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Introduction to Taint Analysis

§ Taint analysis detects flow from sensitive data sources 
to untrusted sinks.

Sensitive Data Source Untrusted Sinks
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History of Taint Analysis
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Use Case of Taint Analysis

Without taint checking, a user could enter “foo’; DROP
TABLE users –”
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Strengths and Weakness of Taint Analysis

§ Strengths
§ Scales Well
§ Can find bugs with high confidence for certain aspects like Buffer 

Overflow, SQL Injection Flows etc.

§ Weakness
§ High numbers of false positives.
§ Security vulnerabilities such as authentication(OAuth 2.0)

problems, are very difficult to find automatically
§ Frequently can't find configuration issues, since they are not 

represented in the code.
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Static Taint Analysis Dynamic Taint Analysis

Statically analyze source code Dynamic Debugger Approach

Does not affect the execution time Slows the execution of the program

Greater Code Coverage Typically lacks code coverage

Requires single run to check 

complete code

Requires multiple test runs to reach 

appropriate code coverage

Not easily detectable as code is 

analyzed statically

Easily detectable by malicious app 

and could fool the analyzer
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Static V/S Dynamic Taint Analysis
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Why Android security is important?

Android has the largest market share and it is very common for the apps 
to disclose sensitive information on network
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Some insights about Sensitive Information

Big Security Flaw
Anyone gaining the IMEI of a device will be able to get 
Truecaller users’ personal information (including phone 
number, home address, mail box, gender, etc.) and 
tamper app settings without users’ consent, exposing 
them to malicious phishers
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§ Sensitive Data Disclosures
§ Leak private data through a dangerously broad set of 

permissions granted by the users.
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Problem
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Motivation
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§ Abstraction of the Runtime Environment

§ Analyzing XML and Manifest files

§ Aliasing
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General Problem with Static Analysis on 
Android Platform
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Android Lifecycle

CreatedonCreate()

Started

Resumed

Paused

Stopped

Destroyed

onStart()

onResume() onPause()

onResume() onStop()

onDestroy()
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§ Lot of UI Related Stuff is present in Layout XML

§ Callbacks are registered in the XML files

§ While decompiling code all those XML files are lost
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XML and Manifest Files
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Aliasing describes a situation in which a data location 
in memory can be accessed through different symbolic 
names in the program

13-Mar-17Jinank Jain 14

Aliasing
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Flow Droid

DidFail: “Flow Droid + Epicc”

DFlow and DInfer
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Outline of Talk
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Flow Droid: Precise Context, Flow, Field, Object-
sensitive and Lifecycle aware Taint Analysis for 
Android Apps
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Some basic terminology

Context Sensitivity
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Some basic terminology

Flow Sensitivity
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Some basic terminology

Object Sensitivity
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Some basic terminology

Field Sensitivity
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Contributions of FlowDroid

§ FlowDroid the first fully context, field, object and flow-

sensitive taint analysis 

§ Considers Android application lifecycle and UI widgets, 

and which features a novel approach

§ DroidBench, a novel benchmark suite

§ Ran FlowDroid over 500 apps from Google Play and 

about 1000 malware apps from the VirusShare project
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Attacker Model

Provides 
Malicious 

App

Leaks 
Data on 
Internet

Attacker Malicious App Internet
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Password 
is read and 
send out 
via SMS
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§ Precise Modeling of Android Lifecycle

§ Multiple Entry Points

§ Asynchronously executing components

§ Callbacks

13-Mar-17Jinank Jain 24

Problems in Static Analysis of Android Apps
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Problem 1: Precise Modeling of Lifecycle
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Problem 2: Multiple Entry Points
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Problem 3: Asynchronously executing 
components
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§ Register callbacks for various purposes like location 

update, UI interaction etc.

§ FlowDroid does not assume any order on registration of 

callback

§ Callback can be registered in two ways: 

§ XML files of an activity and 

§ Using well known calls to specific system methods
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Problem 4: Callbacks
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Brief Implementation Overview of FlowDroid

Use SuSi Tool
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§ FlowDroid Analysis is based upon Soot (Android Code 

Analyser) and Heros(IFDS Solver)

§ Build a dummy main method which take care of all the 

problems mentioned previously.

§ Accurate and efficient alias search is crucial for 

context-sensitivity in conjunction with field-sensitivity
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FlowDroid’s Approach
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IFDS Solver

IFDS Solver

Input Output
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Solving Aliasing Problem

Statements are examined in the reverse order and learn 
that z.g.f, a.g.f and b.f are aliases of x.f. The sink method 
takes b.f as input parameter, so there is a source-to-sink 
connection.
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§ How does FlowDroid compare to commercial taint 
analysis tools for Android in terms of precision and recall?

DroidBench
§ Android specific test-suite, keeping in Android specific 

problems
§ 39 hand-crafted Android apps
§ Precision of 86% and recall 93% which is much better 

than AppScan Source and FortifySCA.

Precision = correct warning / (correct warning + false warning)
Recall = correct warning / (correct warning + missed leak)
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Experimental Evaluation
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§ Performance on InsecureBank
InsecureBank is basically a vulnerable App designed to test 
analysis tools

• Analysis of App: 31 seconds
• Detects all 7 data leaks
• No false positive or false negatives

§ Performance on Real-World Applications
§ Ran FlowDroid on 500 Google Play apps = no leaks
§ Again ran on 1000 known malware samples from Virus Share 

project = average 2 leaks
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Cont. Experimental Evaluation
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§ SecuriBench Micro
Intended for web-based applications
The number of actual leaks reported (117/121) and false 
positives (9) gives good results for FlowDroid
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Cont. Experimental Evaluation
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§ Resolves reflective calls only if their arguments are string 
constants

§ Handles arrays imprecisely
§ Cannot detect Inter Application security leaks
§ Cannot detect network leaks
§ Big Flawed Assumption :

Threads execute in any arbitrary but sequential order and 
thus does not account for multiple threads

13-Mar-17Jinank Jain 36

Limitations
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Android Taint Flow Analysis for App Sets
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§ Detect malicious apps that leak sensitive data
§ E.g., leak contact list to marketing company
§ “All or nothing” permission model

§ Apps can collude to leak data
§ Evades precision detection if only analyzed individually

§ Build upon FlowDroid
§ FlowDroid alone handles only intra-component flows.
§ Extend it to handle inter-app flows

13-Mar-17Jinank Jain 38

Motivation
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§ Android apps have four types of components
§ Activities (main focus)
§ Services
§ Content Providers
§ Broadcast Receivers

§ Intents are messages to components

13-Mar-17Jinank Jain 39

Quick Recap about Android
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§ Developed a static analyzer called “DidFail”
§ Find flows of sensitive data across app boundaries

§ Two phase analysis
§ Analyze each app in isolation
§ Use the result of Phase-1 analysis to determine inter-app 

flows

§ Tested analyzer on two set of apps 
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Contributions
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§ App SendSMS.apk sends an intend (a message) to 
Echoer.apk which sends a result back

13-Mar-17Jinank Jain 41

Motivating Example

Device ID
(Source)

Text Message
(Sink)

startActivity

onActivityResult()

SendSMS.apk Echoer.apk

getIntent()

setResult()
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§ Phase 1: Each app analyzed once, in isolation

§ Each intent is given a unique ID

§ Phase 2: Analyze a set of apps

§ For each intent sent by a component, determine which components 

can receive the intent

§ Generate & solve taint flow equations.
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Analysis Design
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§ APK Transformer
§ Assigns unique Intent ID to each call site of intent-sending 

methods
§ Uses Soot to read APK, modify code and write new APK
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Implementation: Phase 1
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§ FlowDroid Modifications
§ Extract intent IDs inserted by APK Transformer, and include in 

output.
§ When sink is an intent, identify the sending components
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Implementation: Phase 1
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§ Phase 2
§ Take the Phase 1 output
§ Generate and solve the data-flow equations
§ Outputs:

§ Directed graphs indicating information flow between sources, intent, 
intent results, and sinks

§ Taintedness of each sink
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Implementation: Phase 2
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§ An app store runs the phase-1 analysis for each app it has
§ When the user wants to download new app, the stores runs the 

phase-2 analysis and indicates new flows
§ Fast Response to user
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Use of Two-Phase Approach in App Stores
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§ Unsoundness
§ Inherited from FlowDroid/Epicc

§ Native code, reflection etc

§ Imprecision
§ Inherited from FlowDroid/Epicc

§ DidFail doesn’t consider permissions when matching intents

§ All intents received by a component are conflated together as a 

single source
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Limitations
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Scalable and Precise Taint Analysis For Android
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A type system is a set of rules that assign a property called 
type to various constructs a computer program consists of, 
such as variables, expressions, functions or modules.

Main Purpose: Reduce possibilities of bug in computer 
program

For ex:    string a = string b
string a ≠	int b
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Basic Idea about Type System
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Motivating Example [From DroidBench]
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Solution – DFlow/DroidInfer



||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”) 

§ DFlow context sensitive information flow type system

§ DroidInfer: An inference algorithm for DFlow

§ CFL-Explain: A CFL-reachability algorithm to explain type 

errors

§ Implementation and evaluation
§ DroidBench, Contagio, Google Play Store
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Contributions
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§ Build DFlow/DroidInfer on top of type inference and 

checking framework

§ Frameworks infers the “best” typing

§ If inference succeeds, this verifies the absence of errors

§ Otherwise, this reveals errors in the program

13-Mar-17Jinank Jain 53

Inference and Checking Framework
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§ Type Qualifiers
§ tainted: A variable x is tainted, if there is flow from a 

sensitive source to x
§ safe: A variable x is safe, if there is flow from x to an 

untrusted sink
§ poly: The polymorphic qualifier, is interpreted as tainted

in some contexts and as safe in other contexts
§ Subtyping hierarchy:

§ safe <: poly <: tainted  
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DFlow
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Concrete value of poly is interpreted by the viewpoint 
adaptation operation.
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Context Sensitivity (View Adaptation) 
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Inference Example
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Inference Example

safe



||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”) 13-Mar-17Jinank Jain 58

Inference Example

safe
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Inference Example

safe
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Inference Example

safe
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Inference Example

safe

Type Error
safe != tainted 
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§ Type Error

§ Construct a dependency graph based on CFL-reachability

§ Map a type error into a source-sink path in the graph
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CFL-Explain
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§ Libraries
§ Flow through library method

§ Multiple Entry Points and Callbacks
§ Connections among callback methods

§ Inter-Component Communication (ICC)
§ Explicit or Implicit Intents
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Android Specific Features
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§ Insert annotations into Android Library
§ Source → {tainted}         Sink → {safe}
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Libraries
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Callbacks

Secret 
Leak
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§ Android components interact through Intents

§ Explicit Intents
§ Have an explicit target component
§ DroidInfer connects them using placeholders

§ Implicit Intents
§ Do not have a target component
§ DroidInfer conservatively considers them as sinks
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Inter Component Communication (ICC)
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§ Built on top of Soot and Dexpler

13-Mar-17Jinank Jain 67

Implementation
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§ DroidBench 1.0
§ Recall: 96%, precision: 79%

§ Contagio
§ Detect leaks from 19 out of total 22 apps

§ Google Play Store
§ 144 free Android apps (top 30 free apps)
§ Maximal heap size: 2GB
§ Time: 139 sec/app on average
§ False positive rate: 15.7%
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Evaluation
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Results from Google Play Store
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§ FlowDroid is computationally and memory intensive

§ FlowDroid only reports log flows in apps and does not 
report any network flows (which are very important these 
days)
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Advantages Dflow over FlowDroid
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§ DFlow and DroidInfer: context-sensitive information flow 
type system and inference

§ CFL-reachability algorithm to explain type errors
§ Effective handling of Android-specific features
§ Implementation and evaluation 
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Conclusions
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There has been an active research going in this field after 
these three pioneer approaches were present both in 
industry and academia
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Current Trends
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§ All of the approaches lack extensive test set. 

§ Not clear details about the benchmarking machine on 

which these tools were ran

§ Except for DidFail, no one suggested any approach to 

deploy it or integrate with current Google Play Store

§ Implicit assumption about a lot of prior knowledge like 

IFDS algorithm and CFL problem.
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Some General Comments
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