e
ETH P

Distributed ‘»,’/‘5,:;‘.

Eidgendssische Technische Hochschule Ziirich ““ 5%
Swiss Federal Institute of Technology Zurich Computmg ‘?‘\ Pl
FS 2018 Prof. R. Wattenhofer

Computer Engineering II
Solution to Exercise Sheet Chapter 8

Quiz

1 Quiz

a) The correct answer is iii): The number of collisions goes up.
Some buckets will have fewer than % keys in them on average, and some significantly more.
Since the number of collisions is quadratic in the number of keys in a bucket, this means
that we get more collisions than if the hash function wasn’t biased.

For a specific example, consider the case of 2 buckets, one with x keys in it and the other
with y keys. If we increase x and decrease y, what happens to the number of collisions,

which is (5) 4+ (§)? We show what happens to the proportional term z? + y2.

(x+d)?+(y—d)?=a+2dx+d*+9° - 2dy + d* = 2% + y* + 2d(z — y) + d*

If initially, z = y — which is the case in expectation if we distribute keys evenly among
the buckets — then we see that moving d keys from one bucket to the other results in

(z+d?+@y—d? =2+ +2dz—y)+d> = 2> + 1> + d*> > 2% + 3>

b) We only need to consider:

i) Number of keys
iii) Size of hash table

v) Method for resolving collisions

If we insert many keys into a fixed size hash table, then we get more collisions and thus need
to do more work to resolve those collisions than if we only insert few keys. Analogously, if
we insert a fixed number of keys into a small hash table, then we get more collisions than
if we insert them into a large hash table. Finally, the method of resolving collisions makes
a difference, as can be seen for example in Table 8.18 in the script.

Altogether, we need to consider the number of keys, the size of the hash table, and the
method we use for resolving collisions. More succinctly, it is the ratio between number of
keys and size of the table that is relevant, and this is the load factor.

The genius of universal hashing is precisely that we do not need to consider the distribution
of keys; we know that in expectation, we get a good hash function in few tries no matter
what the distribution of keys looks like.

As for similarities between keys, some applications require “similar” keys to be close to
each other in the hash table, and there are techniques to handle this. In general, this is
not a requirement we need to consider.

c) If every single operation has to be fast, hashing is a bad choice; in the worst case, a single
search operation can take linear time if we have to look at every bucket for hashing with
probing, or if all keys are in one bucket for hashing with chaining. The guarantees we get
from hashing are in expectation — at least one of insert/delete/search can only be fast in
expectation and will cost more than constant time in the worst case.

Basic

2 Trying out hashing

You can play around with hashing with probing on https://www.cs.usfca.edu/~-galles/
visualization/ClosedHash.html. It allows inserting, deleting, and searching in a hash
table with probing for some example parametrized hash functions. Note that the possibility of
inserting the same key into the table multiple times — which the implementation on that website
allows — may not be the same in all implementations. The Java standard library HashMap for
example will instead replace the old entry with the new one.

Solution to our exercise:

0 1 2 3 4 5 6 7 8 9 10

Linear 22 | 88 4115128 |17 |59 |31 |10
Quadratic 22 88 | 17 | 4 28 |59 | 15 | 31| 10
Double hashing || 22 59 | 17 | 4 | 15 | 28 | 88 31 | 10

To give an example of how to arrive at this, we show how the insert operations go with linear

probing:
ho(10) =10+ 1
ho(22) =22+1
ho(31) =31+1
ho(4)=4+1-0
ho(15) =154+1-
hi(15) =15+4+1-
ho(28) =28+1-
ho(17) =17+4+1-
hi(17)=17+41-
ho(88) =88 41
h1(88) =88+41-
ho(59) =59+ 1-
h1(59) =5941-
h2(59) =594 1-
h3(59) =59+ 1-
h4(59) =594 1-

3 Using hash tables

-0 mod 11 =10
-0 mod 11 =0
-0 mod11 =9
mod 11 =4

0 mod 11 =4
1 mod 11 =5
0 mod 11 =6
0 mod 11 =6
1 mod11 =7
0 mod 11 =0
1 mod11 =1
0 mod 11 =4
1 mod 11 =5
2 mod 11 =6
3 mod1l1=7
4 mod 11 =8

a) Build a hash table M from T'. For each key k € S, search whether the key is in the hash

table M. If every search says “yes, that’s here”
first search that came back “not in the set”.

, answer “yes”

b) Our cost is the time for building plus the time for searching.
Since the input is static, we use perfect static hashing, and we get expected cost in the

. Else, answer “no” after the

https://www.cs.usfca.edu/~galles/visualization/ClosedHash.html
https://www.cs.usfca.edu/~galles/visualization/ClosedHash.html

order of O(q + r): building the table costs expected time linear in |T'| = r, and searching
all keys in S in the table costs (worst case for perfect static hashing) |S| = ¢ time.

The time complexity of a simple algorithm that sorts and compares the elements in the
two sets is O(qlog ¢ + rlogr), which asymptotically worse than the time complexity of the
algorithm that uses hash tables (O(q + r)).

Advanced

4 r-independent hashing

The difference between universal hashing and r-independent hashing is this: with universal hash-
ing, if we fix any two keys and sample a hash function from a universal family, then the chance
of the two keys colliding under that hash function is at most % r-independent hashing is not
defined via collisions, but via the possible combinations of buckets into which a random hash
function will put any 7 fixed keys, and the statement here is: they are equally likely to be put
into any bucket combination from (0,...,0) to (m —1,...,m — 1), i.e. for each of those combi-
nations, the chance of getting those hashes is # The purpose of this exercise is to show that

r-independence is a strictly stronger property than universality.

a) Let H be 2-independent. By the definition of 2-independence, for any two distinct keys k #
we have Pr{h(k) = a; and h(l) = ap] = -1 for any ai,as € M if we sample h € H uniformly.
Therefore:

m—1
Pria(k) = h()] = S Prlh(k) = h(l) and h(k) = |
m—1
= Prih(k) = c and h(l) =]
B U S

Therefore, if h is 2-independent, then h is universal.

An alternative proof: we know that Pr[h(k) = a1 and h(l) = as] = # for any a,as € M.
There are exactly m possible vectors (a,a) € M? that constitute all possible collisions, and since

each of them has probability #, we get a total collision probability of 7% = L

m

b) Let k = (0,...,0) and [€ M"*1 k # [arbitrary. Since h,(k) = 0 for all choices of a, for any
pair of hashes (r, s) € M? with r # 0, we have Pr[(h,(k), ha(l)) = (r,s)] = 0 # 5. Thus, the
family defined in the script is not 2-independent.

5 Obfuscated quadratic probing

a) What the algorithm does is this: it iterates j from 0 to m — 1, and in every iteration, it
increases ¢ by the current j. Thus, if 7; denotes the value of 7 in the jth iteration, then

io = h(k)
i =h(k)+ 1
io =h(k)+1+2

Thus if we denote our paramterized hash function as h;j(k) = i; mod m, we only have to express
the partial sum in 4; as a quadratic function to prove that this is an instance of quadratic probing.
This particular partial sum is well known:

Therefore, hj(k) = h(k) + 2+ 1% mod m.

b) To prove that the probing sequence of every key covers the whole table, we show that any two
steps of the sequence are distinct. Thus, let k be some key and let r, s € [m] with r < s. Now
we have

h.(k) = hgs(k) mod m
& Bk) + Sr 202 = Bk + o 4 22 d
27“ 2r = 25 25 mod m
1 1 1
& 57“2 + 57‘ = 532 + 58 mod m
1 1 1 1
& —s? 4 Zs—=r? - Zp= mod m

This is the case if and only if there exists an integer ¢ such that

fs2+ls—lr2—fr—tm
2 20 2 2

L2
3
(s—7)(s+r+1)=t2rt!

—ri4s—r)=tm

The last step used that m = 2P. We now show that this equation has no solution. Notice that
t > 0 since the left hand side of the equation is positive.

Exactly one of (s—7r) and (s+7r+1) can be even: if (s—r) is even, then (s—7)+2r+1 = (s+r+1)
is odd, and vice versa. Thus, 2P™! can divide at most one of (s —r) and (s + r + 1) since only
even numbers have 2 as a factor.

Since 7 < s <m — 1, we know that (s —r) < m = 2P < 2P+ 50 2P*! cannot divide (s —r). We
also know that (s + 7+ 1) < (m —1) + (m — 2) + 1 < 2m = 2P*1 and so 2P*! cannot divide
(s 4+ 17+ 1) either. Therefore, 2P*! divides neither.

Since only one of (s —r) and (s + 7 + 1) is even, i.e. only one of them has 2 as a factor, 2P*+!
would have to divide one of these two terms if it were to divide their product. Since 2PT! divides

neither of them, we conclude that (s —r)(s+r+1) = #2PT! wit ¢ > 0 has no solutions, therefore,
h.(k) # hs(k) mod m.

Mastery

6 Not quite universal hashing

The trick is similar to 3b). If we pick keys k = (0,...,0)and [= (1,1,0,...,0), then h,(k) = 0 for
all a, and hy(1) =0 < a3 + a2 =0 mod m. Since ay,as > 0, this means as = m —ay. There are

m—1 choices for a;, each of which uniquely determines az, and so Prlhq(k) = ho(l)] = 25 > +.

	Quiz
	Trying out hashing
	Using hash tables
	r-independent hashing
	Obfuscated quadratic probing
	Not quite universal hashing

