
Chapter 3

Transport Layer

How does the internet decide at what quality you can watch a video?

3.1 Flows

Since data flows are inherently directed, we will only consider (weighted) di-
rected graphs in this chapter. Moreover, in contrast to Chapter 2, the weights
will not indicate the latency of edges, but the bandwidth capacity.

Definition 3.1 (Flow, Rate). Let s, t be two nodes. A flow from source s to
destination t (also called an s-t-flow) is a function F : E → R≥0 such that
the following hold:

F (e) ≤ c(e) for all e ∈ E (capacity constraints)
∑
e∈in(v) F (e) =

∑
e∈out(v) F (e) for all v ∈ V \ {s, t} (flow conservation)

We call F (e) the rate of F on edge e and the net flow leaving s (
∑
e∈out(s) F (e)−∑

e∈in(s) F (e)) the rate of F , also denoted by F .

Remarks:

• By in(v) resp. out(v) we denote the set of all incoming resp. outgoing
edges at node v.

• You may wonder what happens if there is not only one flow in the
graph, but if there are multiple source-destination pairs. Welcome to
the world of multi-commodity flows!

Definition 3.2 (Multi-Commodity Flow). A multi-commodity flow F =
(F1, ..., Fk) is a collection of si-ti-flows Fi such that for each edge e ∈ E the
sum of the flows’ rates on e does not exceed the capacity of e, i.e.,

k∑

i=1

Fi(e) ≤ c(e) for all e ∈ E.
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Remarks:

• A commodity is simply a source-destination (or sender-receiver) pair.

• As a multi-commodity flow consists of single-commodity flows, all Fi
must satisfy flow conservation. Note that the additional condition
regarding the sum of the flows on an edge already implies that the
capacity constraints are satisfied.

• Can we transfer single-commodity flow techniques and results directly
to the multi-commodity world? A first hint that things get a bit more
difficult is given by the max-flow min-cut theorem: It turns out that
for multi-commodity flows, the size of the maximum flow does no
longer equal the size of the minimum cut in general.

• What about augmenting paths, as used in the famous Ford-Fulkerson
algorithm? If we are given a graph with a multi-commodity flow, can
we use augmenting paths in order to increase the flow for some com-
modity (si, ti)? Figure 3.3 shows that augmenting paths and multi-
commodity flows do not go well together. What can we do instead? A
technique that solves many different multi-commodity flow problems
is linear programming.

s1 t2

s2 t1

Figure 3.3: Given the depicted graph with a flow from s1 to t1, there is
an augmenting path from s2 to t2 in the corresponding residual graph. If we
now add a flow to the graph according to the augmenting path, then the flows
starting in s1 and s2 will end up at the wrong destinations!

3.2 Linear Programming

Linear programming is a tool that is applicable for a wide range of optimization
problems. In an optimization problem, one wants to maximize (or minimize)
some function under certain restrictions, e.g., maximize the value of the term
xy given the restriction x + y ≤ 5. In order to be suitable for being solved
by linear programming, the restricting inequalities and the function have to be
linear (hence, the name).
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Remarks:

• Let’s have a look at an example of a linear program. Imagine you want
to throw a party. How much booze should you buy? You can buy beer
for a liter price of 1, and self-made cocktails where the ingredients for
a liter will cost you 3. Your fridge has a capacity of 30 liters, but for
each liter of cocktail you only need half a liter of fridge space. You
figure that 50 liters in total should be enough for your friends. Here’s
the linear program for your problem:

Minimize f(x) = x1 + 3x2
subject to

1. x1 + x2 ≥ 50

2. x1 + 1
2x2 ≤ 30

3. x1 ≥ 0

4. x2 ≥ 0

Figure 3.4: Linear program for throwing a party

Remarks:

• How is a linear program defined in general?

Definition 3.5 (Linear Program, LP). A linear program (LP) consists of a
set of m inequalities

a11x1 + a12x2 + . . . + a1nxn ≤ b1

a21x1 + a22x2 + . . . + a2nxn ≤ b2

...
...

...
...

am1x1 + am2x2 + . . . + amnxn ≤ bm

and a linear function

f(x) = c1x1 + c2x2 + · · ·+ cnxn .

The aji, bi and ci are given real-valued parameters and a vector x = (x1, . . . , xn)T

is a solution to the linear program if xi ≥ 0 for all 1 ≤ i ≤ n and x maximizes
f(x).
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Remarks:

• If a linear program is specified as in the above definition, then we say
that it is given in canonical form. There is also a short hand notation

max{cTx | Ax ≤ b,x ≥ 0}

where A is the matrix with entries aji and b and c the vectors given
by the bi and ci, respectively.

• In general, if you have the problem of maximizing or minimizing a
linear function under constraints that are linear (in)equalities, there
is a way to formulate it in canonical form. For instance, a constraint
of the form a1x1 = b1 can be rewritten as a combination of a1x1 ≤ b1
and a1x1 ≥ b1 which itself can be rewritten as −a1x1 ≤ −b1. Also,
minimizing a linear function with coefficients c1, . . . , cn is the same as
maximizing a linear function with coefficients −c1, . . . ,−cn.

• Now we know how to transform a linear problem into a linear program,
but how do we solve LPs? Geometrically, an LP basically corresponds
to an n-dimensional convex polytope and the hyperplanes bounding
the polytope are given by the restricting inequalities. In order to solve
an LP, one has to find a point on the polytope that maximizes our
objective function f(x). It is known that there is always a vertex of
the polytope where the maximum is attained. One popular method for
finding such a vertex and thus solving the LP is the simplex algorithm.

Algorithm 3.6 Simplex Algorithm

1: choose a vertex x of the polytope
2: while there is a neighboring vertex y such that f(y) > f(x) do
3: x := y
4: end while
5: return x

Remarks:

• There are other methods for solving LPs, such as interior point meth-
ods, where a solution is approached through the interior of the poly-
tope. While the simplex algorithm performs well in practice, there are
instances where its runtime is not polynomial in n. For some interior
point methods it has been proved that the runtime is polynomial.

• In our party example, the solution of the LP uses fractional amounts
of beer and cocktail ingredients. Sometimes fractional solutions are
not possible and we need an integer solution. Solving integer linear
programs is usually NP-hard.

• LPs can solve flow problems. For simplicity, we only present the LP for
maximizing a single-commodity s-t-flow. The multi-commodity case
is similar, with the number of inequalities growing roughly linearly
with the number of commodities.
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Maximize f(x) =
∑
e∈out(s) xe

subject to

1. xe ≥ 0 for all e ∈ E

2. xe ≤ c(e) for all e ∈ E

3.
∑
e∈in(v) xe =

∑
e∈out(v) xe for all v ∈ V \ {s, t}

4.
∑
e∈in(s) xe = 0

Figure 3.7: LP for maximizing a single-commodity s-t-flow

Remarks:

• For each edge e, xe is a variable indicating the amount of flow on
e. As our goal is to find a maximum s-t-flow, we want to maximize
the function f(x) describing the amount of flow exiting s. The first
constraint ensures that the amount of flow is non-negative on each
edge, and the second guarantees that no edge capacities are violated.
The third enforces flow conservation. The fourth is required because
we do not want any part of the flow leaving s to return to s.

• So far, a flow was allowed to split up at vertices, resulting in a branched
flow. In practice, we often want each flow to follow just a path.

Definition 3.8 (Unsplittable Flow). An s-t-flow F is called unsplittable if
the edges e ∈ E with F (e) > 0 form a path from s to t. If we do not impose this
path restriction on a flow, it is called splittable.

Remarks:

• The notion of an unsplittable flow also extends to multi-commodity
flows. If paths are not fixed, we cannot use a simple LP for maximizing
an unsplittable multi-commodity flow, as the additional constraint
cannot be expressed by linear inequalities.

• Maximizing an unsplittable multi-commodity flow is NP-hard, but
various algorithms solve the problem approximately.

3.3 Fairness

Definition 3.9. The demand di ∈ R≥0 of a flow Fi is the rate at which Fi
wants to transmit. The actual flow rate is always at most as large as the demand,
i.e., Fi ≤ di.
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Remarks:

• Due to the capacity restrictions in our network and the presence of
other flows, the rate of a flow may be considerably smaller than its
demand.

• For convenience we will assume in the following that all considered
flows are unsplittable and that, for each flow, we are given a designated
path this flow will follow.

• A fundamental problem of managing data flows in a network is how
to allocate the bandwidth of a link whose capacity is not sufficient for
simultaneously accomodating all flows (at full demand) which are to
be routed along this link. On one hand, it may seem reasonable to
allocate the available resources in a way that throughput is maximized.
On the other hand, if throughput is maximized, some flows may starve.
A certain fairness is desirable.

u v w
1 1

F1

F2

F3

Figure 3.10: We have three flows, all with demand 1.

Remarks:

• What is a fair bandwidth allocation in Figure 3.10? Throughput is
maximized if flow F2 is ignored and F1 and F3 are allocated a band-
width of 1. A fairer allocation that still takes the throughput into
account is to allocate a bandwidth of 2/3 to F1 and F3 each and
of 1/3 to F2. There is an argument for allocating F2 only half of
the bandwidth of F1 and F3 since it uses twice as many edges. If
we ignore throughput completely, then allocating a bandwidth of 1/2
to each flow is simple and fair. How can we formalize this intuitive
concept of fairness?

Definition 3.11 (Max-Min-Fairness). A bandwidth allocation is called max-
min-fair if increasing the allocation of a flow would necessarily decrease the
allocation of a smaller or equal-sized flow.
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Remarks:

• There is only one max-min-fair allocation for a given set of flows in a
network. It can be found by Algorithm 3.12.

Algorithm 3.12 Max-Min-Fair Allocation

1: Given a graph G, a set F = {F1, . . . , Fk} of flows with initial rate 0 on all
edges, paths p1, . . . , pk along which the respective flows are to be routed and
demands d1, . . . , dk

2: while F 6= ∅ do
3: repeat
4: increase rate of all flows in F evenly, but at most up to the respective

demands
5: until there is an edge e ∈ E such that

∑
i:e∈pi Fi = c(e)

6: for all such edges e do
7: for all i such that e ∈ pi do
8: F := F \ {Fi}
9: end for

10: E := E \ {e}
11: end for
12: end while

Remarks:

• Small networks indeed adopt centralized approaches for finding good
allocations, e.g., using Software Defined Networking (SDN ) or Mul-
tiprotocol Label Switching (MPLS ). However, for large networks with
quickly changing data flows, such as the internet, calculating and
maintaining a good allocation in a centralized way is difficult. Even
more so, who should do it?! There is no central authority for band-
width allocation. We need a distributed way of avoiding congestion.
How can we achieve this?

• One such congestion control mechanism commonly used is the AIMD
algorithm, where AIMD stands for additive increase/multiplicative de-
crease. When using AIMD, the rate of any flow continuously changes
as follows: As long as no congestion is reported, each flow repeatedly
increases its rate additively. When congestion occurs on some edge,
the affected flows decrease their rates by a multiplicative factor. The
function describing the rate of a flow thus roughly follows a sawtooth
behavior.

• To be precise, congestion occurs in a node (router), and not on an
edge. When the router’s buffers are full while data packets come in,
those packets are dropped and packet loss occurs. Such a packet loss is
used as indicator that the affected flow has to perform a multiplicative
decrease.

• If the bandwidth allocation is performed according to AIMD, then it
roughly converges to a max-min-fair allocation (roughly because ac-
cording to AIMD the allocation never reaches a stable state). Consider
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what happens if a router used by two flows becomes congested: If both
flows drop packets, then their rates are multiplied by the same factor,
e.g. 1/2, and the absolute difference between the two rates decreases.
The subsequent additive increase does not change this difference and
when the next congestion occurs on this link, the rates converge again.

• It is possible that only one flow drops a packet during congestion, but
this only improves the convergence rate as the probability of packet
loss is larger for the larger flow.

• AIMD is used for congestion avoidance in an omnipresent distributed
transport protocol called TCP.

3.4 UDP

As multiple applications running on the same computer want to use a network
at the same time, it is necessary to distinguish between those applications (and
their respective data flows). This distinction is provided by ports.

Definition 3.13 (Port). A port is a numeric identifier used in transport pro-
tocols to identify which application sent the packet and which application should
receive it on the destination computer.

Definition 3.14 (Client-Server Model). In the client-server model, the sender
is called client and the receiver server. The client is regarded as a consumer
of the services offered by the server.

Remarks:

• When communicating with a server, a client transmits its port so that
the server knows where to reply, if needed.

• There exists a multitude of protocols used when communicating be-
tween applications, with various tradeoffs in terms of latency, security
and consistency. The most common ones are UDP and TCP.

Protocol 3.15 (UDP). The user datagram protocol (UDP) is a no-frills
transport protocol that allows an application to send packets from client to
server.

Remarks:

• In Chapter 2 you learned that IP packets consist of header and pay-
load. In the transport layer (when using UDP) the IP payload is
divided further into the UDP header and the actual data.

• In the UDP header, the source and destination ports are specified
along with a checksum and a packet length.

• UDP does not handle packet loss.

• UDP does not provide any congestion control.
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• Furthermore, UDP does not guarantee any order on the delivery of
packets.

• Dealing with all these issues is delegated to the client application.

• However, UDP also has very little overhead in terms of packet size and
latency, hence it is commonly used in scenarios where the application
requires low overhead, e.g., real-time applications.

3.5 TCP

Definition 3.16 (Connection). A connection is a bidirectional long-term re-
lationship established between a client and a server in order to transmit data
reliably.

Protocol 3.17 (TCP). The transmission control protocol (TCP) is a
connection-oriented transport protocol guaranteeing that lost packets are being
retransmitted and that packets are delivered in the same order they are sent.

Remarks:

• Like UDP, TCP introduces the notion of ports to address a specific
application on a computer. In addition to UDP, the header also in-
cludes a sequence number, an acknowledgement number, a window
size, and a number of binary flags.

• In TCP, the partitioning of data into packets is abstracted into a
continuous data stream from sender to receiver. For applications ex-
changing data it is not visible where the actual packets begin and
end.

• In the literature, the TCP packets are also called segments.

• While UDP simply sends packets, TCP establishes a connection be-
tween source and destination before starting to send packets contain-
ing the actual data to be transmitted.

Definition 3.18 (Acknowledgement). An acknowledgement (ACK) is the
confirmation that a sent packet has actually been received. The ACK is sent
from the receiver of the packet to the sender.

Remarks:

• In TCP, each data byte is specified by a sequence number. The se-
quence number of a packet is the number of the first data byte in
the packet. Upon receiving a packet, the receiver sends back a packet
where the acknowledgement number is set to the number of the last
data byte of the received packet plus 1, i.e., the sequence number of
the first byte of the packet it expects to receive next. By sending
this acknowledgement packet, the receiver confirms to have received
all data up to the specified byte. The acknowledgement packet may
be void of any actual data.
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• In addition, TCP often also supports non-cumulative acknowledge-
ments known as selective ACKs (SACKs).

Protocol 3.19 (Establishing a Connection).

• The client sends a SYN (synchronize) packet to the server.

• The server acknowledges the packet by sending back a SYN/ACK packet.

• The client acknowledges the reception of the SYN/ACK packet by sending
an ACK packet itself.

Remarks:

• Terminating a connection can be done by a similar process where the
SYN packets are replaced by FIN packets.

• A packet is specified as a SYN, FIN, or ACK packet by setting the
respective binary flag in the header.

• The sequence number x of the first SYN packet is not simply set
to 0 (for security reasons), but to some arbitrary number. Based
on this number the subsequent data is numbered (bytewise). The
rules explained above for the used sequence and acknowledgement
numbers also apply for establishing the connection. Consequently,
the server’s SYN/ACK packet has acknowledgement number x + 1
and the client’s ACK packet, containing also the first actual data, has
sequence number x+ 1.

Definition 3.20 (Flow Control). Avoiding congestion on the recipient’s side
which occurs, e.g., because the recipient is a device processing relatively slowly,
is called flow control.

Remarks:

• For flow control, the server uses the window size field in the header
to specify how many packets it can receive before its buffer is full.
The client accordingly adjustes its rate so that no more packets are in
flight than specified by the window size.

Definition 3.21 (Round-Trip Time). The time it takes a packet to travel from
sender to receiver and back is called round-trip time (RTT).

Definition 3.22 (Congestion Control). Avoiding congestion on a link (or, more
precisely, in the router transmitting over the link) in the network is called con-
gestion control.

Remarks:

• Congestion control is exercised by implementing a congestion window.
The actual window size used for determining the rate of a flow is the
minimum of the size of the congestion window and the window size
specified in the header of packets received by the client.
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• Basically, the congestion window implements AIMD. Congestion in
the network causes packet loss which is then reported to the affected
sender, who decreases the congestion window by a factor of 1/2. Af-
terwards, the congestion window is increased by (the maximum size
of) one packet per RTT, resulting in a linear increase.

• In TCP, recognition of dropped packets on the sender side is imple-
mented by timeouts, i.e., if a packet is not acknowledged in some time
frame it is considered as lost. Thus, some time elapses between a
congested router dropping a packet and the affected flow decreasing
its rate which in turn causes other flows to suffer packet loss in the
congested router since the congestion is not remedied immediately.

• How long a sender should wait for the acknowledgement of a sent
packet depends on the RTT. For determining the waiting time, a vari-
able called smoothed RTT (SRTT ), set initially to the RTT of the
first acknowledged packet, is used. The new SRTT is the weighted
(“smoothed”) mean of the last SRTT and the RTT of the last ac-
knowledged packet.

• Over time, various heuristics have been incorporated into TCP to
improve performance, e.g., the slow-start algorithm which governs the
initial growth of the size of the congestion window. According to slow-
start, whenever a packet is acknowledged, the window size is increased
by one packet. Thus, the initially small window grows exponentially
in size until a certain threshold is reached upon which the additive
increase part of AIMD starts. Thereby, the time where the network
is not used close to full capacity is reduced.

• TCP relies on the goodwill of the senders as this is where the adjust-
ment of the flow rates takes place. You may tweak your local version
of the TCP protocol in order to obtain more bandwidth for yourself,
e.g., by simply ignoring the multiplicative decrease.

sectionNATs

Definition 3.23 (Network Address Translation, NAT). A node systematically
exchanges the header of packets in order to be able to route to nodes with private
addresses.

Remarks:

• The address blocks 10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16 are
reserved for private networks. In other words, addresses of these blocks
are not unique as promised in Definition 2.20, but many nodes may
have the same address. Nodes outside the private network cannot
route to such a private address. %item In IPv6, every edge assigns a
private link-local address to the two nodes adjacent to the edge.

• Because of the shortage of IPv4 addresses, ISPs do not want to give
many IPv4 addresses to their customers, often each customer gets
exactly one IPv4 address. Instead, in a home or a small business, all
machines but the entry node (router) only get private addresses.
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• We have a client node with a private address in a network with a
router, and a server. While the client can easily send a packet with a
search query to the server, how does the server send back its answer?
When the client packet p arrives at the router, the router will switch
the client’s private IPv4 address and port with its own router IPv4 ad-
dress and an arbitrary unused port. The router forward that modified
packet p′ to the server, and memorizes the triple (new unused port,
client address, and client port). When the server’s answer comes back
to the router, the router will switch back the destination address/port
to the client’s address/port, before the router forwards the packet to
the client.

• This is a nasty hack because it mixes concepts of the network and the
transport layer.

Chapter Notes

As Leighton and Rao show in [4], for multi-commodity flows, the size of the
maximum flow does not equal the size of the minimum cut in general. The NP-
hardness of maximizing an unsplittable multi-commodity flow can be inferred
from [1].

Two of the first researchers who formulated applied problems from logis-
tics/economics as linear programs were Kantorovich and Koopmans who later
received the Nobel Prize in economics for their contributions. The simplex algo-
rithm was developed by Dantzig in 1947. In 1979, Khachiyan showed that linear
programs can be solved in polynomial time. In 1984, Karmarkar developed an
interior point algorithm that not only had a polynomial-time runtime, but was
also practically feasible.

TCP was developed by Cerf and Kahn, based on their work [2]. Analysis of
the AIMD algorithm can be found in [3].

This chapter was written in collaboration with Sebastian Brandt.
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