Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Distributed Computing

FS 2018

Prof. R. Wattenhofer

Computer Engineering II Exercise Sheet Chapter 5

We categorize questions into four different categories:

Quiz Short questions which we will solve rather interactively at the start of the exercise sessions.

Basic Improve the basic understanding of the lecture material.

- **Advanced** Test your ability to work with the lecture content. This is the typical style of questions which appear in the exam.
- **Mastery** Beyond the essentials, more interesting, but also more challenging. These questions are **optional**, and we do not expect you to solve such exercises during the exam.

Questions marked with $^{(g)}$ may need some research on Google.

Basic

1 MAC Addresses vs. IP Addresses

- a) List a few differences between MAC addresses and IP addresses.
- b) Why don't we only use MAC addresses?
- c) Why don't we only use IP addresses?

2 Escape Sequences

Recall Definition 5.34 from the lecture:

Definition 1 (Escape Sequences). Given some critical byte X, we choose a byte $Y \neq X$ as escape byte and use it to define two escape sequences consisting of two bytes each, say, YA and YB $(A \neq X, B \neq X, A \neq B)$. The sender replaces every Y in the original body with YA and every X with YB. The receiver in turn performs the substitution in reverse.

If we perform such a substitution in a string, we say we *escape* the string.

- a) When is it possible to tell whether a given (character) string has been escaped by a given escaping scheme?
- b) In software, it is common to drop the conditions $A \neq X$ and $B \neq X$. When is this possible?
- c) Escape the following string using $X = ", Y = \backslash, A = \backslash, B = "$:

"Oh no," Jon said, "my cat \"Garfield\" is locked outside in the rain!"

3 Manchester Decoding

Decode the message in the following Manchester encoded by te string. Hint: ascii('a') == 97.

4 AM/FM/PM Demodulation

A mad scientist has decided to combine all three types of modulation! Each symbol now consists of 4 bits. The first sets the frequency, the second sets the amplitude and the last two determine the phase shift. The following table shows all combinations:

Symbol	Frequency f	Amplitude a	Phase ϕ
0000	2	0.25	± 0
0001	2	0.25	$+\pi/2$
0010	2	0.25	$\pm\pi$
0011	2	0.25	$-\pi/2$
0100	2	1.00	± 0
0101	2	1.00	$+\pi/2$
0110	2	1.00	$\pm\pi$
0111	2	1.00	$-\pi/2$
1000	3	0.25	± 0
1001	3	0.25	$+\pi/2$
1010	3	0.25	$\pm\pi$
1011	3	0.25	$-\pi/2$
1100	3	1.00	± 0
1101	3	1.00	$+\pi/2$
1110	3	1.00	$\pm\pi$
1111	3	1.00	$-\pi/2$

The signal at time t is given by $a \cdot \sin(f \cdot t + \phi)$. Decode their message from the following signal:

5 SINR

Imagine two wireless nodes, s_A and s_B , transmitting at the same time. Two other nodes, r_1 and r_2 , are listening. The table below shows the powers of each of the incoming signals at each of the receivers. Apply the SINR model with $\beta = 4$ to determine which signals each receiver can successfully decode.

		s_A	s_B	Noise Floor
ĺ	r_1	$7\mathrm{nW}$	$31\mathrm{nW}$	$0.01\mathrm{nW}$
	r_2	$52\mathrm{nW}$	10 nW	$5\mathrm{nW}$

Advanced

6 Bit Stuffing

Consider the scenario of transmitting a packet as a string of bits. The string S = 011110 will be prepended and appended to the packet to be used as a synchronization header resp. footer.

- a) Propose a bit stuffing technique for transforming the packet such that it does not contain **S** as a substring.
- b) By prepending and appending **S** to the bit stuffed packet additional instances of **S** may appear. When does this occur?

Does your bit stuffing technique from a) prevent these? (probably not) Extend your technique to prevent the combined string from containing S as substring anywhere but the once at the start and the end each.

7 Code Division Decoding

In this task, we will decode multiple input streams using code division from a single received signal. All senders will use codes from W_2 . Recall: W_2 consists of these 4 codes:

```
(+, +, +, +)
(+, +, -, -)
(+, -, +, -)
(+, -, -, +)
```

a) This received signal is the sum of 2 equally strong signals from 2 different senders using 2 different codes from W_2 . You may assume the different codes are aligned. Which codes were used and what data bits were transmitted by each sender?

Hint: By multiplying each code with each segment and sum up the values, you can obtain a measure of correlation.

b) This received signal consists of 4 senders, using all 4 codes from W_2 . You may again assume the different codes are aligned. What data bits were transmitted by each sender?

- c) Decoding misaligned signals, i.e., signals whose codes are shifted temporally against each other, is not always possible when using W_2 . Explain.
- d) In practice, code division is often used to avoid the overhead of coordination between senders, and thus misaligned signals are the default. Propose a set of codes less susceptible to problems stemming from misaligned signals.
- e) In the received signal below, once again 4 senders using all codes from W_2 have contributed, but this time, the codes are not aligned. Try to figure out what was sent anyway!

Hint: Computing correlation values for all possible offsets will not yield the correct solution. You need to come up with a different approach.

8 Path Loss Sandwich

A common way to avoid measuring the signal strength for every sender-receiver pair is to model a link's quality based on the distance between sender and receiver. With direct line of sight, a signal's received strength is proportional to $\frac{1}{d^{\alpha}}$, where d is the distance traveled and α is the path loss exponent. In vacuum, α is 2.

Together with adjustable transmission power control, path loss can lead to some rather unintuitive results. For example, in the situation shown below, with all 6 nodes on a straight line, it is possible for all 3 shown links to successfully transmit simultaneously.

a) Assuming no noise and an SINR threshold of β = 4, can you find a suitable set of node distances (a, b and c) and transmission power values (P_A, P_B, P_C) for path loss with α = 2? Hint 1: First choose c and P_C and work your way out from there.

Hint 2: Use your calculator, Matlab, or similar to quickly try different values.

b) What issues does such a setup face in practice?