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Lecture 11
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1 Minimum Cut

In this lecture, we explain a distributed algorithm that computes a (2 + ε) approximation of the
minimum cut, for any constant ε > 0, in O(k(D +

√
n) log3 n) rounds. Here, k denotes the size

of the minimum cut, i.e., the minimum number of edges whose removal disconnects the graph.
The algorithm should present a nonempty subset of vertices S such that the number of edges
connecting nodes of S to nodes of V \ S is at most (2 + ε)k. As usual, we work in the standard
synchronous message-passing model of distributed computing where the network is abstracted
as an n-node connected graph with diameter D and per round each node can send O(log n) bits
to each of its neighbors.

A number of remarks are in order:

• First, the k factor in the round complexity can be removed and replaced with O(log n),
using a sampling idea which reduces the minimum cut to O(log n), while preserving the
sizes of all cuts approximately.

• Second, the algorithm can be generalized to weighted graphs where each edge has a weight
in {1, 2, . . . ,poly(n)} and the size of a cut is the summation of the weights of the edges
whose removal disconnects the graph. For this generalization, we simply view each edge
of w as w many parallel edges.

• Third, the resulting Õ(D +
√
n) round complexity is nearly optimal, as a known lower

bound shows that any distributed algorithm for (any non-trivial) approximation of the
minimum cut requires at least Ω̃(D +

√
n) rounds. See Ghaffari and Kuhn [MK13] for

details of the above three points.

• Fourth, a (1 + ε) approximation algorithms with a round complexity of Õ(D +
√
n) is

known to a work of Nanongkai and Su [NS14]; we will not cover it in this lecture.

• Finally, in a recent breakthrough, Daga et al. [DHNS19] presented the first distributed
algorithm that computes the exact minimum cut in a sublinear number of rounds, par-
ticularly in Õ(n1−1/353D1/353 + n1−1/706) rounds in unweighted graphs. More recently,
Ghaffari and Nowicki [GN19] presented a different algorithm that improved the round
complexity further to Õ(n1−1/9D1/9 + n1−1/18).

1.1 Sparse Certificates for Connectivity

Before presenting the algorithm for minimum cut approximation, first we introduce the concept
of sparse certificates. In a very rough sense, this is a subgraph that maintains the size of the
minimum cut while reducing the number of edges. Notice that any graph that has minimum-cut
size at least k must have at least nk/2 edges. This is because each node in such a graph must
have degree at least k, as otherwise removed the edges adjacent to that node would yield a cut
with size less than k. A sparse certificate aims to reduce the number of the edges in any graph
to something close to this threshold of nk/2, while maintaining the minimum cut size.

Definition 1. For a graph G = (V,E), we call a spanning subgraph H = (V,EH) a sparse
certificate of G for connectivity k′ if the following two conditions are satisfied:
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(1) For each nonempty subset S ⊂ V of vertices, we have cutH(S, V \S) ≥ min{k′, cutG(S, V \
S)}. Here, cutH(S, V \ S) denotes the number of edges in H that have one endpoint in S
and the other endpoint in V \S. Similarly, cutG(S, V \S) denotes the number of edges in
G that have one endpoint in S and the other endpoint in V \ S.

(2) Subgraph H has at most |nk′| edges.

Example: In a connected graph G, any spanning tree T is a sparse certificate for connectivity
k′ = 1. It clearly satisfies condition (2), because it has n− 1 edges, and it satisfies condition (1)
as well because CutT (S, V \ S) ≥ 1. More generally, if we do not assume G to be connected,
any maximal spanning forest is a sparse certificate for connectivity k′ = 1.

Computing a Sparse Certificate for Connectivity k′ (Algorithm Outline): As the
above example reveals, there is a simple and natural algorithm for computing a sparse certificate
for connectivity k′. Here, we discuss the algorithm outline from a centralized viewpoint. We
later discuss a distributed algorithm that implement this outline, efficiently. The algorithm
works in k′ iterations, as follows: In iteration i, compute a maximal spanning forest Fi of G
and then update G← G \Fi. Here, G \Fi means we remove from G all edges of Fi. At the end

of algorithm, the union H =
⋃k′

i=1 Fi of the forests computed in the k′ iterations is our desired
sparse certificate for connectivity k′.

Lemma 2. In the above algorithm, H =
⋃k′

i=1 Fi is a sparse certificate for connectivity k′.

Proof. Since the number of edges in each forest Fi is at most n − 1, graph H has at most
k(n − 1) ≤ kn edges and thus it clearly satisfies condition (2). To see that it also satisfies
condition (1), let us focus on an arbitrary cut (S, V \ S). In each iteration i, so long as at least
one edge of G remains in the cut (S, V \ S), the forest Fi will include at least one edge from
(S, V \ S). Notice that it might also include more than edge. Hence, the number of edges of H
in cut (S, V \ S) is either at least k, or the algorithm exhausted all the edges of this cut and
therefore the number is equal to cutG(S, V \ S).

Distributed Implementation of the Above Outline: A naive idea for implementing the
above outline would be to compute each Fi separately, in the remaining graph. However, this
might be quite inefficient as the remaining graph might have a very large diameter. To go around
this issue, we use some artificial edge weights to implement the outline. In particular, initially,
we set the weight of each edge to be 1. Then, in each iteration i, we compute a minimum-
weight spanning tree Ti and define Fi to be all edges of Ti that have weight 1. Then, instead
of removing these edges from the graph, we simply set their weight to be ∞ (or realistically,
just n2). Computing each minimum-weight spanning tree Ti can be done in O((D+

√
n) log n)

rounds, using the MST algorithm that we discussed in the previous lecture.

Lemma 3. Consider the weighted version of G where we set the edge weight of G\(∪i−1j=1Fi) to be

1 and the edge weights of (∪i−1j=1Fi) to be n2. Then, the edges of weight 1 in the minimum-weight

spanning tree Ti form a maximal spanning forest of the graph G \ (∪i−1j=1Fi).

Proof Idea. Informally, Ti will try to include as many as possible of weight 1 edges before
including any weight n2 edges. Formalizing this into a proof is left as an exercise.

1.2 Approximation Algorithm for Minimum Cut

We now describe the algorithm for computing a (2 + ε) approximation of the minimum cut.
For now, we assume that the value k of the minimum cut size is known. The algorithm will
compute a subset S ⊂ V such that cutG(S, V \ S) ≤ (2 + ε)k.
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Intuitive Description of the Algorithm: First, we compute a sparse certificate H for
connectivity k′ = (1 + ε/10)k. Notice that this can be done in O(k(D +

√
n) log n) rounds, as

we discussed above. Now, think about the auxiliary graph H ′ where we contract each edge of
G \ H, that is, we unify the two endpoint nodes into one node. Notice two properties: (A)
Edges of H ′ are exactly edges of H (while the nodes where contracted) and therefore H ′ has at
most nk′ = (1 + ε/10)nk edges. Moreover, (B) every cut of H ′ has size at least k, and every
cut of H ′ that has size less than k′ must have had size less than k′ also in G. Hence, H ′ has
minimum cut size k and any minimum cut of it corresponds to a minimum cut of G (and vice
versa). Now, H ′ might be in one of the following two cases. In each case, we can handle the
problem differently.

(1) Suppose that H ′ has at least n/(1 + ε/5) nodes. In this case, the average degree in H ′

is at most 2(1+ε/10)nk
n/(1+ε/5) which implies that H ′ has at least one node with degree at most

2k(1+ε/10)(1+ε/5) ≤ (2+ε)k. This node in H ′ is the result of contracting some edges of
G, and is therefore some subset S of vertices of G (which were contracted together). We
get that the number of edges from S to V \S is at most (2 + ε)k, that is, S is our desired
approximate minimum cut. Hence, if we are in the case that H ′ has at least n/(1 + ε/5)
nodes, then the problem is easy.

(2) Suppose that H ′ has less than n/(1 + ε/5) nodes. In this case, it is not so clear to identify
a small cut. However, we have managed to make some progress because the number of
nodes has reduced to n/(1 + ε/5), while we have preserved the minimum cut. Then, we
can recurse on this new graph H ′ by setting G ← H ′, which has at most n/(1 + ε/5)
vertices. Notice that after O(log1+ε/5 n) such recursions, the number of remaining nodes
would drop to at most 2 and thus, there, we have found our approximate minimum cut.

Distributed Implementation The above intuitive description provides the outline of one
level of recursion, in our algorithm. We now discuss how to implement it in a distributed setting.
Suppose we are in a setting where we are working on a subgraph G′ of G, identified by its edges.
Initially, in the very first iteration, G′ will be same as G. In each iteration, at the end of the
iteration, if we are in case (2) and need to recurse, if we want to contract edges of G \H, we
would set G′ ← H. Effectively, each connected component of G \ G′ corresponds to one node
in our contracted structure.

The algorithm in this iteration of recursion works as follows: we set the weights of edges of
G \ G′ to be 0 and weights of edges of G′ to be 1. Then, we compute a sparse certificate H
of G′ for connectivity k′ = (1 + ε/10)k, as we described in the previous subsection (iteratively
computing MSTs, taking one-weight edges as Fi, and increasing their weight to n2). At the end
of the sparse certificate computation, by the definition of a sparse certificate, subgraph H has
a number of edges that is at most a k′ factor of the number of connected components of G \G′.
Hence, we are virtually moving to a graph where all edges of G \H are contracted (weight 0)
and no edge of H is contracted.

Then, each component of G\H computes the number of its edges in H, using the algorithm
that we saw in the previous lecture where each component could compute the minimum of its
edges — now, instead of minimum, we compute summation, but the algorithm is the same.
This can be done in O((D +

√
n) log n) rounds, as we saw last week. If for at least one of the

components, the number of edges is at most (2 + ε)k, then we have found our approximate
minimum cut. Otherwise, we set G′ = H and recurse.

Final Remark — Removing the Assumption of Known k: In the above, we assumed
that we know the value of k. In fact, the outline works perfectly fine if instead we know an
estimation of k that is at least k and at most k(1 + ε/10) (Why? Explain what happens in the
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algorithm and how the calculations change). To remove the assumption of knowing this value,
we simply run the algorithm for many estimates, which are powers of (1 + ε/10). That is, we
run the algorithm for each estimate of the form (1 + ε/10)i between 1 and n2. Notice that
there are only O(log1+ε/10 n) such powers, in this range. From each estimate, we get some cut
(which might or might not be a small cut). The algorithm sets its output to be the smallest
of these cuts. We know that one of these estimates (1 + ε/10)i must be at least k and at most
k(1 + ε/10). For that estimate, the algorithm outputs a cut that has size at most (2 + ε)k. For
other estimates, the cut size might be much larger, but since we output the minimum, we know
that the output cut will have size at most (2 + ε)k.
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