
||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

By Jinank Jain
M.Sc Computer Science

13-Mar-17Jinank Jain 1

Android Application Taint Analysis
Seminar in Distributed Computing

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”) 13-Mar-17Jinank Jain 2

Introduction to Taint Analysis

§ Taint analysis detects flow from sensitive data sources
to untrusted sinks.

Sensitive Data Source Untrusted Sinks

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

Operating
Systems

Programming
Languages

Web
Browsers

Smart
Phones like

Android

13-Mar-17Jinank Jain 3

History of Taint Analysis

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”) 13-Mar-17Jinank Jain 4

Use Case of Taint Analysis

Without taint checking, a user could enter “foo’; DROP
TABLE users –”

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”) 13-Mar-17Jinank Jain 5

Strengths and Weakness of Taint Analysis

§ Strengths
§ Scales Well
§ Can find bugs with high confidence for certain aspects like Buffer

Overflow, SQL Injection Flows etc.

§ Weakness
§ High numbers of false positives.
§ Security vulnerabilities such as authentication(OAuth 2.0)

problems, are very difficult to find automatically
§ Frequently can't find configuration issues, since they are not

represented in the code.

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

Static Taint Analysis Dynamic Taint Analysis

Statically analyze source code Dynamic Debugger Approach

Does not affect the execution time Slows the execution of the program

Greater Code Coverage Typically lacks code coverage

Requires single run to check

complete code

Requires multiple test runs to reach

appropriate code coverage

Not easily detectable as code is

analyzed statically

Easily detectable by malicious app

and could fool the analyzer

13-Mar-17Jinank Jain 6

Static V/S Dynamic Taint Analysis

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”) 13-Mar-17Jinank Jain 7

Why Android security is important?

Android has the largest market share and it is very common for the apps
to disclose sensitive information on network

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”) 13-Mar-17Jinank Jain 8

Some insights about Sensitive Information

Big Security Flaw
Anyone gaining the IMEI of a device will be able to get
Truecaller users’ personal information (including phone
number, home address, mail box, gender, etc.) and
tamper app settings without users’ consent, exposing
them to malicious phishers

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

§ Sensitive Data Disclosures
§ Leak private data through a dangerously broad set of

permissions granted by the users.

13-Mar-17Jinank Jain 9

Problem

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”) 13-Mar-17Jinank Jain 10

Motivation

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

§ Abstraction of the Runtime Environment

§ Analyzing XML and Manifest files

§ Aliasing

13-Mar-17Jinank Jain 11

General Problem with Static Analysis on
Android Platform

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”) 13-Mar-17Jinank Jain 12

Android Lifecycle

CreatedonCreate()

Started

Resumed

Paused

Stopped

Destroyed

onStart()

onResume() onPause()

onResume() onStop()

onDestroy()

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

§ Lot of UI Related Stuff is present in Layout XML

§ Callbacks are registered in the XML files

§ While decompiling code all those XML files are lost

13-Mar-17Jinank Jain 13

XML and Manifest Files

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

Aliasing describes a situation in which a data location
in memory can be accessed through different symbolic
names in the program

13-Mar-17Jinank Jain 14

Aliasing

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

Flow Droid

DidFail: “Flow Droid + Epicc”

DFlow and DInfer

13-Mar-17Jinank Jain 15

Outline of Talk

PLDI’ 14

Flow Droid: Precise Context, Flow, Field, Object-
sensitive and Lifecycle aware Taint Analysis for
Android Apps

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”) 13-Mar-17Jinank Jain 17

Some basic terminology

Context Sensitivity

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”) 13-Mar-17Jinank Jain 18

Some basic terminology

Flow Sensitivity

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”) 13-Mar-17Jinank Jain 19

Some basic terminology

Object Sensitivity

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”) 13-Mar-17Jinank Jain 20

Some basic terminology

Field Sensitivity

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”) 13-Mar-17Jinank Jain 21

Contributions of FlowDroid

§ FlowDroid the first fully context, field, object and flow-

sensitive taint analysis

§ Considers Android application lifecycle and UI widgets,

and which features a novel approach

§ DroidBench, a novel benchmark suite

§ Ran FlowDroid over 500 apps from Google Play and

about 1000 malware apps from the VirusShare project

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”) 13-Mar-17Jinank Jain 22

Attacker Model

Provides
Malicious

App

Leaks
Data on
Internet

Attacker Malicious App Internet

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”) 13-Mar-17Jinank Jain 23

Password
is read and
send out
via SMS

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

§ Precise Modeling of Android Lifecycle

§ Multiple Entry Points

§ Asynchronously executing components

§ Callbacks

13-Mar-17Jinank Jain 24

Problems in Static Analysis of Android Apps

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”) 13-Mar-17Jinank Jain 25

Problem 1: Precise Modeling of Lifecycle

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”) 13-Mar-17Jinank Jain 26

Problem 2: Multiple Entry Points

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”) 13-Mar-17Jinank Jain 27

Problem 3: Asynchronously executing
components

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

§ Register callbacks for various purposes like location

update, UI interaction etc.

§ FlowDroid does not assume any order on registration of

callback

§ Callback can be registered in two ways:

§ XML files of an activity and

§ Using well known calls to specific system methods

13-Mar-17Jinank Jain 28

Problem 4: Callbacks

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”) 13-Mar-17Jinank Jain 29

Brief Implementation Overview of FlowDroid

Use SuSi Tool

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

§ FlowDroid Analysis is based upon Soot (Android Code

Analyser) and Heros(IFDS Solver)

§ Build a dummy main method which take care of all the

problems mentioned previously.

§ Accurate and efficient alias search is crucial for

context-sensitivity in conjunction with field-sensitivity

13-Mar-17Jinank Jain 30

FlowDroid’s Approach

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”) 13-Mar-17Jinank Jain 31

IFDS Solver

IFDS Solver

Input Output

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”) 13-Mar-17Jinank Jain 32

Solving Aliasing Problem

Statements are examined in the reverse order and learn
that z.g.f, a.g.f and b.f are aliases of x.f. The sink method
takes b.f as input parameter, so there is a source-to-sink
connection.

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

§ How does FlowDroid compare to commercial taint
analysis tools for Android in terms of precision and recall?

DroidBench
§ Android specific test-suite, keeping in Android specific

problems
§ 39 hand-crafted Android apps
§ Precision of 86% and recall 93% which is much better

than AppScan Source and FortifySCA.

Precision = correct warning / (correct warning + false warning)
Recall = correct warning / (correct warning + missed leak)

13-Mar-17Jinank Jain 33

Experimental Evaluation

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

§ Performance on InsecureBank
InsecureBank is basically a vulnerable App designed to test
analysis tools

• Analysis of App: 31 seconds
• Detects all 7 data leaks
• No false positive or false negatives

§ Performance on Real-World Applications
§ Ran FlowDroid on 500 Google Play apps = no leaks
§ Again ran on 1000 known malware samples from Virus Share

project = average 2 leaks

13-Mar-17Jinank Jain 34

Cont. Experimental Evaluation

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

§ SecuriBench Micro
Intended for web-based applications
The number of actual leaks reported (117/121) and false
positives (9) gives good results for FlowDroid

13-Mar-17Jinank Jain 35

Cont. Experimental Evaluation

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

§ Resolves reflective calls only if their arguments are string
constants

§ Handles arrays imprecisely
§ Cannot detect Inter Application security leaks
§ Cannot detect network leaks
§ Big Flawed Assumption :

Threads execute in any arbitrary but sequential order and
thus does not account for multiple threads

13-Mar-17Jinank Jain 36

Limitations

SOAP’ 14

Android Taint Flow Analysis for App Sets

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

§ Detect malicious apps that leak sensitive data
§ E.g., leak contact list to marketing company
§ “All or nothing” permission model

§ Apps can collude to leak data
§ Evades precision detection if only analyzed individually

§ Build upon FlowDroid
§ FlowDroid alone handles only intra-component flows.
§ Extend it to handle inter-app flows

13-Mar-17Jinank Jain 38

Motivation

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

§ Android apps have four types of components
§ Activities (main focus)
§ Services
§ Content Providers
§ Broadcast Receivers

§ Intents are messages to components

13-Mar-17Jinank Jain 39

Quick Recap about Android

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

§ Developed a static analyzer called “DidFail”
§ Find flows of sensitive data across app boundaries

§ Two phase analysis
§ Analyze each app in isolation
§ Use the result of Phase-1 analysis to determine inter-app

flows

§ Tested analyzer on two set of apps

13-Mar-17Jinank Jain 40

Contributions

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

§ App SendSMS.apk sends an intend (a message) to
Echoer.apk which sends a result back

13-Mar-17Jinank Jain 41

Motivating Example

Device ID
(Source)

Text Message
(Sink)

startActivity

onActivityResult()

SendSMS.apk Echoer.apk

getIntent()

setResult()

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

§ Phase 1: Each app analyzed once, in isolation

§ Each intent is given a unique ID

§ Phase 2: Analyze a set of apps

§ For each intent sent by a component, determine which components

can receive the intent

§ Generate & solve taint flow equations.

13-Mar-17Jinank Jain 42

Analysis Design

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

§ APK Transformer
§ Assigns unique Intent ID to each call site of intent-sending

methods
§ Uses Soot to read APK, modify code and write new APK

13-Mar-17Jinank Jain 43

Implementation: Phase 1

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

§ FlowDroid Modifications
§ Extract intent IDs inserted by APK Transformer, and include in

output.
§ When sink is an intent, identify the sending components

13-Mar-17Jinank Jain 44

Implementation: Phase 1

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

§ Phase 2
§ Take the Phase 1 output
§ Generate and solve the data-flow equations
§ Outputs:

§ Directed graphs indicating information flow between sources, intent,
intent results, and sinks

§ Taintedness of each sink

13-Mar-17Jinank Jain 45

Implementation: Phase 2

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

§ An app store runs the phase-1 analysis for each app it has
§ When the user wants to download new app, the stores runs the

phase-2 analysis and indicates new flows
§ Fast Response to user

13-Mar-17Jinank Jain 46

Use of Two-Phase Approach in App Stores

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

§ Unsoundness
§ Inherited from FlowDroid/Epicc

§ Native code, reflection etc

§ Imprecision
§ Inherited from FlowDroid/Epicc

§ DidFail doesn’t consider permissions when matching intents

§ All intents received by a component are conflated together as a

single source

13-Mar-17Jinank Jain 47

Limitations

ISSTA’ 15

Scalable and Precise Taint Analysis For Android

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

A type system is a set of rules that assign a property called
type to various constructs a computer program consists of,
such as variables, expressions, functions or modules.

Main Purpose: Reduce possibilities of bug in computer
program

For ex: string a = string b
string a ≠	int b

13-Mar-17Jinank Jain 49

Basic Idea about Type System

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”) 13-Mar-17Jinank Jain 50

Motivating Example [From DroidBench]

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”) 13-Mar-17Jinank Jain 51

Solution – DFlow/DroidInfer

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

§ DFlow context sensitive information flow type system

§ DroidInfer: An inference algorithm for DFlow

§ CFL-Explain: A CFL-reachability algorithm to explain type

errors

§ Implementation and evaluation
§ DroidBench, Contagio, Google Play Store

13-Mar-17Jinank Jain 52

Contributions

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

§ Build DFlow/DroidInfer on top of type inference and

checking framework

§ Frameworks infers the “best” typing

§ If inference succeeds, this verifies the absence of errors

§ Otherwise, this reveals errors in the program

13-Mar-17Jinank Jain 53

Inference and Checking Framework

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

§ Type Qualifiers
§ tainted: A variable x is tainted, if there is flow from a

sensitive source to x
§ safe: A variable x is safe, if there is flow from x to an

untrusted sink
§ poly: The polymorphic qualifier, is interpreted as tainted

in some contexts and as safe in other contexts
§ Subtyping hierarchy:

§ safe <: poly <: tainted

13-Mar-17Jinank Jain 54

DFlow

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

Concrete value of poly is interpreted by the viewpoint
adaptation operation.

13-Mar-17Jinank Jain 55

Context Sensitivity (View Adaptation)

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”) 13-Mar-17Jinank Jain 56

Inference Example

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”) 13-Mar-17Jinank Jain 57

Inference Example

safe

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”) 13-Mar-17Jinank Jain 58

Inference Example

safe

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”) 13-Mar-17Jinank Jain 59

Inference Example

safe

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”) 13-Mar-17Jinank Jain 60

Inference Example

safe

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”) 13-Mar-17Jinank Jain 61

Inference Example

safe

Type Error
safe != tainted

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

§ Type Error

§ Construct a dependency graph based on CFL-reachability

§ Map a type error into a source-sink path in the graph

13-Mar-17Jinank Jain 62

CFL-Explain

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

§ Libraries
§ Flow through library method

§ Multiple Entry Points and Callbacks
§ Connections among callback methods

§ Inter-Component Communication (ICC)
§ Explicit or Implicit Intents

13-Mar-17Jinank Jain 63

Android Specific Features

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

§ Insert annotations into Android Library
§ Source → {tainted} Sink → {safe}

13-Mar-17Jinank Jain 64

Libraries

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”) 13-Mar-17Jinank Jain 65

Callbacks

Secret
Leak

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

§ Android components interact through Intents

§ Explicit Intents
§ Have an explicit target component
§ DroidInfer connects them using placeholders

§ Implicit Intents
§ Do not have a target component
§ DroidInfer conservatively considers them as sinks

13-Mar-17Jinank Jain 66

Inter Component Communication (ICC)

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

§ Built on top of Soot and Dexpler

13-Mar-17Jinank Jain 67

Implementation

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

§ DroidBench 1.0
§ Recall: 96%, precision: 79%

§ Contagio
§ Detect leaks from 19 out of total 22 apps

§ Google Play Store
§ 144 free Android apps (top 30 free apps)
§ Maximal heap size: 2GB
§ Time: 139 sec/app on average
§ False positive rate: 15.7%

13-Mar-17Jinank Jain 68

Evaluation

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”) 13-Mar-17Jinank Jain 69

Results from Google Play Store

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

§ FlowDroid is computationally and memory intensive

§ FlowDroid only reports log flows in apps and does not
report any network flows (which are very important these
days)

13-Mar-17Jinank Jain 70

Advantages Dflow over FlowDroid

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

§ DFlow and DroidInfer: context-sensitive information flow
type system and inference

§ CFL-reachability algorithm to explain type errors
§ Effective handling of Android-specific features
§ Implementation and evaluation

13-Mar-17Jinank Jain 71

Conclusions

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

There has been an active research going in this field after
these three pioneer approaches were present both in
industry and academia

13-Mar-17Jinank Jain 72

Current Trends

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

§ All of the approaches lack extensive test set.

§ Not clear details about the benchmarking machine on

which these tools were ran

§ Except for DidFail, no one suggested any approach to

deploy it or integrate with current Google Play Store

§ Implicit assumption about a lot of prior knowledge like

IFDS algorithm and CFL problem.

13-Mar-17Jinank Jain 73

Some General Comments

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”) 13-Mar-17Jinank Jain 74

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”) 13-Mar-17Jinank Jain 75

