms . sendTextMessage(..,sg,..) ; // sink

}
} [Type error!

Jinank Jain | 13-Mar-17 | 51

Contributions

= DFlow context sensitive information flow type system
= Droidlnfer: An inference algorithm for DFlow

= CFL-Explain: A CFL-reachability algorithm to explain type

errors

= |mplementation and evaluation

* DroidBench, Contagio, Google Play Store

Jinank Jain | 13-Mar-17 | 52

Inference and Checking Framework

= Build DFlow/Droidinfer on top of type inference and

checking framework

= Frameworks infers the “best” typing

= |f inference succeeds, this verifies the absence of errors

= QOtherwise, this reveals errors in the program

Jinank Jain | 13-Mar-17 | 53

DFlow

= Type Qualifiers

= tainted: A variable x is tainted, if there is flow from a
sensitive source to x

= safe: A variable x is safe, if there is flow from x to an
untrusted sink

- The polymorphic qualifier, is interpreted as tainted
in some contexts and as safe in other contexts

= Subtyping hierarchy:
= safe <: <: tainted

Jinank Jain | 13-Mar-17 | 54

Context Sensitivity (View Adaptation)

Concrete value of IS interpreted by the viewpoint
adaptation operation.

class Util {
poly String id(tainted Util this, poly String p) {
return p;
}

}

Util y = new Util();

tainted String src = ...;

safe String sink = ...;

tainted String srcId = y.id1@(src);
safe String sinkId = y.id11(sink);

Jinank Jain | 13-Mar-17 | 55

Inference Example

public class Data {
{poly, tainted} String f;
{safe, poly, tainted} String get ({safe, poly, tainted} Data this) {
return this.f;
}

void set({safe, poly, tainted} Data this,
{safe, poly, tainted} String p) {
this.f = p;

}

public class FieldSensitivity3 {
protected void onCreate(Bundle b) {
{safe, poly, tainted} Data dt = new Data();
{safe, poly, tainted} String sim =
tm.getSerialNumber();

dt.set(sim);

{safe, poly, tainted} String sg = dt.get();
sms.sendTextMessage(..., sg, ...);

Jinank Jain | 13-Mar-17 | 56

Inference Example

public class Data {
{poly, tainted} String f;
{safe, poly, tainted} String get ({safe, poly, tainted} Data this) {

return this.f;
}

void set({safe, poly, tainted} Data this,
{safe, poly, tainted} String p) {

this.f = p;

}

public class FieldSensitivity3 {
protected void onCreate(Bundle b) {

{safe, poly, tainted} Data dt = new Data();
ﬂ tainted} String sim =

tm.getSerialNumber();
dt.set(sim);

{safe, poly, tainted} String sg = dt.get();
sms.sendTextMessage(..., sg, ...);

safe

Jinank Jain | 13-Mar-17 | 57

Inference Example

public class Data {
{poly, tainted} String f;
{safe, poly, tainted} String get ({safe, poly, tainted} Data this) {
return this.f;
}

void set({safe, poly, tainted} Data this,
{ﬂtainted} String p) {
this.f = p;

}

public class FieldSensitivity3 {
protected void onCreate(Bundle b) {

{safe, poly, tainted} Data dt = new Data();
tainted} String sim =
tm.getSerialNumber();

dt.set(sim);

{safe, poly, tainted} String sg = dt.get();

sms.sendTextMessage(..., sg, ...);

safe

Jinank Jain | 13-Mar-17 | 58

Inference Example

public class Data {

tainted} String f;
tainted} String get (| tainted} Data this) {
return is.f;
}

void set(M tainted} Data this,
tainted} String p) {

this.f = p;
}
}

public class FieldSensitivity3 {
protected void onCreate(Bundle b) {
tainted} Data dt = new Data();
M tainted} String sim =
tm.getSerialNumber();
dt.set(sim);

{safe, poly, tainted} String sg = dt.get();
sms.sendTextMessage(..., sg, ...);

safe

Jinank Jain | 13-Mar-17 | 59

Inference Example

public class Data {

tainted} String f;
tainted} String get (| tainted} Data this) {
return is.f;
}

void set(w tainted} Data this,
tainted} String p) {
this.f = p;
}
}

public class FieldSensitivity3 {
protected void onCreate(Bundle b) {

tainted} Data dt = new Data();
M tainted} String sim =

tm.getSerialNumber();
dt.set(sim);

q tainted} String sg = dt.get();
sms.sendTextMessage(..., sg, ...);

Jinank Jain | 13-Mar-17 | 60

Inference Example

public class Data {

tainted} String f;
tainted} String get (| tainted} Data this) {
recturn is.f;
}

void set(M tainted} Data this,
tainted} String p) {
this.f = p;
}
}

public class FieldSensitivity3 {
protected void onCreate(Bundle b) {

M tainted} Data dt = neY Type Er.ror
tainted} String s+ safe != tainted
tm.getSerialNumber();

dt.set(sim);

q tainted} String sg = dt.
sms.sendTextMessage(..., sg, ...);

Jinank Jain | 13-Mar-17 | 61

CFL-Explain

= Type Error

q© retgetSimSerialNumber {tainted} <: sim {safe}

= Construct a dependency graph based on CFL-reachability

= Map a type error into a source-sink path in the graph

Jinank Jain | 13-Mar-17 | 62

Android Specific Features

= Libraries
= Flow through library method

= Multiple Entry Points and Callbacks

= Connections among callback methods

= [nter-Component Communication (ICC)
= Explicit or Implicit Intents

Jinank Jain | 13-Mar-17 | 63

Libraries

= [nsert annotations into Android Library
= Source — {tainted} Sink — {safe}

public LocationLeak2 extends Activity implements
LocationListener {
private double latitude;
protected void onResume() {
double d = this.latitude;
Log.d(”Latitude”, "Latitude: "+ d);

}

public void onLocationChanged(Location loc) {
double lat = loc.getLatitude();
this.latitude = lat;

Jinank Jain | 13-Mar-17 | 64

Callbacks

public class SmsReceiver extends BroadcastReceiver {
public void onReceive(Context c, Intent i) {
for (int 1 = 0; i < pdusObj.length; i++) {
SmsMessage msg = SmsMessage.createFromPdu(String secret);
String body = msg.getDisplayMessageBody();
sb.append(body) ;
}
Intent it = new Intent(c, TaskService.class);
it.putExtra(”data”, sb.toString());
startService(i);
} Secret

} Leak

public class TaskService extends Service {
public void onStart(Intent it, int d) {
HttpClient client =getHttpClient();
HttpPost post = new HttpPost();
post.setURI(URI.create(”http:
Entity e = new UrlEncodedFormEntity(list, "UTF8");
post.setEntity(e);

Jinank Jain | 13-Mar-17 | 65

Inter Component Communication (ICC)

= Android components interact through Intents

= Explicit Intents
= Have an explicit target component
* Droidlnfer connects them using placeholders

= |Implicit Intents
= Do not have a target component
= Droidlnfer conservatively considers them as sinks

Jinank Jain | 13-Mar-17 | 66

Implementation

= Built on top of Soot and Dexpler

Java ‘ APK

| | |
Front-End Front-End

(Checker Framework) (Soot & Dexpler)

] |

Annotated | o 1. se Inference Engine m®) Result

Libraries

Jinank Jain | 13-Mar-17 | 67

Evaluation

= DroidBench 1.0
= Recall: 96%, precision: 79%
= Contagio
= Detect leaks from 19 out of total 22 apps
= Google Play Store
= 144 free Android apps (top 30 free apps)
= Maximal heap size: 2GB

= Time: 139 sec/app on average
= False positive rate: 15.7%

Jinank Jain | 13-Mar-17 | 68

Results from Google Play Store

144
7
= 11
&
5 84
i
()
£
40
= %
—~ 58%
48%
Total Containing With Type With Leaks to

Sources/Sinks Errors Network

Jinank Jain | 13-Mar-17 | 69

Advantages Dflow over FlowDroid

= FlowDroid is computationally and memory intensive

= FlowDroid only reports log flows in apps and does not
report any network flows (which are very important these
days)

Jinank Jain | 13-Mar-17 | 70

Conclusions

= DFlow and Droidinfer: context-sensitive information flow
type system and inference

= CFL-reachability algorithm to explain type errors
= Effective handling of Android-specific features
= |mplementation and evaluation

Jinank Jain | 13-Mar-17 | 71

Current Trends

There has been an active research going in this field after
these three pioneer approaches were present both in

iIndustry and academia

Amandroid: A Precise and General
Inter-component Data Flow Analysis Framework for
Security Vetting of Android Apps

Fengguo Wei, Sankardas Roy, Xinming Ou, Robby

Department of Computing and Information Sciences
Kansas State University
{fgwei,sroy,xou,robby}@ksu.edu

ANaAroid’s

Composite Constant Propagation: Application to
Android Inter-Component Communication Analysis

Damien Octeau’?, Daniel Luchaup'?, Matthew Dering?, Somesh Jha', and Patrick McDaniel®
! Department of Computer Sciences, University of Wisconsin
2Department of Computer Science and Engineering, Pennsylvania State University
3CyLab, Carnegie Mellon University

octeau@cs. wisc.edu, luchaup@andrew.cmu.edu, dering@cse.psu.edu, jha@cs.wisc.edu, medaniel@cse. psu.edu

AppContext: Differentiating Malicious and Benign
Mobile App Behaviors Using Context

Wei Yang*, Xusheng Xiao!, Benjamin Andow?, Sihan Li*, Tao Xie*, William Enck}
*Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL
TNEC Laboratories America, Princeton, NJ
fDepartment of Computer Science, North Carolina State University, Raleigh, NC
*{weiyang3, sihanli2, taoxie} @illinois.edu, 1xsxiao@nec-labs.com, t{bf:zmdow, whenck } @ncsu.edu

Jinank Jain | 13-Mar-17 | 72

Some General Comments

All of the approaches lack extensive test set.

= Not clear details about the benchmarking machine on

which these tools were ran

= Except for DidFail, no one suggested any approach to

deploy it or integrate with current Google Play Store

= [mplicit assumption about a lot of prior knowledge like

IFDS algorithm and CFL problem.

Jinank Jain | 13-Mar-17 | 73

