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The Multi-Armed Bandit Problem

Setup: 


Task: Get maximum reward after a given set of trials


Or minimize regret: 


A − Action Space, R − Reward

ℛ = ℙ[R = r ∣ A = a]

Lt = 𝔼[
t

∑
τ=1

v* − q(Aτ)] , where q(a) = 𝔼[R ∣ A = a]
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The Multi-Armed Bandit Problem

Fundamental Lower Bound (Lai and Robbins [1985]):

lim
t→∞

Lt ≥ log t∑
a

v* − q(a)
KL(Ra, Ra*)

ℛ = ℙ[R = r ∣ A = a]

Lt = 𝔼[
t

∑
τ=1

v* − q(Aτ)] , where q(a) = 𝔼[R ∣ A = a]

Time Step

Total Regret

Lai-Robins Bound

ε-greedy

• Exploration Strategy


• Random Exploration (e.g. epsilon-greedy)


• Optimism in the face of uncertainty (e.g. UCB)


• Posterior Sampling (e.g. Thompson Sampling)

UCB
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Thompson

Sampling



UCB (Upper Confidence Bound)
Hoeffding’s Inequality:


Let X1, X2, …, Xt be i.i.d. r.v. in [0,1], and                 be the empirical mean, 
then

X̄t =
1
t

t

∑
τ=1

Xτ

ℙ[E[X] > X̄t + u] ≤ exp(−2tu2)

Apply it to the bandit setting:
ℙ[q(a) > ̂q(a) + Ut(a)] ≤ exp(−2Nt(a)Ut(a)2) = P

Ut(a) =
−log P
2Nt(a)
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UCB for Multi-Armed Bandit
Apply it to the bandit setting:

ℙ[q(a) > ̂q(a) + Ut(a)] ≤ exp(−2Nt(a)Ut(a)2) = P

Ut(a) =
−log P
2Nt(a)

UCB Algorithm for Optimal Regret Bound (Bandit):

At = arg max
a∈𝒜

̂qt(a) +
−log P
2Nt(a)

Time Step

Total Regret

Lai-Robins Bound

UCB
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UCB for Multi-Armed Bandit (1-step MDP)
UCB Algorithm for Optimal Regret Bound (Bandit):

At = arg max
a∈𝒜

̂qt(a) +
−log P
2Nt(a)
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UCB for MDP
UCB Algorithm for Optimal Regret Bound (Bandit):

At = arg max
a∈𝒜

̂qt(a) +
−log P
2Nt(a)

MBIE-EB (Model-based Interval Estimation with Exploration Bonuses) 

(Strehl and Littman, 2008)


V(x) = max
a∈𝒜 [R̂(x, a) + γ𝔼 ̂P[V(x′�)] +

β
N(x, a) ]
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UCB for Large MDP
MBIE-EB (Model-based Interval Estimation with Exploration Bonuses) 

(Strehl and Littman, 2008)


V(x) = max
a∈𝒜 [R̂(x, a) + γ𝔼 ̂P[V(x′�)] +

β
N(x, a) ]

For MDPs with huge state space, count will be zero 
for most states.


Thus, we need a generalized state visit count - 
pseudo-counts.

(Bellemare et al., 2016)
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Pseudo-Counts derived from density models
Density Model: A model which gives the distribution of states which 
assumes states are independently distributed.


Density model is a kind of generative model which explicitly gives the 
likelihood/similarity of data (distribution of data) given the training dataset.
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Density model Example: PixelCNN
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From Density Model to Pseudo-Counts
Density Model:                             

                          - probability of state x given all the experience so far. 

ρn(x) := ρ(x ∣ x1:n)

Recoding Probability:                             

                                    - probability of state x given all the experience so far 

and hypothetically observe state x at the next step.

ρ′�n(x) := ρ(x ∣ x1:n, x)

 Define Pseudo-count         and Pseudo-count TotalN̂n(x) ̂n

such that ρn(x) =
N̂n(x)

̂n
, ρ′�n(x) =

N̂n(x) + 1
̂n + 1

Can be solved via N̂n(x) =
ρn(x)(1 − ρ′ �n(x))

ρ′�n(x) − ρn(x)
= ̂nρn(x)
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Does it work?
Freeway Game


Policy: 250,000 frames of wait + 250,000 frames of UP action
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Intrinsic Motivation Exploration

• Forget about rewards (external motivation)


• The goal of learning is to gather information


• Information is gathered if the uncertainty of a quantity of interest (reward, 
transition probability, optimal policy, etc.) decreases


• This decrease of uncertainty can also be viewed as large difference 
between prior and posterior distribution (surprise)
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Intrinsic Motivation Exploration
In the context of modelling state density, consider a weighted density 
model from a class of density models ℳ

ξn(x) := ∫ρ∈ℳ
wn(ρ)ρ(x ∣ x1:n)dρ

Update the weight through bayesian filtering: wn(ρ, x) :=
wn(ρ)ρ(x ∣ x1:n)

ξ(x)

Measure the Information Gain through 
distance between prior and posterior 
(KL-Divergence):

IGn(x) := KL(wn(ρ, x) | |wn(ρ))
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Connection between Counts and Intrinsic Motivation
Measure the Information Gain through 
distance between prior and posterior 
(KL-Divergence):

IGn(x) := KL(wn(ρ, x) | |wn(ρ))

Use PG (Prediction Gain) as an 
approximate to IG:

PGn(x) := log ρ′�n(x) − log ρn(x)

N̂n(x) =
ρn(x)(1 − ρ′�n(x))

ρ′�n(x) − ρn(x)
= ̂nρn(x)Recall that:

PG is related to pseudo-count in that: 

With equality when 

N̂n(x) ≈ (ePGn(x) − 1)−1

ρ′�n(x) → 0
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Connection between Counts and Intrinsic Motivation
Measure the Information Gain through 
distance between prior and posterior 
(KL-Divergence):

IGn(x) := KL(wn(ρ, x) | |wn(ρ))

Use PG (Prediction Gain) as an 
approximate to IG:

PGn(x) := log ρ′�n(x) − log ρn(x)

N̂n(x) =
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Connection between Counts and Intrinsic Motivation

IGn(x) := KL(wn(ρ, x) | |wn(ρ))

PGn(x) := log ρ′�n(x) − log ρn

N̂n(x) =
ρn(x)(1 − ρ′�n(x))

ρ′�n(x) − ρn(x)
= ̂nρn(x)

N̂n(x) ≈ (ePGn(x) − 1)−1

Furthermore,

IGn(x) ≤ PGn(x) ≤ N̂n(x)−1 ≤ N̂n(x)−1/2
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Connection between Counts and Intrinsic Motivation

Furthermore,
IGn(x) ≤ PGn(x) ≤ N̂n(x)−1 ≤ N̂n(x)−1/2

MBIE-EB (Model-based Interval Estimation with Exploration Bonuses) 

(Strehl and Littman, 2008)


V(x) = max
a∈𝒜 [R̂(x, a) + γ𝔼 ̂P[V(x′�)] +

β
N(x, a) ]

V(x) = max
a∈𝒜 [R̂(x, a) + γ𝔼 ̂P[V(x′�)] + βIGn(x)]
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Results with different exploration bonus

IGn(x) ≤ PGn(x) ≤ N̂n(x)−1 ≤ N̂n(x)−1/2

Tested on 60 Atari games 
A3C with bonus 
Algorithm achieve a normalized X score on Y fraction of the games
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Exploration in Montezuma’s Revenge
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The Multi-Armed Bandit Problem

Fundamental Lower Bound (Lai and Robbins [1985]):

lim
t→∞

Lt ≥ log t∑
a

v* − q(a)
KL(Ra, Ra*)

ℛ = ℙ[R = r ∣ A = a]

Lt = 𝔼[
t

∑
τ=1

v* − q(Aτ)] , where q(a) = 𝔼[R ∣ A = a]

Time Step

Total Regret

Lai-Robins Bound

ε-greedy

• Exploration Strategy


• Random Exploration (e.g. epsilon-greedy)


• Optimism in the face of uncertainty (e.g. UCB)


• Posterior Sampling (e.g. Thompson Sampling)

UCB
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Thompson

Sampling



Thompson Sampling
Maintain belief over rewards: 


Sampling and act greedily:

q1, q2, . . . , qn ∼ ̂p(q1, q2, . . . , qn)

At = arg max
a∈𝒜

q(a)

!22

What is the equivalent of rewards from bandit in MDP?


Q-values!



How to maintain a distribution of Q-values?
• PSRL (Posterior Sampling for Reinforcement Learning, Osband et al.)


• Sample MDP from belief distribution


• Solve for optimal policy of the sampled MDP


• Use observed transition and reward to update MDP belief


• Q-ensembles neural network (Bootstrapped DQN, Osband et al.)


• Sample Q function from belief distribution


• Act greedily according to Q for one episode


• Update belief of Q
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Bootstrapped DQN
Training many independent NNs is costly


Solution: Share most layers

• Q-ensembles neural network


• Sample Q function from belief distribution


• Act greedily according to Q for one episode


• Update belief of Q
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UCB Exploration using Q-Ensembles
Add UCB into Q-ensembles:

Instead of sampling Q and act greedily on the sampled Q,

Select action according to UCB of empirical mean reward
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Q-ensemble Results
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Benchmark on Atari Games
Maximal Mean Reward in 100 consecutive episodes

Evaluated on 48 Games


UCB-Exploration achieved the highest score in 30/48 games
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Comparison to A3C+[1]

Maximal Mean Reward in 100 consecutive episodes

Evaluated on 48 Games


UCB-Exploration trained with 40 million frames

A3C+ trained with 200 million frames


UCB-Exploration achieved the highest score in 28/48 games

A3C+ achieved the highest score in 10/48 games
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Why Q-Ensembles achieve better performance?

[1] A3C+ - A3C (Asynchronous Advantage Actor-Critic) with pseudo-count based reward



Further Readings
• Optimal Exploration for small MDP


• MBIE-EB (Strehl, Littman)

• Density Model


• Skip Context Tree Switching (Bellemare, et al.) 

• Count-Based Exploration with Neural Density Models (Ostrovski et al.)

• EX2: Exploration with Exemplar Models for Deep Reinforcement Learning (Fu et al.)


• Q-Ensmeble methods

• Deep Exploration via Bootstrapped DQN (Osband et al.)

• Posterior sampling for reinforcement learning: worst-case regret bounds (Agrawal et al.) 


• Information Gain based Exploration

• VIME: Variational Information Maximizing Exploration (Houthooft et al.)
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For questions: Yilun Wu <wuyil@student.ethz.ch>

https://www.sciencedirect.com/science/article/pii/S0022000008000767
http://proceedings.mlr.press/v32/bellemare14.pdf
https://arxiv.org/abs/1703.01310
https://arxiv.org/abs/1703.01260
https://arxiv.org/abs/1602.04621
https://arxiv.org/abs/1705.07041
https://arxiv.org/abs/1605.09674
mailto:wuyil@student.ethz.ch


End of Presentation
Questions?
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