

Distributed Computing

FS 2017

Prof. R. Wattenhofer

Computer Engineering II

Exercise Sheet Chapter 5

Basic _

1 MAC Addresses vs. IP Addresses

- a) List a few differences between MAC addresses and IP addresses.
- b) Why don't we only use MAC addresses?
- c) Why don't we only use IP addresses?

2 Escape Sequences

Recall Definition 5.34 from the lecture:

Definition 1 (Escape Sequences). Given some critical byte X, we choose a byte $Y \neq X$ as escape byte and use it to define two escape sequences consisting of two bytes each, say, YA and YB $(A \neq X, B \neq X, A \neq B)$. The sender replaces every Y in the original body with YA and every X with YB. The receiver in turn performs the substitution in reverse.

If we perform such a substitution in a string, we say we *escape* the string.

- a) When is it possible to tell whether a given (character) string has been escaped by a given escaping scheme?
- b) In software, it is common to drop the conditions $A \neq X$ and $B \neq X$. When is this possible?
- c) Escape the following string using X= ", $Y=\setminus,\; A=\setminus,\; B=$ ":

"Oh no," Jon said, "my cat \"Garfield\" is locked outside in the rain!"

3 Manchester Decoding

Decode the message in the following Manchester encoded by te string. Hint: ascii('a') == 97.

Advanced

4 Bit Stuffing

Consider the scenario of transmitting a packet as a string of bits. The string S = 011110 will be prepended and appended to the packet to be used as a synchronization header resp. footer.

- a) Propose a bit stuffing technique for transforming the packet such that it does not contain **S** as a substring.
- b) By prepending and appending **S** to the bit stuffed packet additional instances of **S** may appear. When does this occur?

Does your bit stuffing technique from a) prevent these? (probably not)

Extend your technique to prevent the combined string from containing S as substring anywhere but the once at the start and the end each.

5 AM/FM/PM Demodulation

A mad scientist has decided to combine all three types of modulation! Each symbol now consists of 4 bits. The first sets the frequency, the second sets the amplitude and the last two determine the phase shift. The following table shows all combinations:

Symbol	Frequency f	Amplitude a	Phase ϕ
0000	2	0.25	±0
0001	2	0.25	$+\pi/2$
0010	2	0.25	$\pm\pi$
0011	2	0.25	$-\pi/2$
0100	2	1.00	± 0
0101	2	1.00	$+\pi/2$
0110	2	1.00	$\pm\pi$
0111	2	1.00	$-\pi/2$
1000	3	0.25	± 0
1001	3	0.25	$+\pi/2$
1010	3	0.25	$\pm\pi$
1011	3	0.25	$-\pi/2$
1100	3	1.00	± 0
1101	3	1.00	$+\pi/2$
1110	3	1.00	$\pm\pi$
1111	3	1.00	$-\pi/2$

The signal at time t is given by $a \cdot \sin(f \cdot t + \phi)$. Decode their message from the following signal:

