Exercise 8

Lecturer: Mohsen Ghaffari

1 Sublinear-Time Approximation of Maximum Matching

Consider a graph G = (V, E). Recall that a *matching* is a set of edges $M \subseteq E$ such that no two of the edges in M share an end-point. A fractional matching is the corresponding natural relaxation, where we assign to each edge $e \in E$ a value $x_e \in [0, 1]$ such that the summation of the edge-values in each node is at most 1, that is, for each node $v \in V$, we have $\sum_{e \in E(v)} x_e \leq 1$, where E(v) denotes the set of edges incident on v. We define $y(v) = \sum_{e \in E(v)} x_e$ as the value of node v in the given fractional matching. The *size* of a fractional matching is defined as $\sum_{e \in E} x_e$, and we have $\sum_{e \in E} x_e = (\sum_{v \in V} y(v))/2$ (why?). We call a fractional matching *almost-maximal* if for each edge $e \in E$, there is one of its endpoints $v \in e$ such that $y(v) = \sum_{e' \in E(v)} x_{e'} \geq \frac{1}{1+\epsilon}$.

Exercise

(1a) In the class, we saw that any maximal matching has size at least 1/2 of the maximum matching. Prove that the size $\sum_{e \in E} x_e = (\sum_{v \in V} y(v))/2$ of any almost-maximal fractional matching is at least $\frac{1}{2(1+\epsilon)}$ of the size of maximum matching.

Consider a maximum matching M^* and an almost-maximal fractional matching which has value x_e on each edge e. We prove that $\sum_{e \in E} x_e \geq \frac{|M^*|}{2(1+\epsilon)}$. Consider $|M^*|$ dollars spread around, where we have put one dollar on each edge e of the maximum matching M^* . By the almost-maximality of the fractional matching, each edge e has at least one endpoint $v \in e$ such that $y(v) = \sum_{e' \in E(v)} x_{e'} \geq \frac{1}{1+\epsilon}$. Make edge e send its one dollar to one such endpoint v. This way, each node receives at most one dollar (why?). Now, make node v split its one dollar among its incident edges E(v) proportional to the values $x_{e'}$. This way, each edge receives at most $(1 + \epsilon)x_{e'}$ dollars from v. More generally, each edge e' receives at most $(1 + \epsilon)x_{e'}$ dollars from each of its endpoints and thus overall at most $2(1 + \epsilon)x_{e'}$. We can conclude that $\sum_{e' \in E} 2(1 + \epsilon)x_{e'} \geq |M^*|$. In other words, $\sum_{e \in E} x_e \geq \frac{|M^*|}{2(1+\epsilon)}$.

Thus, the above item indicates that almost-maximal fractional matchings also provide a reasonable approximation of the size of the maximum matching. But computing an almost-maximal fractional matching is much easier. We next see a LOCAL algorithm for that.

LOCAL-Algorithm for Almost-Maximal Fractional Matching: Initially, set $x_e = 1/\Delta$ for each edge $e \in E$. Then, for $\log_{1+\epsilon} \Delta$ iterations, in each iteration, we do as follows:

- For each vertex v such that $y(v) = \sum_{e \in E(v)} x_e \ge \frac{1}{1+\epsilon}$, we freeze all of its incident edges.
- For each unfrozen edge e, set $x_e \leftarrow x_e \cdot (1 + \epsilon)$.

Exercise

(1b) Prove that the process always maintains a fractional matching, meaning that we always have $\sum_{e \in E(v)} x_e \leq 1$.

Per iteration, we freeze all edges incident on vertices v whose sum y(v) has passed $\frac{1}{1+\epsilon}$ and then we increase unfrozen edges by a $(1+\epsilon)$ factor. Hence, the value y(v) can increase to at most $\frac{1}{1+\epsilon} \cdot (1+\epsilon) = 1$, but cannot pass that.

(1c) Prove that at the end, we have an almost-maximal fractional matching, meaning that for each edge $e \in E$, there is one of its endpoints $v \in e$ such that $\sum_{e \in E(v)} x_e \ge \frac{1}{1+\epsilon}$.

For each edge e, either during some it gets frozen because one of its endpoints $v \in e$ reaches a sum $y(v) = \sum_{e \in E(v)} x_e \ge \frac{1}{1+\epsilon}$, or the edge e gets multiplies by $(1+\epsilon)$ in each iteration. The latter means x_e reaches a value of $\frac{1}{\Delta} \cdot (1+\epsilon)^{\log_{1+\epsilon}\Delta} = 1$. That would imply that even both of the endpoints $v \in e$ have $\sum_{e \in E(v)} x_e \ge \frac{1}{1+\epsilon}$.

Now that we have a simple LOCAL-algorithm for almost-maximal fractional matching, we use it to obtain a centralized algorithm for approximating the maximum matching. To estimate the size of maximum matching, we pick a set S of $k = \frac{20\Delta \log 1/\delta}{\epsilon^2}$ nodes at random (sampled with replacement). Here, δ is some certainty parameter $\delta \in [0, 0.25]$. For each sampled node $v \in S$, we run the above LOCAL-algorithm around v, hence allowing us to learn y(v).

Exercise

(1d) Define a linear function $f : \mathbb{R} \to \mathbb{R}$ such that when applied on the sample average $\sum_{v \in S} y(v)/|S|$, the resulting value $f(\sum_{v \in S} y(v)/|S|)$ is an unbiased estimator of $\sum_{e \in E} x_e = (\sum_{v \in V} y(v))/2$. That is,

$$\mathbb{E}_S[f(\sum_{v \in S} y(v)/|S|)] = \sum_{e \in E} x_e.$$

We have $\mathbb{E}_S[\sum_{v \in S} y(v)/|S|] = \frac{2\sum_{e \in E} x_e}{n}$ (why?). Hence, it suffices to define f(z) = nz/2.

(1e) What is the query complexity of our sublinear-time approximation algorithm?

Per sampled node, we need to simulate the algorithm in its $(\log_{1+\epsilon} \Delta)$ -hop neighborhood. The size of this neighborhood and thus also the related query complexity is at most $O(\Delta^{\log_{1+\epsilon} \Delta})$. Hence, the overall query complexity is $O(k\Delta^{\log_{1+\epsilon} \Delta}) = O(\Delta^{1+\log_{1+\epsilon} \Delta} \cdot \frac{\log 1/\delta}{\epsilon^2})$. In terms of dependency on Δ , this is much better than the $2^{O(\Delta)}$ bound that we saw in the class.

(1f) Prove that the estimator that you defined in (1d) gives a $(2 + 5\epsilon)$ -approximation of the maximum matching size, with probability at least $1 - \delta$.

By (1d), we know that the expectation of our estimator is $\sum_{e \in E} x_e$, which we know by (1a) is within a $2(1+\epsilon)$ factor of the size of the maximum matching. We next examine how much the random value may deviate from this expectation. Define X_i to be the random variable that is equal to $y(s_i)$ where s_i denotes the i^{th} node in our sample set S. Notice that $X_i \in [0, 1]$ and moreover, $\mathbb{E}[X_i] = \frac{2\sum_e x_e}{n}$. Hence, $\mu = \mathbb{E}[\sum_{i=1}^k X_k] = \sum_{i=1}^k \mathbb{E}[X_i] = k \frac{2\sum_{e \in E} x_e}{n}$. Also notice that $\sum_{e \in E} x_e \geq \frac{n}{4\Delta}$ (why?) and thus, $\mu \geq k \frac{n/(2\Delta)}{n} = 20 \frac{\Delta \log 1/\delta}{\epsilon^2} \cdot \frac{1}{2\Delta} = \frac{10 \log 1/\delta}{\epsilon^2}$. Therefore, by Chernoff bound, the probability that $X = \sum_{i=1}^k X_k$ deviates by more than a $(1 + \epsilon)$ factor from its expectation μ is at most

$$2e^{-\epsilon^2\mu/3} = 2e^{-\frac{10\log 1/\delta}{3}} \le \delta.$$

Thus, with probability at least $1 - \delta$, we get an expectation within a $2(1 + \epsilon)(1 + \epsilon) \le 2 + 5\epsilon$ factor of the maximum matching.