

FS 2019

Prof. R. Wattenhofer Jakub Sliwinski

Principles of Distributed Computing Exercise 13: Sample Solution

1 Flow labeling schemes

Question 1 Check that R_k is reflexive, symmetric and transitive.

- reflexive: $flow(x, x) = \infty$
- symmetric: the graph is undirected, flow(x, y) = flow(y, x)
- transitive: consider a path $p = (v_1, v_2, \ldots, v_{m_p})$ from x to y in which $v_1 = x$ and $v_{m_p} = y$ and a path $p' = (v'_1, v'_2, \ldots, v'_{m_{p'}})$ from y to z in which $v'_1 = y$ and $v'_{m_{p'}} = z$. Let i be the largest subscript in p' such that $v'_i \in p$. It is easy to check there is a path $x - v'_i - z$ where $x - v'_i$ is a part of p and $v'_i - z$ is a part of p'.

 C_{k+1} is a refinement of C_k .

Question 2

- a) Add the depth of each vertex into the label. The depth of the tree is smaller than m, so the added part is of size $O(\log m)$. From the depth of two vertices and the distance between them, SepLevel can be computed.
- **b**) Note that

$$flow_G(v, w) = SepLevel_T(t(v), t(w)).$$
(1)

The depth of T_G cannot exceed $n\hat{\omega}$ and every level at most has n nodes, hence the total number of nodes in T_G is $O(n^2\hat{\omega})$.

Question 3 Cancel all nodes of degree 2 in T_G , and add appropriate edge weights (\tilde{T}_G) .

Now, define SepLevel_T(x, y) as the weighted depth of z = lca(x, y), i.e. its weighted distance from the root. Obtain the SepLevel labeling scheme for weighted trees in the same way as in question 2. For \tilde{n} -node trees with maximum weight $\tilde{\omega}$, the labeling size is $O(\log \tilde{n} \log \tilde{\omega} + \log^2 \tilde{n}) + O(\log(\tilde{n}\tilde{\omega})) = O(\log \tilde{n} \log \tilde{\omega} + \log^2 \tilde{n}).$

Again, for two nodes x, y in G, the weighted separation level of the leaves t(x) and t(y) associated with x and y in the tree \tilde{T}_G is related to the flow between the two vertices as in Eq. (1).

Finally, note that as \tilde{T}_G has exactly n leaves, and every non-leaf node in it has at least two children, the total number of nodes in \tilde{T}_G is $\tilde{n} \leq 2n - 1$. The maximum edge weight in \tilde{T}_G is $\tilde{\omega} \leq n\hat{\omega}$. We end up with the label size of $O(\log \tilde{n} \log \tilde{\omega} + \log^2 \tilde{n})$.

For more details, see [1] (Section 2).

References

[1] Katz, Michal, et al., *Labeling schemes for flow and connectivity*, SIAM Journal on Computing 34.1 (2004): 23-40.