
Distributed
 Computing

FS 2017 Prof. R. Wattenhofer

Computer Engineering II
Exercise Sheet Chapter 6

Basic

1 HDDs

a) Which tracks are favored if SSTF is used for disk scheduling, assuming a random access
workload?

b) Explain how starvation can occur for SSTF, SCAN, C-SCAN, SPTF; how does F-SCAN
solve the problem?

c) If we always serve disk requests in the order they occur, we avoid starvation. Which
disadvantages does this have?

d) Assume you have two HDDs, one with 5ms average seek and 9000 rounds per minute, and
one with 3ms average seek and 5400 rounds per minute. Both disks have a peak transfer
rate of 120 MB/s. Which offers a better rate of I/O for a random access workload, assuming
a 4KB sector size? How long is the total I/O time for a 200MB random access workload?
Assume 1MB = 1000KB.

2 SSDs

Block 0 1
Page 0 1 2 3 4 5 6 7

Content
State i i i i i i i i

Perform the following writes and erases for an SSD, once for a direct mapped SSD, once for a
page-level mapped one. Assume that a block consists of 4 pages, and each write is exactly the
size of one page. By “garbage collect” we mean “pick a block to erase, issue necessary writes,
update validity information”.

• write(0) content A

• write(6) content B

• write(4) content C

• write(1) content D

• write(0) content E

• garbage collect (only page-level mapped)

• write(4) content F

• garbage collect (only page-level mapped)

Below you’ll find templates for the exercise. Show the SSD after each set of writes as well as
after each block erasure.

Direct mapped SSD:

write(0) content A

Content
State

write(6) content B

Content
State

write(4) content C

Content
State

write(1) content D

Content
State

write(0) content E

Content
State

Content
State

write(4) content F

Content
State

Content
State

Page-level mapped SSD:

write(0) content A

Table
Content

State

2

write(6) content B

Table
Content

State

write(4) content C

Table
Content

State

write(1) content D

Table
Content

State

write(0) content E

Table
Content

State

garbage collection

Table
Content

State

Table
Content

State

write(4) content F

Table
Content

State

garbage collection

Table
Content

State

Table
Content

State

3

3 File System

Super

0 1 0 1 2 0 1

0 1 2 3
2 3 3 4 5 2 3
4 5 6 7 8 4 5
6 7 9 10 11 6 7
i-bmap d-bmap inodes data

4 5 6 7 8 9 10 11

data

Assume we have a file system as depicted above with an inode table consisting of two blocks
that can hold a total of 8 inodes, a data region that can hold 12 blocks, and uses bitmaps as
allocation structures.

a) Starting with only the root directory /, the following actions are performed:

• Create directory /a

• Create directory /b

• Create file /b/a.txt, containing ”This is a long text file”. Assume that this file needs
two blocks.

• Create file /a/b.txt, containing ”This is another long text file”. Assume that this file
needs two blocks.

• Delete file /b/a.txt

• Create file /a/a.txt, containing ”Hi”. Assume that this file needs one block.

List the commands you can use in a UNIX terminal to perform these actions and show the
state of the file system after each of these. For the inodes, list the indices of the referenced
data blocks; for the directory blocks, list names and inode indices of the contained files.
You find templates below.

b) How does the file system resolve the address /a/b.txt?

c) What is the difference between soft and hard links from an implementation view?

Starting state

Super

0

i-bmap d-bmap inodes data

data

4

Command:

Super

i-bmap d-bmap inodes data

data

Command:

Super

i-bmap d-bmap inodes data

data

Command:

Super

i-bmap d-bmap inodes data

data

Command:

Super

i-bmap d-bmap inodes data

data

5

Command:

Super

i-bmap d-bmap inodes data

data

Command:

Super

i-bmap d-bmap inodes data

data

4 Permissions

Consider the following directory tree:

/
drwxrwxr-x user user

pub
drwxrwxr-x user user

secret
drwxr-xr-x user user

groupFile
---Srwx--- user weakuser

destroy.sh
-rw-rwSr-- weakuser user

subdir
drwx--x--x user user

anvengers.mp4
---------- user user

Figure 1: A small directory tree with ownership and permissions. The top line is the name of
the file, the bottom line is the permissions string, then owner, then group owner.

Each letter in a permission string is also called a “bit” since it is implemented as a single bit
(1 for “permission is granted”, 0 for “not granted”). To explain the permissions strings:

6

• The first letter tells us which type of file it is; - means “normal file”, d means “di-
rectory”. See https://en.wikipedia.org/wiki/Unix file types for the other
available UNIX file types.

• The three letters after that (the first triad) specify the permissions of the owner of the file.
The first letter of the triad is “read”, the second “write”, the third “execute” permissions.
For example, -r-x------ means the owner has read and execute permissions, but not
write.

• The second and third triad specify permissions for group owner and other.

• An execute bit of s means the suid/sgid bit and the respective execute bit are set, while S
means only the suid/sgid bit but not the respective execute bit is set.

Assume for the following tasks that user is only in the group user, and weakuser is only
in the group weakuser.

a) weakuser wants to execute /secret/destroy.sh, but the OS says Permission
denied. How would the permissions string have to be different so he can execute it?
What about user?

b) Can weakuser read, write, or execute /pub/groupFile?

c) The command ls -l /secret/subdir should list the contents of that directory. Why
doesn’t it when weakuser runs that command?

d) We want to make it possible for weakuser to play /secret/subdir/avengers.mp4.
What are the minimal required changes to the permission strings such that this is possible?
Who can set the respective bits in the permission strings?

e) Try to rebuild a directory structure like this on a UNIX machine. To change permissions,
use the command chmod with the appropriate parameters; to see the contents of a directory
with permission strings and owner/group owner, use ls -l or ll.

7

