Exploration-Exploitation Tradeoff Part II

UCB Exploration via Q-Ensembles (Chen et al.) Unifying Count-based Exploration and Intrinsic Motivation (G. Bellemare et al.)

> April 4th, 2019 Presenter: Yilun Wu Deep Reinforcement Learning Seminar (Spring 19') ETH Zürich

The Multi-Armed Bandit Problem

Setup: A – Action Space, R – Reward

$$\mathscr{R} = \mathbb{P}[R = r \mid A = a]$$

Task: Get maximum reward after a given set of trials

Or minimize regret:

$$L_t = \mathbb{E}\left[\sum_{\tau=1}^t v^* - q(A_{\tau})\right]$$
, where $q(a) = \mathbb{E}[R]$

$$A = a$$

The Multi-Armed Bandit Problem $\mathscr{R} = \mathbb{P}[R = r \mid A = a]$ $L_t = \mathbb{E}\left[\sum_{t=1}^{t} v^* - q(A_{\tau})\right], \text{ where } q(a) = \mathbb{E}[R \mid A = a]$

Fundamental Lower Bound (Lai and Robbins [1985]): $\lim_{t \to \infty} L_t \ge \log t \sum_a \frac{v^* - q(a)}{KL(R^a, R^{a^*})}$ **Exploration Strategy**

- Random Exploration (e.g. epsilon-greedy)
- Optimism in the face of uncertainty (e.g. UCB)
- Posterior Sampling (e.g. Thompson Sampling)

Time Step

UCB (Upper Confidence Bound)

Hoeffding's Inequality:

Let $X_1, X_2, ..., X_t$ be i.i.d. r.v. in [0,1], then

 $\mathbb{P}\left[E[X] > \bar{X}_t\right]$

Apply it to the bandit setting: $\mathbb{P}[q(a) > \hat{q}(a) + U_{a}]$

 $U_t(a)$

and
$$\bar{X}_t = \frac{1}{t} \sum_{\tau=1}^t X_{\tau}$$
 be the empirical mean,

$$+u] \leq \exp(-2tu^2)$$

$$U_t(a)] \le exp(-2N_t(a)U_t(a)^2) = P$$

$$=\sqrt{\frac{-\log P}{2N_t(a)}}$$

UCB for Multi-Armed Bandit Apply it to the bandit setting: $\mathbb{P}\left[q(a) > \hat{q}(a) + U_{t}\right]$

 $U_t(a)$

UCB Algorithm for Optimal Regret Bound (Bandit):

 $A_t = \arg m_t$ $a \in \mathscr{A}$

$$V_t(a) \Big] \le \exp(-2N_t(a)U_t(a)^2) = P$$

$$=\sqrt{\frac{-\log P}{2N_t(a)}}$$

$$ax\hat{q}_t(a) + \sqrt{\frac{-\log P}{2N_t(a)}}$$

UCB for Multi-Armed Bandit (1-step MDP)

UCB Algorithm for Optimal Regret Bound (Bandit):

 $A_t = \arg \max_{a \in \mathscr{A}}$

$$ax\hat{q}_t(a) + \sqrt{\frac{-\log P}{2N_t(a)}}$$

UCB for MDP

UCB Algorithm for Optimal Regret Bound (Bandit):

 $A_t = \arg \max$ $a \in \mathcal{A}$

MBIE-EB (Model-based Interval Estimation with **Exploration Bonuses**) (Strehl and Littman, 2008)

$$V(x) = \max_{a \in \mathscr{A}} \left[\hat{R}(x, a) + \gamma \mathbb{E}_{\hat{P}}[V(x')] + \frac{\beta}{\sqrt{N(x, a)}} \right]$$

$$ax\hat{q}_t(a) + \sqrt{\frac{-\log P}{2N_t(a)}}$$

MBIE-EB (Model-based Interval Estimation with **Exploration Bonuses**) (Strehl and Littman, 2008)

$$V(x) = \max_{a \in \mathscr{A}} \left[\hat{R}(x, a) \right]$$

For MDPs with huge state space, count will be zero for most states.

Thus, we need a generalized state visit count pseudo-counts.

(Bellemare et al., 2016)

UCB for Large MDP

 $+ \gamma \mathbb{E}_{\hat{P}}[V(x')] + \frac{\beta}{\sqrt{N(x,a)}} \Big]$

Pseudo-Counts derived from density models

Density Model: A model which gives the **distribution** of states which assumes states are **independently** distributed.

Density model is a kind of generative model which explicitly gives the

- likelihood/similarity of data (distribution of data) given the training dataset.

Density model Example: PixelCNN

From Density Model to Pseudo-Counts

Density Model: $\rho_n(x) := \rho(x \mid x_{1:n})$

Recoding Probability: $\rho'_n(x) := \rho(x \mid x_{1:n}, x)$

Define Pseudo-count $\hat{N}_n(x)$ and Pseudo-count Total \hat{n}

such that $\rho_n(x) =$

Can be solved via $\hat{N}_n(x) = \frac{\rho_n(x)(1 - \rho'_n(x))}{\rho'_n(x) - \rho_n(x)} = \hat{n}\rho_n(x)$

- probability of state x given all the experience so far.

- probability of state x given all the experience so far and hypothetically observe state x at the next step.

$$\frac{\hat{N}_{n}(x)}{\hat{n}}, \rho_{n}'(x) = \frac{\hat{N}_{n}(x) + 1}{\hat{n} + 1}$$

Freeway Game

Policy: 250,000 frames of wait + 250,000 frames of UP action

Does it work?

Intrinsic Motivation Exploration

- Forget about rewards (external motivation)
- The goal of learning is to gather information
- Information is gathered if the uncertainty of a quantity of interest (reward, transition probability, optimal policy, etc.) decreases
- This decrease of uncertainty can also be viewed as large difference between prior and posterior distribution (surprise)

Intrinsic Motivation Exploration

In the context of **modelling state density**, consider a weighted density model from a class of density models \mathcal{M}

 $\xi_n(x) := \int_{\rho \in \mathcal{M}}$

Update the weight through bayesian

Measure the Information Gain through distance between prior and posterior (KL-Divergence):

$$w_n(\rho)\rho(x \mid x_{1:n})d\rho$$

n filtering:
$$w_n(\rho, x) := \frac{w_n(\rho)\rho(x \mid x_{1:n})}{\xi(x)}$$

$\mathbf{IG}_n(x) := \mathbf{KL}\big(w_n(\rho, x) \mid |w_n(\rho)\big)$

Measure the Information Gain through distance between prior and posterior (KL-Divergence):

Use PG (Prediction Gain) as an approximate to IG:

Recall that:

PG is related to pseudo-count in that: With equality when $\rho'_n(x) \rightarrow 0$

$$\mathbf{IG}_{n}(x) := \mathbf{KL}\big(w_{n}(\rho, x) \,|\, |\, w_{n}(\rho)\big)$$

$$\mathbf{PG}_n(x) := \log \rho'_n(x) - \log \rho_n(x)$$

$$\hat{N}_{n}(x) = \frac{\rho_{n}(x)(1 - \rho'_{n}(x))}{\rho'_{n}(x) - \rho_{n}(x)} = \hat{n}\rho_{n}(x)$$

$$\hat{N}_n(x) \approx \left(e^{\mathrm{PG}_n(x)} - 1 \right)^{-1}$$

Measure the Information Gain through distance between prior and posterior (KL-Divergence):

Use PG (Prediction Gain) as an approximate to IG:

Recall that:

PG is related to pseudo-count in that: With equality when $\rho'_n(x) \rightarrow 0$

$$\mathbf{IG}_{n}(x) := \mathbf{KL}\big(w_{n}(\rho, x) \,|\, |\, w_{n}(\rho)\big)$$

$$\mathbf{PG}_n(x) := \log \rho'_n(x) - \log \rho_n(x)$$

$$\hat{N}_{n}(x) = \frac{\rho_{n}(x)(1 - \rho'_{n}(x))}{\rho'_{n}(x) - \rho_{n}(x)} = \hat{n}\rho_{n}(x)$$

$$\hat{N}_n(x) \approx \left(e^{\mathrm{PG}_n(x)} - 1 \right)^{-1}$$

Furthermore,

 $IG_n(x) \le PG_n(x) \le \hat{N}_n(x)^{-1} \le \hat{N}_n(x)$

$$\mathbf{IG}_{n}(x) := \mathbf{KL}\big(w_{n}(\rho, x) \,|\, |\, w_{n}(\rho)\big)$$

$$\mathbf{PG}_n(x) := \log \rho'_n(x) - \log \rho_n$$

$$\hat{N}_{n}(x) = \frac{\rho_{n}(x)(1 - \rho_{n}'(x))}{\rho_{n}'(x) - \rho_{n}(x)} = \hat{n}\rho_{n}(x)$$

$$(-1/2)^{-1/2}$$

$$\hat{N}_n(x) \approx \left(\mathrm{e}^{\mathrm{PG}_n(x)} - 1 \right)^{-1}$$

Furthermore, $IG_n(x) \le PG_n(x) \le \hat{N}_n(x)^{-1} \le \hat{N}_n(x)$

> MBIE-EB (Model-based Interval Estimation with **Exploration Bonuses**) (Strehl and Littman, 2008)

 $V(x) = \max_{a \in \mathscr{A}} \left[\hat{R}(x, a) + \gamma \mathbb{E}_{\hat{P}}[V(x')] + \right]$

 $V(x) = \max_{a \in \mathscr{A}} \left[\hat{R}(x, a) + \gamma \mathbb{E}_{\hat{P}}[V(x')] + \alpha \mathcal{A}(x) \right]$

$$(-1/2)^{-1/2}$$

$$\beta = \sqrt{N(x, a)}$$

$$+ \beta IG_n(x)$$

Results with different exploration bonus

 $IG_n(x) \le PG_n(x) \le \hat{N}_n(x)^{-1} \le \hat{N}_n(x)^{-1/2}$

Tested on 60 Atari games A3C with bonus Algorithm achieve a normalized X score on Y fraction of the games

Exploration in Montezuma's Revenge

5 MILLION TRAINING FRAMES

No bonus							
With bonus							
With	bonus						
With	bonus						
With	bonus						

20 MILLION TRAINING FRAMES

No bonus						
With bonus						
					• I	

10 MILLION TRAINING FRAMES

50 MILLION TRAINING FRAMES

20

The Multi-Armed Bandit Problem $\mathscr{R} = \mathbb{P}[R = r \mid A = a]$ $L_t = \mathbb{E}\left[\sum_{\tau=1}^{t} v^* - q(A_{\tau})\right]$, where $q(a) = \mathbb{E}[R \mid A = a]$

Fundamental Lower Bound (Lai and Robbins [1985]): $\lim_{t \to \infty} L_t \ge \log t \sum_{a} \frac{v^* - q(a)}{KL(R^a, R^{a^*})}$ • Exploration Strategy

- Random Exploration (e.g. epsilon-greedy)
- Optimism in the face of uncertainty (e.g. UCB)
- Posterior Sampling (e.g. Thompson Sampling)

Thompson Sampling

Maintain belief over rewards: $q_1, q_2, \ldots, q_n \sim \hat{p}(q_1, q_2, \ldots, q_n)$

Sampling and act greedily: $A_t = \arg \max q(a)$

What is the **equivalent** of rewards from bandit in MDP?

Q-values!

- $a \in \mathscr{A}$

How to maintain a distribution of Q-values?

- PSRL (Posterior Sampling for Reinforcement Learning, Osband et al.)
 - Sample MDP from belief distribution
 - Solve for optimal policy of the sampled MDP
 - Use observed transition and reward to update MDP belief
- Q-ensembles neural network (Bootstrapped DQN, Osband et al.)
 - Sample Q function from belief distribution
 - Act greedily according to Q for one episode
 - Update belief of Q

Bootstrapped DQN

Training many independent NNs is costly

Solution: Share most layers

- Q-ensembles neural network
 - Sample Q function from belief distribution
 - Act greedily according to Q for one episode
 - Update belief of Q

UCB Exploration using Q-Ensembles

Add UCB into Q-ensembles:

Instead of sampling Q and act greedily on the sampled Q, Select action according to UCB of empirical mean reward

Algorithm 2 UCB Exploration with *Q*-Ensembles

- 1: Input: Value function networks Q with K outputs $\{Q_k\}_{k=1}^K$. Hyperparameter λ .
- 2: Let B be a replay buffer storing experience for training.
- 3: for each episode do
- Obtain initial state from environment s_0 4:
- for step $t = 1, \ldots$ until end of episode do 5: 6:
 - - Add (s_t, a_t, r_t, s_{t+1}) to replay buffer B
- end for 10:
- 11: end for

7:

8:

9:

Pick an action according to $a_t \in \operatorname{argmax}_a \left\{ \tilde{\mu}(s_t, a) + \lambda \cdot \tilde{\sigma}(s_t, a) \right\}$ Receive state s_{t+1} and reward r_t from environment, having taken action a_t At learning interval, sample random minibatch and update $\{Q_k\}$ according to (12)

Q-ensemble Results

Average Normalized Learning Curve

- bootstrapped dqn
- ucb exploration
- ensemble voting
- double dqn

Benchmark on Atari Games

Maximal Mean Reward in 100 consecutive episodes Evaluated on 48 Games

UCB-Exploration achieved the highest score in **30/48** games

(ALC)	Bootstrapped DQN	Eouble DQN	Ensemble Voting	UCB-Exploration
Alien	1445.1	2059.7	2282.8	2817.6
Amidar	430.58	667.5	683.72	663.8
Assault	2519.06	2820.61	3213.58	3702.76
Asterix	3829.0	7639.5	8740.0	8732.0
Asteroids	1009.5	1002.3	1149.3	1007.8
Atlantis	1314058.0	1982677.0	1786305.0	2016145.0
Bank Heist	795.1	789.9	869.4	906.9
Battle Zone	26230.0	24880.0	27430.0	26770.0
Beam Rider	8006.58	7743.74	7991.9	9188.26
Bowling	28.62	30.92	32.92	38.06
Boxing	85.91	94.07	94.47	98.08
Ereakout	400.22	467.45	426.78	411.31
Centipede	5328.77	5177.51	6153.28	6237.18
Chopper Command	2153.0	3260.0	3544.0	3677.0
Crazy Climber	110926.0	124456.0	126677.0	127754.0
Demon Attack	9811.45	23562.55	30004.4	59861.9
Double Dunk	-10.82	-14.58	-11.94	-4.08
Enduro	1314.31	1439.59	1999.88	2752.55
Fishing Derby	21.89	23.69	30.02	29.71
Freeway	33.57	32.93	33.92	33.96
Frosthite	1284.8	529.2	196.0	1903.0
Gonher	7652.2	12030.0	10993.2	12910.8
Gravitar	227.5	279.5	371.5	318.0
Ice Hockey	-4.62	-4 63	-1.73	-4 71
Jameshond	594.5	594.0	602.0	710.0
Kangaroo	8186.0	7787.0	8174.0	14196.0
Krull	8537 52	8517.91	8669.17	9171.61
Kung En Master	24153.0	32896.0	30988.0	31291.0
Montezuma Revence	20	4.0	1.0	40
Ms Pacman	2508 7	2498 1	3039 7	3425.4
Name This Game	8212.4	9806.9	9255.1	9570.5
Ditfall	-5.99	-7.57	-3 37	-1 47
Dong	21.0	20.67	21.0	20.05
Private Eve	1815 19	788 63	1845 28	1252.01
Obert	10557.25	6529.5	12036.5	14198 25
Riverroid	11528.0	11834 7	12785.8	15622.2
Road Runner	52489.0	49039.0	54768.0	53596.0
Robotank	21.03	20.8	31.83	41.04
Sacquart	0220.7	19056 4	20459 6	24001.6
Seaquest Spore Invedere	9520.7	1017.5	204,56.0	24001.0
Space invaders	20115.0	52282.0	11684.0	47367.0
Tannia	20115.0	54465.0	41004.0	4/50/.0
Time Dilet	-13.11	-14.04	-11.05	-7.0
Thiterlehom	167 47	3348.0	0155.0	0490.0
I tankham	107.47	11915 2	208.01	200.76
Up N Down	9049.1	11815.5	19528.5	19827.5
venture	115.0	90.0	78.0	07.0
Video Pindall	304000.85	3/4080.89	545580.29	572504.11
wizard OI Wor	2860.0	38/7.0	3451.0	3873.0
Laxxon	592.0	8903.0	3901.0	2022.0
Times best	1	7	9	30

on

Comparison to A3C+[1]

Maximal Mean Reward in 100 consecutive episode Evaluated on 48 Games

UCB-Exploration trained with **40 million** frames A3C+ trained with **200 million** frames

UCB-Exploration achieved the highest score in **28**/ A3C+ achieved the highest score in **10/48** games

Why Q-Ensembles achieve better performance?

[1] A3C+ - A3C (Asynchronous Advantage Actor-Critic) with pseu

		Ensemule voting	OCD-Exploration	11.31_ T
	Alien	2282.8	2817.6	1848.33
	Amidar	683.72	663.8	964.77
	Assault	3213.58	3702.76	2607.28
	Asterix	8740.0	8732.0	7262.77
	Asteroids	1149.3	1007.8	2257.92
	Atlantis	1786305.0	2016145.0	1733528.7
	Bank Heist	869.4	906.9	991.96
	Battle Zone	27430.0	26770.0	7428.99
	Beam Rider	7991.9	9188.26	5992.08
	Bowling	32.92	38.06	68.72
	Boxing	94.47	98.08	13.82
	Breakout	426.78	411.31	323.21
	Centipede	6153.28	6237.18	5338.24
	Chopper Command	3544.0	3677.0	5388.22
	Crazy Climber	126677.0	127754.0	104083.51
	Demon Attack	30004.4	59861.9	19589.95
	Double Dunk	-11.94	-4.08	-8.88
	Enduro	1999.88	2752.55	749.11
	Fishing Derby	30.02	29.71	29.46
	Freeway	33.92	33.96	27.33
	Frostbile	1196.0	1903.0	506.61
	Gopher	10993.2	12910.8	5948 40
	Gravitar	371.5	318.0	246.02
48 dames	lee Hockey	-1.73	-4 71	-7.05
ie gamee	Iamesboud	602.0	710.0	1024.16
	Kanaaroo	81747)	14196.0	5475 73
	Kmll	8669 17	0171.61	7587 58
	Kuma Eu Maeter	30988.0	31291.0	26593.67
	Montezuma Revence	1.0	4.0	142.50
	Mc Duomen	3030.7	3475 4	2380 58
	Name This Come	02551	0570.5	6427.51
	Disfull	3.37	1 47	155.07
	Pope	21.0	20.05	17 22
	Driveta Eva	1945 29	1252.01	100.0
	Obert	1040.40	1332,01	15904 72
	Disconsid	10705.0	15677.7	10221 56
	Riverate Roud Roman	2765.6	53506 ()	40020.74
	Road Rounds	24700.0	11.04	49029,14
	Nobolalik	31-03 20458-6	91.04	0.00
	Shaan luurdaan	10000	2400140	1466 /11
	Space invaders	1020.0	2020.33	1400.01
	Star Gunner	41084.0	4/507.0	52400.84
		-11-05	-7.8	-20.49
		0155.0	0490.0	3610.38
	Tutankham	208.01	200.70	132.07
	Up N Down	19528.3	19827.3	8705.64
	Venture	78.0	67.0	0.00
	Video Pinball	343380.29	372564.11	35515.92
uda-count based reward	Wizard Of Wor	5451.0	5873.0	3657.65
uuu-uuni vaseu iewalu	Zaxxon	3901.0	3695.0	7956.05
	Times Best	10	28	10

- Optimal Exploration for small MDP
 - <u>MBIE-EB</u> (Strehl, Littman)
- Density Model lacksquare
 - <u>Skip Context Tree Switching</u> (Bellemare, et al.)
 - <u>Count-Based Exploration with Neural Density Models</u> (Ostrovski et al.)
 - EX2: Exploration with Exemplar Models for Deep Reinforcement Learning (Fu et al.)
- Q-Ensmeble methods
 - <u>Deep Exploration via Bootstrapped DQN</u> (Osband et al.)
 - Posterior sampling for reinforcement learning: worst-case regret bounds (Agrawal et al.)
- Information Gain based Exploration \bullet
 - VIME: Variational Information Maximizing Exploration (Houthooft et al.)

For questions: Yilun Wu <wuyil@student.ethz.ch>

Further Readings

End of Presentation Questions?