
Principles of Distributed Computing 04/18, 2018

Exercise 8

Lecturer: Mohsen Ghaffari

1 Sublinear-Time Approximation of Maximum Matching

Consider a graph G = (V,E). Recall that a matching is a set of edges M ⊆ E such that no
two of the edges in M share an end-point. A fractional matching is the corresponding natural
relaxation, where we assign to each edge e ∈ E a value xe ∈ [0, 1] such that the summation of
the edge-values in each node is at most 1, that is, for each node v ∈ V , we have

∑
e∈E(v) xe ≤ 1,

where E(v) denotes the set of edges incident on v. We define y(v) =
∑

e∈E(v) xe as the value of
node v in the given fractional matching. The size of a fractional matching is defined as

∑
e∈E xe,

and we have
∑

e∈E xe = (
∑

v∈V y(v))/2 (why?). We call a fractional matching almost-maximal
if for each edge e ∈ E, there is one of its endpoints v ∈ e such that y(v) =

∑
e′∈E(v) xe′ ≥

1
1+ε .

Exercise

(1a) In the class, we saw that any maximal matching has size at least 1/2 of the maximum
matching. Prove that the size

∑
e∈E xe = (

∑
v∈V y(v))/2 of any almost-maximal fractional

matching is at least 1
2(1+ε) of the size of maximum matching.

Consider a maximum matching M∗ and an almost-maximal fractional matching which has
value xe on each edge e. We prove that

∑
e∈E xe ≥

|M∗|
2(1+ε) . Consider |M∗| dollars spread

around, where we have put one dollar on each edge e of the maximum matching M∗. By the
almost-maximality of the fractional matching, each edge e has at least one endpoint v ∈ e
such that y(v) =

∑
e′∈E(v) xe′ ≥

1
1+ε . Make edge e send its one dollar to one such endpoint v.

This way, each node receives at most one dollar (why?). Now, make node v split its one dollar
among its incident edges E(v) proportional to the values xe′ . This way, each edge receives
at most (1 + ε)xe′ dollars from v. More generally, each edge e′ receives at most (1 + ε)xe′

dollars from each of its endpoints and thus overall at most 2(1 + ε)xe′ . We can conclude that∑
e′∈E 2(1 + ε)xe′ ≥ |M∗|. In other words,

∑
e∈E xe ≥

|M∗|
2(1+ε) .

Thus, the above item indicates that almost-maximal fractional matchings also provide a reason-
able approximation of the size of the maximum matching. But computing an almost-maximal
fractional matching is much easier. We next see a LOCAL algorithm for that.

LOCAL-Algorithm for Almost-Maximal Fractional Matching: Initially, set xe = 1/∆
for each edge e ∈ E. Then, for log1+ε ∆ iterations, in each iteration, we do as follows:

- For each vertex v such that y(v) =
∑

e∈E(v) xe ≥
1

1+ε , we freeze all of its incident edges.

- For each unfrozen edge e, set xe ← xe · (1 + ε).

Exercise

(1b) Prove that the process always maintains a fractional matching, meaning that we always
have

∑
e∈E(v) xe ≤ 1.

Per iteration, we freeze all edges incident on vertices v whose sum y(v) has passed 1
1+ε and

then we increase unfrozen edges by a (1 + ε) factor. Hence, the value y(v) can increase to at
most 1

1+ε · (1 + ε) = 1, but cannot pass that.

1

(1c) Prove that at the end, we have an almost-maximal fractional matching, meaning that for
each edge e ∈ E, there is one of its endpoints v ∈ e such that

∑
e∈E(v) xe ≥

1
1+ε .

For each edge e, either during some it gets frozen because one of its endpoints v ∈ e reaches
a sum y(v) =

∑
e∈E(v) xe ≥

1
1+ε , or the edge e gets multiplies by (1 + ε) in each iteration.

The latter means xe reaches a value of 1
∆ · (1 + ε)log1+ε ∆ = 1. That would imply that even

both of the endpoints v ∈ e have
∑

e∈E(v) xe ≥
1

1+ε .

Now that we have a simple LOCAL-algorithm for almost-maximal fractional matching, we use
it to obtain a centralized algorithm for approximating the maximum matching. To estimate the
size of maximum matching, we pick a set S of k = 20∆ log 1/δ

ε2
nodes at random (sampled with

replacement). Here, δ is some certainty parameter δ ∈ [0, 0.25]. For each sampled node v ∈ S,
we run the above LOCAL-algorithm around v, hence allowing us to learn y(v).

Exercise

(1d) Define a linear function f : R → R such that when applied on the sample average∑
v∈S y(v)/|S|, the resulting value f(

∑
v∈S y(v)/|S|) is an unbiased estimator of

∑
e∈E xe =

(
∑

v∈V y(v))/2. That is,

ES [f(
∑
v∈S

y(v)/|S|)] =
∑
e∈E

xe.

We have ES [
∑

v∈S y(v)/|S|] =
2
∑
e∈E xe
n (why?). Hence, it suffices to define f(z) = nz/2.

(1e) What is the query complexity of our sublinear-time approximation algorithm?

Per sampled node, we need to simulate the algorithm in its (log1+ε ∆)-hop neighborhood. The
size of this neighborhood and thus also the related query complexity is at most O(∆log1+ε ∆).

Hence, the overall query complexity is O(k∆log1+ε ∆) = O(∆1+log1+ε ∆ · log 1/δ
ε2

). In terms of

dependency on ∆, this is much better than the 2O(∆) bound that we saw in the class.

(1f) Prove that the estimator that you defined in (1d) gives a (2 + 5ε)-approximation of the
maximum matching size, with probability at least 1− δ.

By (1d), we know that the expectation of our estimator is
∑

e∈E xe, which we know by (1a) is
within a 2(1+ε) factor of the size of the maximum matching. We next examine how much the
random value may deviate from this expectation. Define Xi to be the random variable that is
equal to y(si) where si denotes the ith node in our sample set S. Notice that Xi ∈ [0, 1] and

moreover, E[Xi] =
2
∑
e xe
n . Hence, µ = E[

∑k
i=1Xk] =

∑k
i=1 E[Xi] = k

2
∑
e∈E xe
n . Also notice

that
∑

e∈E xe ≥
n

4∆ (why?) and thus, µ ≥ kn/(2∆)
n = 20∆ log 1/δ

ε2
· 1

2∆ = 10 log 1/δ
ε2

. Therefore,

by Chernoff bound, the probability that X =
∑k

i=1Xk deviates by more than a (1 + ε) factor
from its expectation µ is at most

2e−ε
2µ/3 = 2e−

10 log 1/δ
3 ≤ δ.

Thus, with probability at least 1− δ, we get an expectation within a 2(1 + ε)(1 + ε) ≤ 2 + 5ε
factor of the maximum matching.

2

