Information Cascades on Arbitrary Topologies

Jun Wan, Yu Xia, Liang Li and Thomas Moscibroda

Presented by Oliver Richter

you can make a difference

Example Restaurant

Option A

Option B

The Model

- 1. Student
 - Announces what he/she sees
 - Reveals private information

- 2. Student
 - Announces what he/she sees
 - Reveals private information

Information Cascades

• ...can be wrong

 ...are based on little information

• ...are fragile

The General Model

- Each agent has to accept or reject a given option
 - Limited private information
 - Public announcements of others
 - Private information is correct with probability $q > \frac{1}{2}$
- The world is in one of two states
 - Accepting is good
 - Rejecting is good
- Urne example
 - \circ q = 2/3
 - Accept "majority blue" or reject it (i.e. aim for "majority red")

Related Work

- Sequential setting:
 - Kleinberg:¹⁾ Majority algorithm on independent signals is optimal

- Round based setting:
 - Golub and Jackson:²⁾
 Convergence to truth if influence vanishes

- 1) Networks, crowds, and markets: Reasoning about a highly connected world. Cambridge University Press, 2010.
- 2) Naïve Learning in Social Networks and the Wisdom of Crowds. American Economic Journal: Microeconomics 2010

How good are we doing?

Let *n* be the number of students

Full information

- Chance of a wrong information cascade on 3. student: $\frac{1}{3} * \frac{1}{3} = \frac{1}{9}$
- Chance of a wrong cascade in total:

$$\frac{1}{9} + \frac{1}{3} \sum_{k=1}^{n} \left(\frac{2}{3} \cdot \frac{1}{3}\right)^n \approx \frac{1}{5} \qquad \text{for } n \to \infty$$

• Expected number of wrong guesses $\approx \frac{1}{5}$ n

How good are we doing?

Let *n* be the number of students

No information

- Everybody follows private information
- Expected number of wrong guesses = $\frac{1}{3} * n$

In both cases:

Can we do better?

 $\rightarrow \Omega(n)$ expected mistakes!

Information Sharing Based on Graphs

- *n* is the number of nodes
- Each pair of nodes is connected with probability *p*

- $p = 1 \rightarrow$ fully connected graph
- All nodes get information of all other nodes
- Chance of a wrong cascade $\approx \frac{1}{5}$
- Expected number of wrong guesses $\approx \frac{1}{5}$ n

- $p = 0 \Rightarrow$ empty graph
- All nodes get only their private information
- Chance of being wrong = $\frac{1}{3}$

• Expected number of wrong guesses = $\frac{1}{3}$ n

- $p = 1 \Rightarrow$ fully connected graph \Rightarrow full information $\Rightarrow \Omega(n)$ mistakes
- $p = 0 \Rightarrow$ empty graph \Rightarrow no information sharing $\Rightarrow \Omega(n)$ mistakes
- What happens in between?

Majority algorithm on random graphs with optimal connection probability p results in $\Theta(\log n)$ mistakes in expectation

Figure 1 Performance of random graphs for different p and n.

How come?

- Basic idea: less neighbors → more likely to reveal private information
 - → Increased chance of correct information cascade

- If $p \in \Theta(1/\log n)$, w.h.p. each of the first Θ (log n) nodes has at most one neighbor
- Nodes with at most one neighbor reveal private information

How come?

- If $p \in \Theta(1/\log n)$, w.h.p. each of the first Θ (log n) nodes has at most one neighbor
- Nodes with at most one neighbor reveal private information
- → The first $\Theta(\log n / p)$ nodes mostly correct
- → The remaining n $\Theta(\log n / p)$ nodes have expected number of mistakes in O(1)

Θ(log n) expected mistakes for correct p

→ Fraction of mistakes goes to 0 as $n \rightarrow \infty$

Can we do better?

- Each node *i* should try to minimize the expected number of wrong guesses
- Optimal algorithm:
 - Node n tries to minimize its own failure probability
 - Node n-1 tries to minimize the failure probability of itself and node n
 - 0 ...
 - Node 1 tries to minimize the overall failure probability
 - Given how node 1 decides, node 2 can determine how it will decide in each case
 - 0 ...
 - Given how nodes 1 to n-1 will decide in each case, node n can determine how it will decide

More concrete

Given full information

- Up to a given point, nodes reveal their private information
- From that point on, all nodes will chose the majority of previous outputs
- → At a given switching point *m*, nodes switch from revealing private information to choosing the majority of previous outputs

→ $m > \Omega(\log n)$ or the expected number of mistakes is > sqrt(n) / 2

What we have seen so far...

• Random graphs achieve $\Theta(\log n)$ expected mistakes

• $\Theta(\log n)$ expected mistakes is asymptotically optimal

• Can we achieve it without randomness?

Layer Graphs

Idea:

Choose the number and sizes of the layers such that the expected number of mistakes is minimal, i.e. in $\Theta(\log n)$

- Let s = 1/(4q(1 q)), $q > \frac{1}{2}$ is the probability of a private information being correct
- The optimal layer topology has $k = n / \log_{s}(n) + o(n / \log_{s}(n))$ many layers
- The first layer has log_s(n) many nodes
- All following layers decrease in size as a staircase

Conclusion

• Too much information is (asymptotically) as bad as no shared information

Questions?

- Just enough information can lead to less mistakes
- This can be achieved through:
 - Connectivity regulation
 - Algorithmic regulation
 - Structural regulation