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1 Graph Sketching

In this lecture, we discuss one sample of graph sketching techniques, which allow us to perform
solve graph problems while working on compressed representations of the graphs, graph sketches.

2 The Coordinator Model and Graph Connectivity

While the sketches are useful in a range of settings, we will adopt the following hypothetical
multi-party computation setting, which we will refer to as the coordinator model. In this setting,
discussing some of the challenges and the idea behind the solution become more intuitive.

We have n players, numbered 1 to n, as well as an arbitrary n-node graph G = (V,E) where
V = {1, 2, . . . , n}. The ith player gets to know the edges incident on the ith node. Moreover,
all the players have access to shared randomness, that is, there is a sufficiently long string of
random bits, which is known to all the players1.

The graph connectivity problem in this setting is as follows: each of the players will create a
B-bit packet based on its own edges (and the shared randomness) and send it to a coordinator.
Then, the coordinator that receives the packets of all the n-players should determine whether
graph G is connected or not (with high probability). More generally, the coordinator should
know the connected components of G. The main question that we will focus on is how large
should the packet size B be?

We emphasize that the nodes cannot communicate with each other, they should generate
their packets based only on the edges they know (and the shared randomness). The coordinator
also knows this shared randomness, when determining the connected components of G.

3 The First Challenge and The Idea for Overcoming It

The Challenge in a Special Case Consider a hypothetical scenario where V is made of
two disjoint parts A and B = V \A such that there is exactly one edge e = (v, u) between nodes
of A and nodes of B. The existence of e is important for connectivity, the coordinator should
know this edge or otherwise the graph may seem disconnected to him, despite being connected.

However, to node v, the edge e looks like any other of the edges incident on v. This is
because node v doesn’t see anything beside its own edges. Similarly, to node u, the edge e looks
like any other of the edges incident on u.

Suppose we happen to be in a situation that v and u have high degrees, say up to Ω(n).
Since neither of these two nodes can distinguish the bridge edge e from the rest of their edges,
and as the existence of edge e must be communicated to the coordinator, it may appear that
we are in bad luck and quite large packets are needed, up to Ω(n).

Fortunately, as we will see, that is not the case and merely poly log n size packets suffice.
Let us see how we would solve this special case. We explain how the coordinator gets to learn
the edge e connecting A to B, despite the fact that the nodes do not know A and B and they
also do not know which edges are internal to these and which edge connects them.

1There are methods for reducing the length of this string to merely poly logn bits, though we will not be
covering those aspects in this lecture.
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The Solution Idea Suppose that each edge e has a Θ(log n)-bit unique identifier IDe. We
will later discuss these identifiers. Now, consider the algorithm that each node v computes the
bit-wise XOR of the identifiers of its incident edges, i.e., s(v) = ⊕e′∈E(v)IDe′ and sends the
result to the referee. The referee then computes ⊕v∈As(v). We claim that this must be equal
to the IDe of the bridge edge e connecting A to B. In simple terms, the reason is that, each of
the edges with both of its endpoints in A is added to the XOR ⊕v∈As(v) = ⊕v∈A⊕e′∈E(v) IDe′ ,
which means it is canceled out. The only edge remaining is the single edge e which has exactly
one endpoint in A.

4 The Second Challenge and The Idea for Overcoming It

In the above, we considered a hypothetical scenario where there is exactly one edge between A
and B = V \A. What if there are k ≥ 2 such edges? Notice that k might be large.

Notice that in such a case, when the coordinator computes ⊕v∈As(v), this is the XOR of
the identifiers of all the k-edges that connect some node in A to some other node in B. The
coordinator needs to learn about at least one of these edges, but out of this XOR, it may not
be able to distinguish which edge is there.

The Solution Idea Suppose that the nodes know an estimation k̃ of the value of k that is
within its 2-factor, that is, k ∈ [k̃/2, 2k̃]. We will later discuss how to remove this assumption.

Consider the experiment where we randomly pick a subset E′ ⊂ E where each of the edges
e ∈ E is included in E′ with probability 1

k̃
. Moreover, each of the nodes v knows only about its

own edges, and we use E′(v) to denote the edges incident on v that are included in E′.

Lemma 1. With probability at least 1/40, there is exactly one edge in E′ that has one endpoint
in A and the other endpoint in B.

Proof. The probability of having exactly one such edge is at least k̃
2 ·

1
k̃
(1− 1

k̃
)2k̃ ≥ 40.

Suppose that the identifiers are such that the XOR of more than one of them is distin-
guishable from the identifier of exactly one edge, with high probability. In the exercises of this
lecture, we see that merely random edge identifiers suffice for that purpose. Then, the above
“experiment” gives us a way so that the coordinator learns one edge between A and B with
probability at least 1/40.

To boost this probability to high probability, it suffices to repeat the experiment 100 log n
times (each with new randomness in determining E′). The probability that the coordinator
fails to learn an edge between A and B in all 100 log n of these repetitions is at most (1 −
1/40)100 logn ≤ 1/n3.

In the above, we considered that the nodes know a 2-factor estimate k̃ of the value of k, i.e.,
k ∈ [k̃/2, 2k̃]. But they do not have this information. So what can they do? Well, it suffices
for the nodes to try all the log n guesses k̃ = 2i for i ∈ {1, 2, . . . , log n}. One of these guesses
will satisfy k ∈ [k̃/2, 2k̃] and then the referee will learn an edge between A and B with high
probability.

5 The Complete Algorithm

Our goal is to let the coordinator run O(log n) phases of Boruvka using the messages of the
nodes. For that, every node sends a message of size O(log4 n) as follows. The message contains
O(log2 n) many sketches (O(log n) phases with a batch of O(log n) sketches) of size O(log2 n)
bits each. Each sketch has O(log n) parts, where for the ith part an O(log n)-bit string is
generated, according to the description in Sections 3 and 4, as follows. A (new) random subset
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of the edges incident to the node is sampled, choosing each edge with probability 2−i, and then
the XOR of the random edge IDs (of size O(log n)) over all sampled edges is stored.

The coordinator can now run Boruvka’s algorithm in the following way. In every round, the
coordinator needs to identify an outgoing edge for every component. (Note that, since we are
only interested in connectivity, there is no need for having a minimum weight outgoing edge.)
To this end, the coordinator proceeds as described in Sections 3 and 4, using a batch of O(log n)
many new sketches in every round. This will, with high probability, give him a single crossing
edge for every component. He then merges the components as described in Lecture 12, and
proceeds to the next round.
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