A simple deterministic distributed MST Algorithm, with Near-Optimal Time and Message Complexities.

Jil Weber

What is a MST?

What is a MST?

MST = minimum spanning tree

At the beginning: all nodes are their own roots

Fragments

At the beginning: all nodes are their own roots

Fragments

Step 1: Get ID from all neighbours

Step 2: Find blue edge

Step 2: Find blue edge

Step 3: Send Message from root

Step 4: Request message

Step 5.1: v sends also request message

Step 5.1: New root with smaller ID

Step 5.2: v parent of u

Step 5.2: v parent of u

Step 6: root sends ID to all nodes of F5

Time and Message Complexity

 \rightarrow One phase: Time: O(n) Message: O(m)

 \rightarrow O(log(n)) phases:

Time: $O(n \cdot \log(n))$

Message: $O(m \cdot \log(n))$

Preliminaries

- Synchronous CONGEST model
 - \rightarrow send message of size O(log(n))
- Edges have weights and the ID of size O(log(n))

Build base forest

• Construct (n/k, O(k))- MST forest:

The different steps

• t = log(k) phases

• Phase 0:

• The phase i starts: $(n/2^{i-1}, 6 \cdot 2^i)$ -MST forest

Phase i:

• For each fragment of diameter at most 2^i

• For each fragment of diameter at most 2^{i}

• Time: $O(2^i)$ and Message: O(m)

• Candidate fragment graph:

Maximal Matching:

Merge all green fragments:

• We have a $(n/2^i, 6 \cdot 2^{i+1})$ MST forest

Proof

Diameter of each fragment $\leq 6 \cdot 2^{i+1}$:

Algorithm

- Start with (n/k, O(k))- MST forest
 - → Base forest with base fragments
- Step 1 : Construct a BFS tree with root rt
 - → Time: O(D) and Message: O(m)
- j Phases already calculated

Node v knows:

Base Fragments: $F_v \in F_0$

Actual Fragment: $F'_{v} \in F_{j}$

• Step 1: Search minimum weight outgoing edge

Time: O(k) Message: O(n)

Step 2: Send blue edge to the root of the BFS

tree

• Time: O(D+ $|F_i|$) Message: O(D * $|F_i|$)

 Step 3: Root computes the blue edge e for each actual fragment

Step 4: Inform all roots of the base fragments,
which new actual fragment they include

 Step 5: All base roots inform their nodes of the new actual fragment

→Time: O(1) Message: O(m)

Send intervals of the base fragment's root to the root of the tree

 \rightarrow Time: O(D + n/k)

Time Complexity

- Compute blue edge: O(k)
- Upcast message: $O(D + |F_i|)$
- Downcast: $O(D + |F_0|) = O(D + n/k)$

- \rightarrow O(log(n)) phases
- \rightarrow O((D + \sqrt{n}) · log(n))