WiFi localization

Milan Pandurov

Outline

- Indoor localization
- WiFi localization
- WiFi basics
- Localization approaches
- Prevention of localization

Indoor positioning systems (IPS)

- Non radio technologies
 - Magnetic
 - Dead reckoning
 - Known visual features (markers)
- Radio technologies
 - Bluetooth
 - Wi-Fi based positioning

WiFi localization

- Different techniques
 - RSSI based
 - Fingerprinting based
 - Angle of arrival based
 - Time of flight based

Basic Wi-Fi concepts

• WiFi channels

- MAC
- Channel estimation
- Multipath propagation

Angle of arrival based localization (*AoA*)

• One approach to localize users

"Accurate Indoor Localization With Zero Start-up Cost"

Swarun Kumar, Stephanie Gil, Dina Katabi, Daniela Rus

• Developed system: *Ubicarse*

Angle of arrival – how does it work

Synthetic aperture

- Emulate antenna array
- Technique used in *synthetic aperture radar* (SAR)

Circular SAR (1/2)

R

 Start with idea of emulation of circular antenna array

Circular SAR (2/2)

 Channel model for kth snapshot of antenna:

$$h_k = \frac{1}{D} e^{\frac{-j2\pi}{\lambda}(D + r\cos(\Theta - \phi_k))}$$

 Relative power along direction α

$$P(\alpha) = \left|\frac{1}{n} \sum_{k=1}^{n} h_k e^{\frac{j2\pi}{\lambda} r\cos(\alpha - \phi_k)}\right|^2$$

Ubicarse - solution

- Translation resilient SAR
- Create accurate indoor positioning system
 - MIMO capabilities of modern devices
 - Information of device's orientation

Translation-resilient SAR

Translation-resilient SAR

 Use same SAR formula for relative channel power:

Accurate device localization

- Localization proces:
 - 1. App asks user to twist device
 - 2. Issues beacon requests to neighbor access points to estimate channels from them
 - 3. Perform SAR to generate multipath power profiles
 - 4. ...
 - 5. Show precise location

Calculate location

Object geotagging

- Localize devices with no radio devices attached
- Using camera & stereo vision algorithms

How does Ubicarse perform

• Translation resilience

Device localization

Different approach

- What if we don't want to:
 - Have absolute position, but just absolute distance
 - Have many access points
 - Have to rotate device
- Different use cases:
 - Smart home occupancy
 - Geo-fencing

Time of flight

- Time it takes for signal to propagate from transmitter to receiver
- Absolute time of flight
- High precision required

Calculate absolute ToF

• Emulating ultra wideband radio with WiFi

"Decimeter-Level Localization with a Single WiFi Access Point"

Deepak Vasisht, Swarun Kumar, Dina Katabi

• Developed system: Chronos

WiFi channel

• Can WiFi channels be combined to emulate ultra wideband radio?

2.4 GHz (802.11b/g/n)

5 GHz (802.11a/n/ac)

Chronos

- Indoor positioning system
- Calculates absolute distance by measuring ToF
- Sends data over different WiFi channels to emulate wide band radio
 - Different frequencies have different properties

Measuring time of flight

For a single channel

1.
$$h = ae^{-j2\pi f\tau}$$
 2. $\angle h = -2\pi f\tau \mod 2\pi$

Measuring time of flight

• Modulo measurements @2.4GHz

- ToF = modulo 1/f (0.4ns) - {0.1ns, 0.5ns, 0.9ns,...}

- Distance = modulo 12cm {3cm, 15cm, 27cm,...}
- For a range of channels we get system of equations

$$\forall i \in \{1,2,...,n\} \ \ \tau = -\frac{\angle h_i}{2\pi f_i} \ mod\frac{1}{f_i}$$

Measuring time of flight

Chinese remainder theorem

$$x \equiv 2 \pmod{3}$$
$$x \equiv 2 \pmod{4}$$
$$x \equiv 1 \pmod{5}$$

• Problem to solve

$$\tau = -\frac{\angle h_i}{2\pi f_i} \ mod\frac{1}{f_i}$$

 $\forall i \in \{1,2,...,n\}$

Multipath

- Generate multipath profile
- Choose shortest path first peak

Computing multipath profiles

• Signals reach receiver over *p* different paths

$$\hat{h_i} = \sum_{k=1}^p a_k e^{-j2\pi f_i \tau_k}$$

• Discrete Fourier transform?

Phase offset

- Two phase offsets are created:
 - PLL Phase offset
 - Carrier frequency offset
- Recorder state information on transmitter $CSI_{i}^{tx}(t) = \hat{h_{i}}e^{j(f_{i}^{tx} f_{i}^{rx})t} + j(\Phi_{i}^{tx} \Phi_{i}^{rx})$
- Recorder state information on receiver

$$CSI_{i}^{rx}(t) = \hat{h_{i}}e^{j(f_{i}^{rx} - f_{i}^{tx})t} + j(\Phi_{i}^{rx} - \Phi_{i}^{tx})$$

Fixing phase offset

• Multiplying CSI at receiver and sender to recover wireless channel:

$$\hat{h}_i^2 = CSI_i^{rx}(t) \ CSI_i^{tx}(t)$$

Use that channel to calculate propagation time

How does Chronos perform

 Test environment for measurement correctness

Measurement correctness

Time of flight results

Multipath profile results

Location accuracy

Location accuracy

Ranging accuracy

Real use case performance

Room occupancy

WiFi Geo-fencing

94% correct

97% correct

Privacy concerns

- Can we use WiFi signal as covert channel?
- WiFi signals travel through walls
- Curious neighbor, or burglar?

What can one hear?

• WiHear [link]

• E-eyes [link]

See through walls with WiFi [link]

Solution?

Less radical solution?

Usable solution?

- Privacy leakage lays in physical not in logical (data) layer
- Just distort physical layer (obfuscate)

"PhyCloak: Obfuscating Sensing from Communication Signals"

Yue Qiao, Ouyang Zhang, Wenjie Zhou, Kannan Srinivasan, Anish Arora

Developed solution: *PhyCloak*

What is sensitive data?

Reflected signal from obstacles

$$r(t) = a \ s(t) \ e^{j2\pi(f_c + \Delta f)(t + \Delta t)}$$

- 3 degrees of freedom (3DoF)
 - Amplitude gain
 - Delay
 - Doppler shift

How to hide sensitive data

- Obfuscator needs to change 3DoF of reflected signal
- Build obfuscator to create another multipath signal
- Create signal in a way to cancel sensitive data out

- Obfuscate Eve's sensing
- Preserve Carol's sensing
- Don't degrade throughput in link Alice Bob
- Online self-channel estimation

Obfuscating 3DoF

- Amplitude gain
 - Amplify received samples with different levels
- Doppler shift
 - Rotate nth sample by $2\pi n\Delta f\overline{\Delta t}$
- Delay
 - Delay to be forwarded signals
 - Done by rotating samples by fixed phase

PhyCloak design

• High level block diagram

Self channel estimation - problem

Human movement near Ox causes strong residual noise

Hiding Doppler shift

 By carefully choosing time to change phase Doppler shift can be hidden

Results of obfuscation

- Signal to Obfuscation Ratio (dB)
- Hiding human motion

Results of obfuscation

• Test scenarios:

(a) Placement of all the involved parties

Obfuscation performance

• 3 Dof correlation vs SOR

Obfuscation performance

- WiSee gesture detection accuracy
 - Recognizes gestures: drag, push, dodge...

Obfuscation performance

• WiSee NLOS/LOS performance

Wi-Fi localization

QUESTIONS?