255
ETH o

. . ‘ ‘
Eidgendssische Technische Hochschule Ziirich Distributed I;‘:;:““ ‘.
Swiss Federal Institute of Technology Zurich Computing \‘\ Pl
FS 2018 Prof. R. Wattenhofer

Computer Engineering 11
Exercise Sheet Chapter 8

We categorize questions into four different categories:

Quiz Short questions which we will solve rather interactively at the start of the exercise
sessions.

Basic Improve the basic understanding of the lecture material.

Advanced Test your ability to work with the lecture content. This is the typical style
of questions which appear in the exam.

Mastery Beyond the essentials, more interesting, but also more challenging. These
questions are optional, and we do not expect you to solve such exercises during
the exam.

Questions marked with (9) may need some research on Google.

Quiz

1 Quiz
a) What happens if a hash function is biased to favor some buckets?

i) The number of collisions stays the same, it just spreads to the favored buckets.
ii) The number of collisions goes down since more buckets will be empty.

iii) The number of collisions goes up.

b) What do we need to take into account to analyze the time complexity of using a hash table
that picks hash functions from a universal family?

i) Number of keys

ii) Distribution of keys
Size of hash table

Similarities between keys

111

—_ — ~— ~—

iv
v) Method for resolving collisions

¢) Is hashing a good idea if you need every single insert/delete/search to be fast? Consider
what the worst-case scenario for e.g. an insert operation can be.

i) Yes
i) No

Basic

2 'Trying out hashing

Let N = {10,22,31,4,15,28,17,88,59} and m = 11. Let h(k) = k mod m; now build three
hash tables: one for linear probing with ¢ = 1, one for quadratic probing with ¢ =1 and d = 3,
and one for double hashing with A'(k) = 1+ (k mod (m — 1)). Reminder:

e Linear probing: h;(k) = h(k) + ¢i mod m
e Quadratic probing: h;(k) = h(k) + ci + di*> mod m
e Double hashing: h;(k) = h(k) + ih/(k) mod m

Note: You can just do half the exercise in class and the rest at home since it is somewhat
time consuming. Also, don’t give up if a probing sequence seems to go on for too long!

3 Using hash tables

Assume you are given two sets of integers, S = {s1,...,5,} and T = {t1,...,t,}, and you want
to check whether S C T

a) Give an efficient algorithm that uses hash tables.

b) What is the time complexity of your algorithm? Is it preferable to a simple algorithm that
sorts the sets and compares them?

Advanced

4 r-independent hashing

Given a family of hash functions H C {U — M}, we say that H is r-independent if for every
r distinct keys (z1,...,2,) and h sampled uniformly from #, the vector (h(x1),...,h(x,)) is
equally likely to be any element of M.

a) Show that if H is 2-independent, then it is universal. Hint: use that # is universal if and
only if Pr[h(k) = h(l)] < L for keys k # L.

b) Show that the universal family H defined in the script (Theorem 8.9) is not 2-independent.

5 Obfuscated quadratic probing

Consider Algorithm 1 with m = 2P for some integer p.

Algorithm 1 Obfuscated quadratic probing: search

Input: key k to search for
1: ¢ = h(k‘)

2: if M[i] = k then

3: return M][i]

4: end if

5 75:=0

6: for [€ {0,...,m —1} do
7 j=7+1

8 i:=(i+j) modm
9: if M[i] = k then
10: return M]i]
11: end if

12: end for

13: return L

a) Show that this is an instance of quadratic probing by giving the constants ¢ and d for a
hash function h;(k) = h(k) + ci + di*> mod m.

b) Prove that the probing sequence of every key covers the whole table. Do this in two steps:

e Show that hy(k) = h,.(k) mod m for r < s if and only if (s — r)(s + r + 1) = t2P+1
for some integer t.

e Show that only one of (s —) and (s +r + 1) can be even, then show that (s —r)(s+
7+ 1) = t2PT! has no solutions if r < s and r,s < m.

Mastery

6 Not quite universal hashing

Remember the universal family from the script: H = {h, : a € [m]"*1} where h,(ko, ..., k) =
s

> a; - k; mod m for some prime m. Show that if we restrict the a; to be nonzero, then H is no

i=0

longer a universal family if » > 1 and m > 3.

Hint: Find two keys with a collision probability of more than i!

