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Lecturer: Mohsen Ghaffari Scribe:

In this lecture, we discuss a rather general method for solving various a wide range of local
problems. The key concept in our discussion will be network decompositions first introduced
by [ALGP89], also known as low-diameter graph decomposition [LS91].

0.1 Definition and Applications

Let us start with defining this concept.

Definition 1. (Weak Diameter Network Decomposition) Given a graph G = (V,E), a (C,D)
weak diameter network decomposition of G is a partition of G into vertex-disjoint graphs G1,
G2, . . . , GC such that for each i ∈ {1, 2, . . . , C}, we have the following property: the graph Gi is
made of a number of vertex-disjoint and mutually non-adjacent clusters X1, X2, . . . , X`, where
each two vertices v, u ∈ Xj have distance at most D in graph G. We note that we do not bound
the number `. We refer to each subgraph Gi as one block of this network decomposition.

Definition 2. (Strong Diameter Network Decomposition) Given a graph G = (V,E), a (C,D)
strong diameter network decomposition of G is a partition of G into vertex-disjoint graphs G1,
G2, . . . , GC such that for each i ∈ {1, 2, . . . , C}, we have the following property: each connected
component of Gi has diameter at most D.

Notice that a strong diameter network decomposition is also a weak diameter network de-
composition.

Network decompositions can be used to solve a wide range of local problems. To see the
general method in a concrete manner, let us go back to our beloved (∆ + 1)-coloring problem.

Theorem 3. Provided an (C,D) weak-diameter network decomposition of a graph G, we can
compute a ∆ + 1 coloring of G in O(CD) rounds.

Proof. We will color graphs G1, G2, . . . , GC one by one, each time considering the coloring
assigned to the previous subgraphs. Suppose that vertices of graphs graphs G1, G2, . . ., Gi are
already colored using colors in {1, 2, . . . ,∆ + 1}. We explain how to color Gi+1 in O(D) rounds.
Consider the clusters X1, X2, . . . , X` of Gi+1 and notice their two properties: (1) they are
mutually non-adjacent, (2) for each cluster Xj , its vertices are within distance D of each other
(where distances are according to the base graph G). For each cluster Xj , let node vj ∈ Xj

who has the maximum identifier among nodes of Xj be the leader of Xj . Notice that leaders of
clusters X1, X2, . . . , X` can be identified in O(D) rounds (why?). Then, let vj aggregate the
topology of the subgraph induced by Xj as well as the colors assigned to nodes adjacent to Xj

in the previous graphs G1, G2, . . ., Gi. This again can be done in O(D) rounds, thanks to the
fact that all the relevant information is within distance D + 1 of vj . Once this information is
gathered, node vj can compute a (∆ + 1)-coloring for vertices of Xj , while taking into account
the colors of neighboring nodes of previous graphs, using a simple greedy procedure. Then,
node vj can report back these colors to nodes of Xj . This will happen for all the clusters X1,
X2, . . . , X` in parallel, thanks to the fact that they are non-adjacent and thus, their coloring
choices does not interfere with each other.
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0.2 Randomized Algorithm for Network Decomposition

Theorem 4. There is a randomized LOCAL algorithm that computes a (C,D) weak-diameter
network decomposition of any n-node graph G, for C = O(log n) and D = O(log n), in O(log2 n)
rounds, with high probability1.

As we see in the exercises of this class, the two key parameters C and D are nearly optimal
and one cannot improve them simultaneously and significantly.

Network Decomposition Algorithm: Suppose that we have already computed subgraphs
G1, . . . , Gi so far. We now explain how to compute a subgraph Gi+1 ⊆ G \ ( ∪ij=1 Gj), in
O(log n) rounds, which would satisfy the properties of one block of a weak diameter network
decomposition.

Let each node v pick a random radius ru from an geometric distribution with parameter
ε, for a desired (free parameter) constant ε ∈ (0, 1). That is, for each integer y ≥ 1, we have
Pr[ru = y] = ε(1−ε)y−1. We will think of the vertices within distance ru of u as the ball of node
u. Now for each node v, let Center(v) be the node u∗ among nodes u such that distG(u, v) ≤ ru
that has the smallest identifier. The is, Center(v) = u∗ is the smallest-identifier node whose
ball contains v. Define the clusters of Gi by letting all nodes with the same center define one
cluster, and then discarding nodes who are at the boundary of their cluster. That is, any node
v for which distG(v, u) = ru where u = Center(v) remains unclustered.

There are two properties to prove: one that the clusters have low diameter, and second,
that after C iterations, all nodes are clustered. In the following two lemmas, we argue that with
high probability, each cluster has diameter O(log n/ε) and after C = O(log1/ε n) iterations, all
nodes are clustered.

Lemma 5. With high probability, the maximum cluster diameter is at most O(log n/ε). Hence,
this clustering can be computed in O(log n/ε) rounds, with high probability.

Proof. The proof is simple and is left as an exercise.

Lemma 6. For each node v, the probability that v is not clustered — that v is on the boundary
of its supposed cluster and thus it gets discarded — is at most ε.

Proof. Notice that

Pr [v is not clustered ] =∑
u∈V

Pr [v is not clustered |Center(v) = u] · Pr[Center(v) = u]

For each vertex u, let before(u) denote the set of all vertices whose identifier is less than that
of u. Define the following events

• E1 = (ru = distG(v, u)).

• E2 = (ru ≥ distG(v, u)).

• E3 = (∀u′ ∈ before(u), ru′ < distG(v, u′)).

1Throughout, we will use the phrase with high probability to indicate that an event happens with probability at
least 1− 1

nc , for a desirably large but fixed constant c ≥ 2.
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We have

Pr [v is not clustered |Center(v) = u]

= Pr[E1 ∩ E3 | E2 ∩ E3]

=
Pr[E1 ∩ E2 ∩ E3]

Pr[E2 ∩ E3]

=
Pr[E1 ∩ E3]
Pr[E2 ∩ E3]

=
Pr[E3] · Pr[E1|E3]
Pr[E3] · Pr[E2|E3]

=
Pr[E1]
Pr[E2]

= ε,

where in the penultimate equality, we used the property that the event E3 is independent of
events E1 and E2, and the last equality follows from the probability distribution function of the
exponential distribution (recall that this is exactly the memoryless property of the exponential
distribution). Hence, we can now go back and say that

Pr [v is not clustered ]

=
∑
u∈V

Pr[v is not clustered |Center(v) = u] · Pr[Center(v) = u]

=
∑
u∈V

ε · Pr[Center(v) = u] = ε.

Corollary 7. After C = O(log1/ε n) iterations, all nodes are clustered, with high probability.
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