Principles of Distributed Computing 04/18, 2018

Exercise 8
Lecturer: Mohsen Ghaffari

1 Sublinear-Time Approximation of Maximum Matching

Consider a graph G = (V, E). Recall that a matching is a set of edges M C E such that no
two of the edges in M share an end-point. A fractional matching is the corresponding natural
relaxation, where we assign to each edge e € E a value z, € [0, 1] such that the summation of
the edge-values in each node is at most 1, that is, for each node v € V', we have ZeeE(v) Te < 1,
where E(v) denotes the set of edges incident on v. We define y(v) = >_ c g, Ze as the value of
node v in the given fractional matching. The size of a fractional matching is defined as) . @,
and we have) .pxe = (3_,cv ¥(v))/2 (why?). We call a fractional matching almost-mazimal
if for each edge e € E, there is one of its endpoints v € e such that y(v) = Ze/eE(v) Ter 2> %ﬁ
Exercise

(la) In the class, we saw that any maximal matching has size at least 1/2 of the maximum
matching. Prove that the size) . p e = (3, ey ¥(v))/2 of any almost-maximal fractional

matching is at least 2(171%) of the size of maximum matching.

Consider a maximum matching M™* and an almost-maximal fractional matching which has
|M*| ;
value z. on each edge e. We prove that) _pz. > PIEEmE Consider |M*| dollars spread
around, where we have put one dollar on each edge e of the maximum matching M*. By the
almost-maximality of the fractional matching, each edge e has at least one endpoint v € ¢
such that y(v) = > e p(y) Ter 2 1%6 Make edge e send its one dollar to one such endpoint v.
This way, each node receives at most one dollar (why?). Now, make node v split its one dollar
among its incident edges E(v) proportional to the values z.,. This way, each edge receives
at most (1 4 €)z.s dollars from v. More generally, each edge €’ receives at most (1 + €)x,s

dollars from each of its endpoints and thus overall at most 2(1 + €)z.,. We can conclude that
M*

Ywep2(1+ €z > [M*|. In other words, >, e > ﬁ

Thus, the above item indicates that almost-maximal fractional matchings also provide a reason-

able approximation of the size of the maximum matching. But computing an almost-maximal

fractional matching is much easier. We next see a LOCAL algorithm for that.

LOCAL-Algorithm for Almost-Maximal Fractional Matching: Initially, set . = 1/A
for each edge e € E. Then, for log;, . A iterations, in each iteration, we do as follows:

- For each vertex v such that y(v) =3 .cp(,) Te = l%re, we freeze all of its incident edges.

- For each unfrozen edge e, set x, < x. - (1 +¢).

Exercise

(1b) Prove that the process always maintains a fractional matching, meaning that we always
have - c g,y Te < 1.

Per iteration, we freeze all edges incident on vertices v whose sum y(v) has passed %Jre and

then we increase unfrozen edges by a (1 + €) factor. Hence, the value y(v) can increase to at

most %Jre (14 ¢€) =1, but cannot pass that.

(1c)

Prove that at the end, we have an almost-maximal fractional matching, meaning that for
each edge e € F, there is one of its endpoints v € e such that EeeE(U) Te > #6

For each edge e, either during some it gets frozen because one of its endpoints v € e reaches
asum y(v) = 3 cp) Te = l%re or the edge e gets multiplies by (1 + €) in each iteration.
The latter means . reaches a value of & - (14 ¢)!°81+<2 = 1. That would imply that even

both of the endpoints v € € have }_ . p(,) Te = 71

Now that we have a simple LOCAL-algorithm for almost-maximal fractional matching, we use
it to obtain a centralized algorithm for approximating the maximum matching. To estimate the

size of maximum matching, we pick a set S of k =

2041081/ 115des at random (sampled with

replacement). Here, ¢ is some certainty parameter 6 € [0,0.25]. For each sampled node v € S,
we run the above LOCAL-algorithm around v, hence allowing us to learn y(v).

Exercise

(1d)

(1f)

Define a linear function f : R — R such that when applied on the sample average
> wes ¥(v)/]S], the resulting value f(3°, .gy(v)/[S]) is an unbiased estimator of) . p e =

(> vey y(v))/2. That is,
Es[f(>_y@)/IS)] = =.

vES ecE

We have Eg[>, cqy(v)/|S]] = 2Lcep e (why?). Hence, it suffices to define f(z) = nz/2.

n

What is the query complexity of our sublinear-time approximation algorithm?

Per sampled node, we need to simulate the algorithm in its (log;, . A)-hop neighborhood. The
size of this neighborhood and thus also the related query complexity is at most O(Al°81+¢).
Hence, the overall query complexity is O(kA 81+ 2) = O(AlT1o81 A logﬁ%/&). In terms of
dependency on A, this is much better than the 20(2) bound that we saw in the class.

Prove that the estimator that you defined in (1d) gives a (2 + 5¢)-approximation of the
maximum matching size, with probability at least 1 — 4.

By (1d), we know that the expectation of our estimator is) ___ 5 x¢, which we know by (1a) is
within a 2(1+¢) factor of the size of the maximum matching. We next examine how much the
random value may deviate from this expectation. Define X; to be the random variable that is

equal to y(s;) where s; denotes the i** node in our sample set S. Notice that X; € [0,1] and
moreover, E[X;] = % Hence, = E[F | X3 = Y8 E[X)] = k:QZETGE% Also notice
that) . pze > {%x (why?) and thus, p > k% = 20%21/5 o = %%1/6. Therefore,
by Chernoff bound, the probability that X = Ele X, deviates by more than a (1 + €) factor
from its expectation u is at most

2 10log1l/s
2e K3 —2e7 3 <.

Thus, with probability at least 1 — §, we get an expectation within a 2(1+¢€)(1 4 ¢€) < 2+ 5e
factor of the maximum matching.

