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Outline

 Indoor localization
 WIiFi localization
 WIiFi basics

* Localization approaches

* Prevention of localization



Indoor positioning systems (IPS)

* Non radio technologies
— Maghnetic
— Dead reckoning
— Known visual features (markers)

* Radio technologies
— Bluetooth
— Wi-Fi based positioning



WiFi localization

* Different techniques
— RSSI based
— Fingerprinting based
— Angle of arrival based
— Time of flight based



Basic Wi-Fi concepts

e MAC
 Channel estimation

* Multipath propagation
e MIMO




Angle of arrival based localization
(AOA)

* One approach to localize users

“Accurate Indoor Localization With Zero Start-up

Cost”
Swarun Kumar, Stephanie Gil, Dina Katabi, Daniela Rus

* Developed system: Ubicarse




Angle of arrival — how does it work




Synthetic aperture

* Emulate antenna array

 Technique used in synthetic aperture radar
(SAR)




Circular SAR (1/2)

e Start with idea of emulation of circular
antenna array

Rcos(¢y, — 0)

1 2H.D—Rcos(qb,:{— 0) T
e=—e™ ) wherec,bk=7k




Circular SAR (2/2)

e Channel model for kth
snapshot of antenna:
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Ubicarse - solution

* Translation resilient SAR
* Create accurate indoor positioning system

— MIMO capabilities of modern devices
— Information of device’s orientation



Translation-resilient SAR
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Translation-resilient SAR

e Use same SAR formula for relative channel
power:
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Accurate device localization

* Localization proces:

1.
2.

App asks user to twist device

Issues beacon requests to neighbor access
points to estimate channels from them

Perform SAR to generate multipath power
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Calculate location
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Object geotagging

 Localize devices with no radio devices
attached

* Using camera & stereo vision algorithms




How does Ubicarse perform

 Translation resilience
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Different approach

* What if we don’t want to:
— Have absolute position, but just absolute distance
— Have many access points
— Have to rotate device

e Different use cases:
— Smart home occupancy
— Geo-fencing



Time of flight

* Time it takes for sighal to propagate from
transmitter to receiver

* Absolute time of flight
* High precision required



Calculate absolute ToF

 Emulating ultra wideband radio with WiFi

“Decimeter-Level Localization with a Single WiFi

Access Point”
Deepak Vasisht, Swarun Kumar, Dina Katabi

* Developed system: Chronos




WiFi channel

e Can WiFi channels be combined to emulate
ultra wideband radio?

2.4 GHz (802.11b/g/n)
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Chronos

* Indoor positioning system
* Calculates absolute distance by measuring ToF

e Sends data over different WiFi channels to
emulate wide band radio
— Different frequencies have different properties



Measuring time of flight

* For asingle channel
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Measuring time of flight

* Modulo measurements @2.4GHz
— ToF = modulo 1/f (0.4ns) —{0.1ns, 0.5ns, 0.9ns,...}
— Distance = modulo 12cm - {3cm, 15cm, 27cm,...}

* For a range of channels we get system of
equations
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Measuring time of flight

e Chinese remainder theorem
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Multipath

* Generate multipath profile
* Choose shortest path — first peak

[

y N

10 ns
5.2 ns

“ 16 ns
> X

o

Time (ns) /

(a) Testbed

(b) Multipath Profile



Computing multipath profiles

* Signals reach receiver over p different paths
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 Discrete Fourier transform?
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Phase offset

* Two phase offsets are created:
— PLL Phase offset
— Carrier frequency offset

* Recorder state information on transmitter
CSI(t) = hyed ("= £t + 3(87 =27

* Recorder state information on receiver
CSITE(t) = el FT5 =17t + 5(27°=2;%)



Fixing phase offset

* Multiplying CSI at receiver and sender to
recover wireless channel:

h2 = CSIT™(t) CSIM¥(t)

* Use that channel to calculate propagation
time



How does Chronos perform

* Test environment for measurement
correctness 20m

4 ol = -

A I

[
D



Measurement correctness

Time of flight results Multipath profile results
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Location accuracy

Location accuracy
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Real use case performance

Room occupancy
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Privacy concerns

* Can we use WiFi signal as covert channel?
* WiFi signals travel through walls
e Curious neighbor, or burglar?




What can one hear?
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http://www.tik.ee.ethz.ch/~zzhou/paper/mobicom14-wang.pdf
http://www.cse.psu.edu/~gxc27/teach/597/e-eyes.pdf
http://people.csail.mit.edu/fadel/papers/wivi-paper.pdf

Solution?




Less radical solution?




Usable solution?

* Privacy leakage lays in physical not in logical
(data) layer

 Just distort physical layer (obfuscate)

“PhyCloak: Obfuscating Sensing from Communication

Signals”
Yue Qiao, Ouyang Zhang, Wenjie Zhou, Kannan Srinivasan, Anish
Arora

* Developed solution: PhyCloak




What is sensitive data?

* Reflected signal from obstacles
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* 3 degrees of freedom (3DoF)

— Amplitude gain

— Delay
— Doppler shift




How to hide sensitive data

Obfuscator needs to change 3DoF of reflected

signal

Build obfuscator to create another multipath

signal

Create signal in a way to cancel sensitive data out
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System goals

>>> ' protect Carol’'s
unprotected sensi sensing

Obfuscate Eve’s sensing

Preserve Carol’s sensing

Don’t degrade throughput in link Alice — Bob
Online self-channel estimation




Obfuscating 3DoF

 Amplitude gain

— Amplify received samples with different levels
* Doppler shift

— Rotate nth sample by 27mnA fAt
* Delay

— Delay to be forwarded signals

— Done by rotating samples by fixed phase
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PhyCloak design

* High level block diagram

Clean signals used for legitimate sensing

Conventional fullduplex design Physical distortion

cancellation
cancellation
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Self channel estimation - problem

Human movement near Ox causes strong
residual noise

Power induced by training
sequence every 1 second

Residual noise (dBm)
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Hiding Doppler shift

* By carefully choosing time to change phase
Doppler shift can be hidden
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Results of obfuscation

 Signal to Obfuscation Ratio (dB)
Hiding human motion
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Results of obfuscation

e Test scenarios:
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Obfuscation performance

e 3 Dof correlation vs SOR
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Obfuscation performance

* WiSee gesture detection accuracy

— Recognizes gestures: drag, push, dodge...
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Obfuscation performance

* WiSee NLOS/LOS performance

1 0.93

0.65
© 0.6
> 0.38 0.40
S 04
< 0.20
0.2
.M H NN

noox NLoS/NLoS LoS/NLoS NLoS/LoS LoS/LoS
Channel Condition




QUESTIONS?



