
Principles of Distributed Computing 03/14, 2017

Lecture 4

Lecturer: Mohsen Ghaffari Scribe:

In this lecture, we discuss distributed algorithms for coloring general graphs. In particular,
we will see the following two results:

1. An algorithm for (∆ + 1)-vertex-coloring with round complexity O(∆ log ∆ + log∗ n).

2. An algorithm for (2∆− 1)-edge-coloring with round complexity O(∆ + log∗ n).

1 Vertex-Coloring

In this section, we start the study of LOCAL vertex-coloring algorithms for general graphs. The
eventual goal would be to obtain (∆ + 1)-coloring of the graphs — that is, an assignment of
colors {1, 2, . . . ,∆ + 1} to vertices such that no two adjacent vertices receive the same color —
where ∆ denotes the maximum degree. Notice that by a simple greedy argument, each graph
with maximum degree at most ∆ has a (∆ + 1)-coloring: color vertices one by one, each time
picking a color which is not chosen by the already-colored neighbors. However, this greedy
argument does not lead to an efficient LOCAL procedure for finding such a coloring1.

1.1 Take 1: Linial’s Coloring Algorithm

We start with presenting an O(log∗ n)-round algorithm that computes a O(∆2 log ∆) coloring.
This algorithm is known as Linial’s coloring algorithm [Lin87, Lin92]. In the next subsection,
we see how to transform this coloring into a (∆ + 1)-coloring.

Theorem 1. There is a deterministic distributed algorithm in the LOCAL model that colors
vertices of any n-node graph G with maximum degree ∆ using O(∆2 log ∆) colors, in O(log∗ n)
rounds.

Conceptually, the algorithm can be viewed as a more general variant of the Colve-Vishkin
coloring algorithm for oriented trees, which we discussed in the first lecture. In particular, the
main ingredient in Theorem 1 is a single-round color reduction method, conceptually similar
to the single-round color reduction of Cole-Vishkin for trees. However, here, each node has to
ensure that the color it picks is different than all of its neighbors, and not just its parents. For
that purpose, we will work with a concept called cover free families, which we introduce next.

Definition 2. Given a ground set {1, 2, . . . , k′}, a family of sets S1, S2, . . . , Sk ⊆ {1, 2, . . . , k′}
is called a ∆-cover free family if for each set of indices i0, i1, i2, . . . , i∆ ∈ {1, 2, . . . , k}, we have
Si0 \ (∪∆

j=1 Sij) 6= ∅. That is, if no set in the family is a subset of the union of ∆ other sets.

Notice that in particular, a Sperner family —where no set Si is a subset of another set Sj—
is simply a 1-cover free family.

We use cover-free families to obtain a single-round color reduction algorithm that allow us
to transform any k-coloring to a k′-coloring, for k′ � k. We would like to have k′ be as small
as possible, as a function of k and ∆. In the following, we prove the existence of a ∆-cover free
families with a ground set size k′ = O(∆2 log k).

1The straightforward transformation of this greedy approach to the LOCAL model would be an algorithm that
may need Ω(n) rounds.

1

Lemma 3. For any k and ∆, there exists a ∆-cover free family of size k on a ground set of
size k′ = O(∆2 log k).

Proof. We use the probabilistic method [AS04] to argue that there exists a ∆-cover free family
of size k on a ground set of size k′ = O(∆2 log k). Let k′ = C∆2 log k for a sufficiently large
constant C ≥ 2. For each i ∈ {1, 2, . . . , k}, define each set Si ⊂ {1, 2, . . . , k′} randomly by
including each element q ∈ {1, 2, . . . , k′} in Si with probability p = 1/∆. We argue that this
random construction is indeed a ∆-cover free family, with high probability, and therefore, such
a cover free family exists.

First, consider an arbitrary set of indices i0, i1, i2, . . . , i∆ ∈ {1, 2, . . . , k}. We would like
to argue that Si0 \ (∪∆

j=1 Sij) 6= ∅. For each element q ∈ {1, 2, . . . , k′}, the probability that

q ∈ Si0 \ (∪∆
j=1 Sij) is at exactly 1

∆(1 − 1
∆)∆ ≥ 1

4∆ . Hence, the probability that there is no

such element q that is in Si0 \ (∪∆
j=1 Sij) is at most (1− 1

4∆)k
′ ≤ exp(−C∆ log k/4). This is an

upper bound on the probability that for a given set of indices set of indices i0, i1, i2, . . . , i∆ ∈
{1, 2, . . . , k}, the respective sets violate the cover-freeness property that Si0 \ (∪∆

j=1 Sij) 6= ∅.
There are k

(
k−1
∆

)
way to choose such a set of indices i0, i1, i2, . . . , i∆ ∈ {1, 2, . . . , k}, k ways

for choosing the central index i0 and
(
k−1
∆

)
ways for choosing the indices i1, i2, . . . , i∆. Hence,

by a union bound over all these choices, the probability that the construction fails is at most

k

(
k − 1

∆ + 1

)
· exp(−C∆ log k/4) ≤ k(

e(k − 1)

∆ + 1
)∆+1 · exp(−C∆ log k/4)

≤ exp(log k + (∆ + 1)(log k + 1)− C∆ log k/4)

≤ exp(−C∆ log k/8)� 1,

for a sufficiently large constant C. That is, the random construction succeeds to provide us
with a valid ∆-cover free family with a positive probability, and in fact with a probability close
to 1. Hence, such a ∆-cover free family exists.

Now we discuss how to use cover-free families to perform a single-round color reduction.

Lemma 4. Given a k-coloring φold of a graph with maximum degree ∆, in a single round, we
can compute a k′-coloring φnew, for k′ = O(∆2 log k).

Proof Sketch. Follows from the existence of cover free families as proven in Lemma 3. Namely,
each node v of old color φold(v) = q for q ∈ {1, dots, k} will use the set Sq ⊆ {1, . . . , k′} in the
cover free family as its color-set. Then, it sets its new color φnew(v) = q′ for a q′ ∈ Sq such that
q′ is not in the color-set of any of the neighbors.

Finally, we see how a repeated applicatin of the single-round color reduction of Lemma 4
allows us to get to anO(∆2 log ∆)-vertex-coloring inO(log∗ n) rounds, hence proving Theorem 1.

Proof of Theorem 1. The proof will be via iterative applications of Lemma 4. We start with
the initial numbering of the vertices as a straightforward n-coloring. With one application of
Lemma 4, we transform this into a O(∆2 log n) coloring. With another application, we get
a coloring with O(∆2(log ∆ + log log n)) colors. With another application, we get a coloring
with O(∆2(log ∆ + log log log n)) colors. After O(log∗ n) applications, we get a coloring with
O(∆2 log ∆) colors.

1.2 Take 2: Kuhn-Wattenhofer Coloring Algorithm

In the previous section, we saw an O(log∗ n)-round algorithm for computing a O(∆2 log ∆)-
coloring. In this section, we explain how to transform this into a (∆ + 1)-coloring. We will
first see a very basic algorithm that performs this transformation in O(∆2 log ∆) rounds, by

2

removing essentially one color in each round. Then, we see how with the addition of a small
but clever idea of [KW06], this transformation can be performed in O(∆ log ∆) rounds. As the
end result, we get an O(∆ log ∆ + log∗ n)-round algorithm for computing a (∆ + 1)-coloring.

1.2.1 Warm up: One-By-One color Reduction

Lemma 5. Given a k-coloring φold of a graph with maximum degree ∆ where k ≥ ∆ + 2, in a
single round, we can compute a (k − 1)-coloring φnew.

Proof. For each node v such that φold(v) 6= k, set φnew(v) = φold(v). For each node v such that
φold(v) = k, let node v set its new color φnew(v) to be a color q ∈ {1, 2, . . . ,∆ + 1} such that
q is not taken by any of the neighbors of u. Such a color q exists, because vhas at most ∆
neighbors. The resulting new coloring φnew is a proper coloring.

Theorem 6. There is a deterministic distributed algorithm in the LOCAL model that colors any
n-node graph G with maximum degree ∆ using ∆ + 1 colors, in O(∆2 log ∆ + log∗ n) rounds.

Proof. First, compute an O(∆2 log ∆)-coloring in O(log∗ n) rounds using the algorithm of The-
orem 1. Then, apply the one-by-one color reduction of Lemma 5 for O(∆2 log ∆) rounds, until
getting to a (∆ + 1)-coloring.

1.2.2 Parallelized Color Reduction

Lemma 7. Given a k-coloring φold of a graph with maximum degree ∆ where k ≥ ∆ + 2, in
O(∆dlog(k

∆+1)e) rounds, we can compute a (∆ + 1)-coloring φnew.

Proof. If k ≤ 2∆ + 1, the lemma follows immediately from applying the one-by-one color
reduction of Lemma 5 for k− (∆ + 1) iterations. Suppose that k ≥ 2∆ + 2. Bucketize the colors
{1, 2, . . . , k} into b k

2∆+2c buckets, each of size exactly 2∆ + 2, except for one last bucket which
may have size between 2∆+2 to 4∆+3. We can perform color reductions in all buckets in parallel
(why?). In particular, using at most 3∆+2 iterations of one-by-one color reduction of Lemma 5,
we can recolor nodes of each bucket using at most ∆+1 colors. Considering all buckets, we now
have at most (∆ + 1)b k

2∆+2c ≤ k/2 colors. Hence, we managed to reduce the number of colors

by a 2 factor, in just O(∆) rounds. Repeating this procedure for dlog(k
∆+1)e iterations gets

us to a coloring with ∆ + 1 colors. The round complexity of this method is O(∆dlog(k
∆+1)e),

because we have dlog(k
∆+1)e iterations and each iteration takes O(∆) rounds.

Theorem 8. There is a deterministic distributed algorithm in the LOCAL model that colors
vertices of any n-node graph G with maximum degree ∆ using ∆+1 colors, in O(∆ log ∆+log∗ n)
rounds.

Proof. First, compute an O(∆2 log ∆)-coloring in O(log∗ n) rounds using the algorithm of The-
orem 1. Then, apply the parallelized color reduction of Lemma 7 to transform this into a
(∆ + 1)-coloring, in O(∆ log ∆) additional rounds.

2 Edge-Coloring

In this section, we present an algorithm that computes a (2∆− 1)-edge-coloring — that is, an
assignment of colors {1, 2, . . . , 2∆− 1} to edges such that no two edges that share an endpoint
receive the same color — in O(∆ + log∗ n) rounds.

Theorem 9. There is a deterministic distributed algorithm in the LOCAL model that colors
edges of any n-node graph G with maximum degree ∆ using 2∆ − 1 colors, in O(∆ + log∗ n)
rounds.

The algorithm that proves this theorem is made of three parts, which we explain next.

3

Part I First we decompose the graph G into ∆ spanning edge-disjoint graphs F1, F2, . . . , F∆,
such that each Fi is an oriented pseudo-forest. That is, in the edge-set of Fi = (V,Ei), each
node v has at most one outgoing edge to a neighboring node u.

To compute this decomposition, first we orient the graph G arbitrarily, say by oriented each
edge from the lower-ID endpoint to the higher-ID endpoint. Then, each node v numbers its
outgoing edges 1, 2, Then, the pseudo-forest Fi is defined by including in it all the vertices,
as well as all the edges which are numbered ith by their starting point. Notice that Fi is an
oriented pseudo-forest, i.e., each node v has at most one outgoing edge in Fi.

Part II Then, we compute a 3-vertex-coloring for each Fi, using the algorithm we saw in the
first lecture, in O(log∗ n) rounds. The coloring is computed for all pseudo-forests F1, F2, . . . ,
F∆ in parallel. We refer to these colors as schedule-colors of Fi.

Part III Finally, we process the forests one by one, spending O(1) rounds on each. Consider
an i ∈ {1, 2, . . . ,∆}, and suppose that we already have a (2∆ − 1)-edge-coloring of the graph
Hi−1 = ∪i−1

j=1Fj . For the first step, where i = 1, we use the convention that the graph Hi−1 is
the empty graph and thus no edge-coloring of it is needed.

We now process the edges of Fi in O(1) rounds. In particular, we add the edges of Fi to the
already edge-colored graph Hi−1 = ∪i−1

j=1Fj . We spend O(1) rounds to compute a coloring for
these edges of Fi in a way that is consistent with the already colored edges in Hi−1. We have
three steps, corresponding to the three colors of the schedule-color of Fi computed in part II.
We next discuss each of these steps.

In the kth step, for k ∈ {1, 2, 3}, let Ei
k be the set of Fi-edges whose parent endpoint (the

endpoint where the arrow ends) is colored with color k in the schedule-color we compute in Part
II. Notice that these edges form vertex-disjoint stars. Consider one star centered at a node v
and connecting it to neighboring nodes u1, u2, . . . , u`. We make the center v learn the colors
used by edges adjacent to u1, . . . , u`. Then, node v computes edge-colors for edges {v, u1},
{v, u2}, . . . , {v, u`} in local manner. Each time, when trying to find a color for edge {v, ui},
there will be one color available from colors {1, 2, . . . , 2∆− 1}. This is because the edge {v, ui}
has at most 2∆−2 incident edges and each of them can block at most one color. Node v can do
this for all of its edges in the star. Moreover, the centers of different stars can work in parallel
as they as the edges they want to color are non-adjacent. Hence, in O(1) rounds, all edges of
Ei

k get colored, and thus we can move to the next step.

References

[AS04] Noga Alon and Joel H Spencer. The probabilistic method. John Wiley & Sons, 2004.

[KW06] Fabian Kuhn and Rogert Wattenhofer. On the complexity of distributed graph coloring.
In Proceedings of the twenty-fifth annual ACM symposium on Principles of distributed
computing, pages 7–15. ACM, 2006.

[Lin87] Nathan Linial. Distributive graph algorithms global solutions from local data. In Proc.
of the Symp. on Found. of Comp. Sci. (FOCS), pages 331–335. IEEE, 1987.

[Lin92] Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Computing,
21(1):193–201, 1992.

4

