
Principles of Distributed Computing 05/22, 2019

Exercise 12

Lecturer: Mohsen Ghaffari

1 Vertex Coloring using All-to-All Communication

Consider an undirected graph G = (V,E) with n = |V | nodes and maximum degree ∆ =
Ω(log3 n). Devise a randomized algorithm that with high probability computes a proper coloring
of G with O(∆) colors in O(1) rounds of all-to-all communication, where in each round each
node can send O(log n) bits to all other nodes.

Hint: Think about randomly partitioning nodes into several parts, and coloring each part
separately, all in parallel.

Solution: We first describe a partitioning process, then explain how to use it to obtain a
proper coloring of G with O(∆) colors in O(1) rounds of all-to-all communication, where nodes
send O(log n) bits to all other nodes.

Consider randomly assigning a label l ∈ {1, . . . ,
√

∆} to each vertex (independently, uniformly at
random). Define the induced subgraphs G1, . . . , Gl where Gi contains vertices labelled i and an
edge appears in Gi if both endpoints are labelled i. Let dG(v) and dGi(v) be the degree of vertex
v in graph G and Gi respectively, and ∆i = maxv∈V dGi(v) be the maximum degree of any vertex
in Gi. By construction, we expect n

∆ vertices in each Gi (and with high probability at most O(n
∆)

vertices). Consider a fixed vertex that is assigned label i. Since Pr[e = {u, v} ∈ Gi] = 1√
∆

, we

see that E[dGi(v) | dG(v) = k] = k√
∆

. By Chernoff bounds,

Pr[dGi(v)− k√
∆

> 2
k√
∆

] ≤ exp

(
22(k√

∆
)

2

)
= exp

(
−2

k√
∆

)
Since ∆ ∈ Ω(log3 n) and k ≤ ∆, Pr[∆i > 2 ∆√

∆
= 2
√

∆] ≤ exp(−2
√

∆) < exp(−2 log n) = n−2.

Hence, with high probability, we can color each Gi with O(
√

∆) colors.

We now describe how to use the above partitioning:

1. Partition G into G1, . . . , Gl as described above.

2. Assign color sets of size O(
√

∆), to each Gi so that O(∆) colors are used in total.

3. Color each Gi with their assigned color sets in O(1) round.

Each vertex can decide locally which Gi it belongs to. Then, vertex i gathers subgraph Gi and
performs the O(

√
∆) coloring locally. By our partitioning process, we know that (with high

probability) the maximum degree in each Gi is O(
√

∆) and each Gi has O(n√
∆

) vertices. So,

each subgraph Gi can be gathered using O(
√

∆ · n√
∆

) = O(∆) ⊆ O(n) messages in total. By

Lenzen’s routing algorithm, O(1) rounds of all-to-all communication suffice to gather all the
subgraphs.

2 Edge Coloring

Consider an undirected graph G = (V,E) with n = |V | nodes and maximum degree ∆. Each
edge e ∈ E can be colored using several colors, that is, can be assigned a set C(e) ⊆ {1, . . . , q} of

1

colors from a palette of size q. A color c ∈ C(e) is good for the edge e ∈ E if for all neighboring
edges f ∈ E we have c /∈ C(f). Suppose that we have access to a checker that informs the
endpoints u and v of an edge e = {u, v} ∈ E whether the colors in C(e) are good.

(2a) Devise a randomized algorithm that invokes the checker once and with high probability
finds a good color for every edge, using a total of q = O(∆ log n) colors.

Solution: Suppose each edge e picks a random color palette1 C(e) of size r = 10 log n out
of q = 40∆ log n colors. A color c is said to be bad for an edge e if some neighboring edge
picked c. Consider a fixed edge e. Applying union bound over all ≤ 2∆ neighboring edges,

Pr[c is bad] ≤ 2∆ · r
q

= 2∆
10 log n

40∆ log n
=

1

2

So, the probability that edge e has no good color is at most(
1

2

)r

≤ exp

(
−10 log n

2

)
= n−5

Applying union bound over all ≤ n2 edges in the graph, the probabilty that some edge e
has no good color in their palette C(e) is ≤ n2 · n−5 = n−3. Hence, with high probability,
all edges have some good color in C(e), and a good color will be found for every edge with
one invocation of the checker.

(2b) Devise a randomized algorithm that invokes the checker twice and with high probability
finds a good color for every edge, using a total of q = O(∆ log log n) colors.

Solution: We use the same process as above, with q = O(∆ log log n) and r = O(log log n).
One can verify that, for any fixed edge e, all colors in C(e) are bad with probability at
most (log n)−c, for some constant c. We invoke the checker once and assign colors to
edges with good colors in their palettes C(e). We repeat the same process on the remain-
ing uncolored edges. For each edge, we expect ≤ 2∆ log−c n uncolored neighboring edges,
and ≤ 4∆ log−c n uncolored neighboring edges with high probability. One can then show
that the probability that all remaining edges have some good color with high probability.
Thus, another invocation of the checker will find a good color for all remaining edges.

(2c) Explain how the above algorithms in (2a) and (2b), respectively, imply algorithms for
the routing problem where the maximum number of messages starting from or destined
to one node is at most O(n/ log n) and O(n/ log logn), respectively, in the all-to-all com-
munication setting, where in each round each node can send O(log n) bits to all other
nodes.

Solution: Given an underlying graph G = (V,E), consider a bipartite graph H = (S ∪ T,E′)
with S = T = V (i.e. H has 2 · |V | = 2n vertices), and {s, t} ∈ E′ if there is a message
from s ∈ S to t ∈ T . Perform the edge coloring algorithms above. Consider an edge
{s, t} ∈ E′ which is assigned color c ∈ {1, . . . , q}. To route a message from s to t, we first
route the message from s to c, then c to t.

If each node has at most O(n/ log n) messages, then ∆ = O(n/ log n) in H. No two adja-
cent edges are assigned the same color in (2a) and (2b), so every intermediate node (identi-
fied by the good edge color) is given at most O(n) messages. Using q = O(∆ log n) = O(n)
colors, Lenzen’s routing algorithm tells us that all messages can be routed via an inter-
mediate node in O(1) rounds of all-to-all communication. When each node has at most
O(n/ log logn) messages, we use q = O(∆ log log n) colors.

1Consider a random permutation of q colors and picking the first r colors.

2

