Off-Policy Learning (Part 1)

Safe and Efficient Off-Policy Reinforcement Learning

Munos, R., Stepleton, T., Harutyunyan, A. and Bellemare, M., NeurIPS 2016

The Reactor: A fast and sample-efficient Actor-Critic agent for Reinforcement Learning Gruslys, A., Azar, M.G., Bellemare, M.G. and Munos, R., ICLR 2018

HaoChih, Lin

2019-April-09

Safe and Efficient Off-Policy Reinforcement Learning

Retrace(λ) is a convergent off-policy multi-step algorithm extending the DQN agent

Safe and Efficient Off-Policy Reinforcement Learning

The Retrace algorithm comes with the theoretical guarantee that in finite state and action spaces, repeatedly updating our current estimate Q produces a sequence of Q functions which <u>converges</u> to $Q^{\Lambda}\pi$ for a fixed π or to Q* if we consider a sequence of policies π which become increasingly greedy w.r.t. the Q estimate

Preliminary (Off-policy)

• Learning the state (action) value function for a policy π : $Q^{\pi}(x, a) = \mathbb{E}_{\pi}[r_1 + \gamma r_2 + \gamma^2 r_3 + \cdots | x_0 = x, a_0 = a]$

- You can learn optimal control if it is a greedy policy to the current estimate Q(x; a) e.g. Q-learning
- <u>On-policy</u>: learning from data collected by π
- <u>Off-policy</u>: learning from data collected by $\mu \neq \pi$
- Off-policy methods have advantages:
 - Sample-efficient (e.g. experience replay)
 - \circ Exploration by μ

Preliminary (Off-policy)

Off-policy Learning

- **Target policy** (π) : deterministic (optimal greedy)
- **Behavior policy** (*µ*) : stochastic (exploratory)
- Assumption of coverage: $\pi(a|s) > 0$ implies $\mu(a|s) > 0$

Off-policy Learning

- **Target policy** (π) : deterministic (optimal greedy)
- **Behavior policy** (*µ*) : stochastic (exploratory)
- Assumption of coverage: $\pi(a|s) > 0$ implies $\mu(a|s) > 0$
- Importance sampling:

$$\Pr\{A_t, S_{t+1}, A_{t+1}, \dots, S_T \mid S_t, A_{t:T-1} \sim \pi\} \\ = \pi(A_t \mid S_t) p(S_{t+1} \mid S_t, A_t) \pi(A_{t+1} \mid S_{t+1}) \cdots p(S_T \mid S_{T-1}, A_{T-1}) \\ = \prod_{k=t}^{T-1} \pi(A_k \mid S_k) p(S_{k+1} \mid S_k, A_k),$$

Off-policy Learning

- **Target policy** (π) : deterministic (optimal greedy)
- **Behavior policy** (*µ*) : stochastic (exploratory)
- Assumption of coverage: $\pi(a|s) > 0$ implies $\mu(a|s) > 0$
- Importance sampling:

$$\Pr\{A_t, S_{t+1}, A_{t+1}, \dots, S_T \mid S_t, A_{t:T-1} \sim \pi\}$$

$$= \pi(A_t \mid S_t) p(S_{t+1} \mid S_t, A_t) \pi(A_{t+1} \mid S_{t+1}) \cdots p(S_T \mid S_{T-1}, A_{T-1})$$

$$= \prod_{k=t}^{T-1} \pi(A_k \mid S_k) p(S_{k+1} \mid S_k, A_k),$$

$$\rho_{t:T-1} \doteq \frac{\prod_{k=t}^{T-1} \pi(A_k \mid S_k) p(S_{k+1} \mid S_k, A_k)}{\prod_{k=t}^{T-1} \mu(A_k \mid S_k) p(S_{k+1} \mid S_k, A_k)}$$

Off-policy Learning

- **Target policy** (π) : deterministic (optimal greedy)
- **Behavior policy** (*µ*) : stochastic (exploratory)
- Assumption of coverage: $\pi(a|s) > 0$ implies $\mu(a|s) > 0$
- Importance sampling:

$$\Pr\{A_t, S_{t+1}, A_{t+1}, \dots, S_T \mid S_t, A_{t:T-1} \sim \pi\}$$

$$= \pi(A_t \mid S_t) p(S_{t+1} \mid S_t, A_t) \pi(A_{t+1} \mid S_{t+1}) \cdots p(S_T \mid S_{T-1}, A_{T-1})$$

$$= \prod_{k=t}^{T-1} \pi(A_k \mid S_k) p(S_{k+1} \mid S_k, A_k),$$

$$\rho_{t:T-1} \doteq \frac{\prod_{k=t}^{T-1} \pi(A_k \mid S_k) p(S_{k+1} \mid S_k, A_k)}{\prod_{k=t}^{T-1} \mu(A_k \mid S_k) p(S_{k+1} \mid S_k, A_k)}$$

Off-policy Learning

- **Target policy** (π) : deterministic (optimal greedy)
- **Behavior policy** (*µ*) : stochastic (exploratory)
- Assumption of coverage: $\pi(a|s) > 0$ implies $\mu(a|s) > 0$
- Importance sampling:

$$\begin{aligned} \Pr\{A_t, S_{t+1}, A_{t+1}, \dots, S_T \mid S_t, A_{t:T-1} \sim \pi\} \\ &= \pi(A_t \mid S_t) p(S_{t+1} \mid S_t, A_t) \pi(A_{t+1} \mid S_{t+1}) \cdots p(S_T \mid S_{T-1}, A_{T-1}) \\ &= \prod_{k=t}^{T-1} \pi(A_k \mid S_k) p(S_{k+1} \mid S_k, A_k), \end{aligned}$$
$$\rho_{t:T-1} \doteq \frac{\prod_{k=t}^{T-1} \pi(A_k \mid S_k) p(S_{k+1} \mid S_k, A_k)}{\prod_{k=t}^{T-1} \mu(A_k \mid S_k) p(S_{k+1} \mid S_k, A_k)} = \prod_{k=t}^{T-1} \frac{\pi(A_k \mid S_k)}{\mu(A_k \mid S_k)}.\end{aligned}$$

Importance Sampling

- Usage:
 - <u>Wanted</u>: the expected returns (values) under the target policy: $v_{\pi}(S_t)$

Importance Sampling

- Usage:
 - <u>Wanted</u>: the expected returns (values) under the target policy: $v_{\pi}(S_t)$
 - <u>Got</u>: Returns Gt based on the wrong (behavior) policy: $G_t \doteq \sum_{k=t+1}^T \gamma^{k-t-1} R_k$ $\mathbb{E}[G_t|S_t] = v_b(S_t)$

Importance Sampling

- Usage:
 - <u>Wanted</u>: the expected returns (values) under the target policy: $v_{\pi}(S_t)$
 - <u>Got</u>: Returns Gt based on the wrong (behavior) policy: $G_t \doteq \sum_{k=t+1}^T \gamma^{k-t-1} R_k$ $\mathbb{E}[G_t|S_t] = v_b(S_t)$
 - Solution: introduce the importance sampling (for discrepancy correction): $\mathbb{E}[\rho_{t:T-1}G_t \mid S_t] = v_{\pi}(S_t)$

The ratio ρ (t:T-1) transforms the returns to have the right expected value

Importance Sampling

- Usage:
 - <u>Wanted</u>: the expected returns (values) under the target policy: $v_{\pi}(S_t)$
 - <u>Got</u>: Returns Gt based on the wrong (behavior) policy: $G_t \doteq \sum_{k=t+1}^T \gamma^{k-t-1} R_k$ $\mathbb{E}[G_t|S_t] = v_b(S_t)$
 - Solution: introduce the importance sampling: $\mathbb{E}[\rho_{t:T-1}G_t \mid S_t] = v_{\pi}(S_t)$

 $\rho_{t:T-1} \doteq \prod_{k=t}^{T-1} \frac{\pi(A_k|S_k)}{\mu(A_k|S_k)}.$

The ratio ρ (t:T-1) transforms the returns to have the right expected value

Importance Sampling

- Problem of variances:
 - <u>Example</u>: an episodes has 100 steps and $\gamma = 0$. *G* The return from time 0 will then be just G0 = R1

$$f_t \doteq \sum_{k=t+1}^T \gamma^{k-t-1} R_k$$

Importance Sampling

- Problem of variances:
 - <u>Example</u>: an episodes has 100 steps and $\gamma = 0$. $G_t \doteq \sum_{k=t+1} \gamma^{k-t-1} R_k$ The return from time 0 will then be just G0 = R1
 - Its importance sampling ratio will be a product of 100 factors:

$$\frac{\pi(A_0|S_0)}{\mu(A_0|S_0)}\frac{\pi(A_1|S_1)}{\mu(A_1|S_1)}\cdots\frac{\pi(A_{99}|S_{99})}{\mu(A_{99}|S_{99})}$$

Importance Sampling

- Problem of variances:
 - <u>Example</u>: an episodes has 100 steps and $\gamma = 0$. $G_t \doteq \sum_{k=t+1} \gamma^{k-t-1} R_k$ The return from time 0 will then be just G0 = R1
 - Its importance sampling ratio will be a product of 100 factors:

$$\frac{\pi(A_0|S_0)}{\mu(A_0|S_0)} \frac{\pi(A_1|S_1)}{\mu(A_1|S_1)} \cdots \frac{\pi(A_{99}|S_{99})}{\mu(A_{99}|S_{99})}$$

But it is really only necessary to scale by the first factor. The other 99 factors are irrelevant, but they add enormously to its variance.

N-step TD Prediction

- Monte Carlo Return:
- $G_t \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots + \gamma^{T-t-1} R_T,$
- One Step Return:

 $G_{t:t+1} \doteq R_{t+1} + \gamma V_t(S_{t+1}),$

• N steps Return:

 $G_{t:t+n} \doteq R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V_{t+n-1}(S_{t+n}),$

N-step TD Prediction

 $V_{\underline{t+n}}(S_t) \doteq V_{\underline{t+n-1}}(S_t) + \alpha \big[G_{t:t+n} - V_{t+n-1}(S_t) \big], \qquad 0 \le t < T,$

The λ -return

An alternative way of moving smoothly between Monte Carlo and one-step TD methods

$$G_t^{\lambda} \doteq (1-\lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_{t:t+n}.$$

$$G_t^{\lambda} = (1-\lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} G_{t:t+n} + \lambda^{T-t-1} G_t,$$

The λ-return

Ref: Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.

The λ-return

• The λ -return could be written as:

$$R_t^{\lambda} = (1-\lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} R_t^{(n)} + \lambda^{T-t-1} R_t$$

Until termination After termination

- If $\underline{\lambda} = 1$, you get MC return: $R_t^{\lambda} = (1-1) \sum_{n=1}^{T-t-1} 1^{n-1} R_t^{(n)} + 1^{T-t-1} R_t = R_t$
- If $\underline{\lambda} = 0$, you get TD(0):

$$R_t^{\lambda} = (1-0) \sum_{n=1}^{T-t-1} 0^{n-1} R_t^{(n)} + 0^{T-t-1} R_t = R_t^{(1)}$$

Ref: http://www-anw.cs.umass.edu/~barto/courses/cs687/Chapter%207.pdf Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

The λ-return

• The λ -return could be written as:

$$R_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} R_t^{(n)} + \lambda^{T-t-1} R_t$$

Until termination After termination

- If $\underline{\lambda} = 1$, you get MC return: $R_t^{\lambda} = (1-1) \sum_{n=1}^{T-t-1} 1^{n-1} R_t^{(n)} + 1^{T-t-1} R_t = R_t$
- If $\underline{\lambda} = 0$, you get TD(0):

$$R_t^{\lambda} = (1-0) \sum_{n=1}^{T-t-1} 0^{n-1} R_t^{(n)} + 0^{T-t-1} R_t = R_t^{(1)}$$

Questions:

- Can we apply to Q learning?
 - Policy evaluation: estimate Q^{π} from samples collected by μ
 - <u>Control</u>:
 estimate Q* from samples collected by μ
- Possible solution
 - Watkins's Q(λ) [Watkins 1989] method
 - Cut off traces whenever a non-greedy action is taken
 - Converges to Q* under a mild assumption (first proved in Retrace paper)

Ref: http://www-anw.cs.umass.edu/~barto/courses/cs687/Chapter%207.pdf Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

Watkins's Q(λ)

Classic multi-step algorithm for off-policy control

This approach is an off-policy eligibility trace which updates more than one Q-value per step.

This can result in a significant increase in the speed of learning at a cost to stability

unproven of convergence until <u>Retrace (</u>2016, ~30 years)

Safe and Efficient Off-Policy Reinforcement Learning

Proposes a new off-policy multi-step RL method: Retrace(λ)

- Proposes a new off-policy multi-step RL method: Retrace(λ)
- Theoretical advantages
 - It converges for any π , μ (safe)
 - It makes the best use of samples if π and μ are close to each other (efficient)
 - Its variance is lower than importance sampling

- Proposes a new off-policy multi-step RL method: Retrace(λ)
- Theoretical advantages
 - It converges for any π , μ (safe)
 - It makes the best use of samples if π and μ are close to each other (efficient)
 - Its variance is lower than importance sampling
- Empirical evaluation
 - On Atari 2600, it beats one-step Q-learning (DQN) and the existing multi-step methods (Q*(λ), Tree-Backup)

- Proposes a new <u>off-policy</u> <u>multi-step</u> RL method: **Retrace(λ)**
- Theoretical advantages
 - It converges for any π , μ (safe)
 - It makes the best use of samples if π and μ are close to each other (efficient)
 - Its variance is lower than importance sampling
- Empirical evaluation
 - On Atari 2600, it beats one-step Q-learning (DQN) and the existing multi-step methods (Q*(λ), Tree-Backup)
- Proves the convergence of Watkins's $Q(\lambda)$ for the first time

On-policy multi-step methods

From the presentation by the authors: https://ewrl.files.wordpress.com/2016/12/munos.pdf

- A popular multi-step algorithm for on-policy policy evaluation
- $\Delta_t Q(x, a) = (\gamma \lambda)^t \delta_t$ where $\lambda \in [0, 1]$ is chosen to balance bias and variance
- Multi-step methods have advantages:
 - Rewards are propagated <u>rapidly</u>
 - Bias introduced by bootstrapping is reduced

Off-policy multi-step methods

From the presentation by the authors: https://ewrl.files.wordpress.com/2016/12/munos.pdf

- $\delta_t = r_t + \gamma \mathbb{E}_{\pi} Q(x_{t+1}, \cdot) Q(x_t, a_t)$
- Can you use δ_t to estimate $Q^{\pi}(x_t, a_t)$ for all $s \leq t$?
 - Three methods mentioned in the paper:

Off-policy multi-step methods

From the presentation by the authors: https://ewrl.files.wordpress.com/2016/12/munos.pdf

- $\delta_t = r_t + \gamma \mathbb{E}_{\pi} Q(x_{t+1}, \cdot) Q(x_t, a_t)$
- Can you use δ_t to estimate $Q^{\pi}(x_t, a_t)$ for all $s \le t$?
 - Three methods mentioned in the paper: Importance Sampling (IS) [Precup et al. 2000] Q^π(λ) [Harutyunyan et al. 2016] Tree-Backup (TB) [Precup et al. 2000]

From the presentation by the authors: https://ewrl.files.wordpress.com/2016/12/munos.pdf

- $\Delta_t Q(x, a) = \gamma^t (\prod_{1 \le s \le t} \frac{\pi(a_s | x_s)}{\mu(a_s | x_s)}) \delta_t$
- <u>Pros:</u> Unbiased estimate of Q^{π}
- <u>Cons</u>: Large variance since $\frac{\pi(a_s|x_s)}{\mu(a_s|x_s)}$ is not bounded

From the presentation by the authors: https://ewrl.files.wordpress.com/2016/12/munos.pdf

• $\Delta_t Q(x, a) = \gamma^t (\prod_{1 \le s \le t} \frac{\pi(a_s | x_s)}{\mu(a_s | x_s)}) \delta_t$

Reweight the trace by the product of IS ratios

- <u>Pros:</u> Unbiased estimate of Q^{π}
- <u>Cons</u>: Large variance since $\frac{\pi(a_s|x_s)}{\mu(a_s|x_s)}$ is not bounded (not efficient)

From the presentation by the authors: https://ewrl.files.wordpress.com/2016/12/munos.pdf

- $\Delta_t Q(x,a) = (\gamma \lambda)^t \delta_t$
- <u>Pros:</u> Convergent if π and μ are sufficiently close to each other or λ is sufficiently small: $\lambda < \frac{1-\gamma}{\gamma\epsilon}$, where $\epsilon := \max_{x} \|\pi(\cdot|x) \mu(\cdot|x)\|_{1}$
- <u>Cons:</u> Not convergent otherwise

From the presentation by the authors: https://ewrl.files.wordpress.com/2016/12/munos.pdf

- $\Delta_t Q(x, a) = (\gamma \lambda)^t \delta_t$ Cut traces by a constant λ^t
- <u>Pros:</u> Convergent if π and μ are sufficiently close to each other or λ is sufficiently small: $\lambda < \frac{1-\gamma}{\gamma\epsilon}$, where $\epsilon := \max_{x} \|\pi(\cdot|x) \mu(\cdot|x)\|_{1}$
- <u>Cons:</u> Not convergent otherwise (not safe)

From the presentation by the authors: https://ewrl.files.wordpress.com/2016/12/munos.pdf

- $\Delta_t Q(x, a) = (\gamma \lambda)^t (\prod_{1 \le s \le t} \pi(a_s | x_s)) \delta_t$
- <u>Pros:</u> Convergent for any π and μ . even if μ is unknown and/or non-Markov
- <u>Cons</u>: $\prod_{1 \le s \le t} \pi(a_s | x_s)$ decays rapidly when near on-policy

From the presentation by the authors: https://ewrl.files.wordpress.com/2016/12/munos.pdf

• $\Delta_t Q(x, a) = (\gamma \lambda)^t (\prod_{1 \le s \le t} \pi(a_s | x_s)) \delta_t$

Reweight the traces by the product of target probabilities

- <u>Pros:</u> Convergent for any π and μ . even if μ is unknown and/or non-Markov
- <u>Cons</u>: $\prod_{1 \le s \le t} \pi(a_s | x_s)$ decays rapidly when near on-policy (not efficient)

General off-policy return-based algorithm

$$\Delta Q(x,a) = \sum_{t \ge 0} \gamma^t \Big(\prod_{1 \le s \le t} c_s\Big) \Big(\underbrace{r_t + \gamma \mathbb{E}_{\pi} Q(x_{t+1}, \cdot) - Q(x_t, a_t)}_{\delta_t}\Big)$$

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

General off-policy return-based algorithm

$$\Delta Q(x,a) = \sum_{t \ge 0} \gamma^t \Big(\prod_{1 \le s \le t} c_s\Big) \Big(\underbrace{r_t + \gamma \mathbb{E}_{\pi} Q(x_{t+1}, \cdot) - Q(x_t, a_t)}_{\delta_t}\Big)$$

	Definition of c_s	Estimation variance	Guaranteed convergence [†]	Use full returns (near on-policy)
Importance sampling	$rac{\pi(a_s x_s)}{\mu(a_s x_s)}$	High	for any π , μ	yes
$\overline{Q^{\pi}(\lambda)}$	λ	Low	for π close to μ	yes
$TB(\lambda)$	$\lambda \pi(a_s x_s)$	Low	for any π , μ	no

General off-policy return-based algorithm

$$\Delta Q(x,a) = \sum_{t \ge 0} \gamma^t \Big(\prod_{1 \le s \le t} c_s\Big) \Big(\underbrace{r_t + \gamma \mathbb{E}_{\pi} Q(x_{t+1}, \cdot) - Q(x_t, a_t)}_{\delta_t}\Big)$$

	Definition of c_s	Estimation variance	Guaranteed convergence†	Use full returns (near on-policy)
Importance sampling	$rac{\pi(a_s x_s)}{\mu(a_s x_s)}$	High	for any π , μ	yes
$\overline{Q^{\pi}(\lambda)}$	λ	Low	for π close to μ	yes
$TB(\lambda)$	$\lambda \pi(a_s x_s)$	Low	for any π , μ	no

- None of the existing methods is perfect (low variance, safe and efficient)
 - <u>Safe</u>: i.e. convergent for any π and μ (Q(λ))
 - <u>Efficient</u>: i.e. using full returns when on-policy (Tree-Backup)

Proposed Solution: Retrace(λ)

Proposed Solution: Retrace(λ)

$$c_s = \lambda \min\left(1, \frac{\pi(a_s|x_s)}{\mu(a_s|x_s)}\right)$$

Proposed Solution: Retrace(λ)

$$c_s = \lambda \min\left(1, \frac{\pi(a_s|x_s)}{\mu(a_s|x_s)}\right)$$

Properties:

- Low variance: since $c_s \leq 1$
- Safe (off policy): cut the traces when needed $c_s \in \left[0, \frac{\pi(a_s|x_s)}{\mu(a_s|x_s)}\right]$
- Efficient (on policy): keep the traces near on policy. Note that $c_s \geq \lambda \pi(a_s | x_s)$

Proposed Solution: Retrace(λ)

	Definition of c_s	Estimation variance	Guaranteed convergence [†]	Use full returns (near on-policy)
Importance sampling	$rac{\pi(a_s x_s)}{\mu(a_s x_s)}$	High	for any π , μ	yes
$\overline{Q^{\pi}(\lambda)}$	λ	Low	for π close to μ	yes
$TB(\lambda)$	$\lambda \pi(a_s x_s)$	Low	for any π , μ	no
Retrace(λ)	$\lambda \min\left(1, rac{\pi(a_s x_s)}{\mu(a_s x_s)} ight)$	Low	for any π , μ	yes

Off-policy policy evaluation

<u>Theorem-1</u>: Assume finite state space. Generate trajectories according to behavior policy μ . Update all states along trajectories according to

$$\Delta Q(x,a) = \sum_{t \ge 0} \gamma^t \Big(\prod_{1 \le s \le t} c_s\Big) \Big(\underbrace{r_t + \gamma \mathbb{E}_{\pi} Q(x_{t+1}, \cdot) - Q(x_t, a_t)}_{\delta_t}\Big)$$

Off-policy policy evaluation

<u>Theorem-1</u>: Assume finite state space. Generate trajectories according to behavior policy μ . Update all states along trajectories according to

$$Q_{k+1}(x,a) = Q_k(x,a) + \alpha_k \sum_{t \ge 0} \gamma^t(c_1 \dots c_t) \big(r_t + \gamma \mathbb{E}_\pi Q_k(x_{t+1}, \cdot) - Q_k(x_t, a_t) \big)$$

Assume all states visited infinitely often.

Off-policy policy evaluation

<u>Theorem-1</u>: Assume finite state space. Generate trajectories according to behavior policy μ . Update all states along trajectories according to

$$Q_{k+1}(x,a) = Q_k(x,a) + \alpha_k \sum_{t \ge 0} \gamma^t (c_1 \dots c_t) (r_t + \gamma \mathbb{E}_{\pi} Q_k(x_{t+1}, \cdot) - Q_k(x_t, a_t))$$

Assume all states visited infinitely often.

If
$$0 \leq c_s \leq rac{\pi(a_s|x_s)}{\mu(a_s|x_s)}$$
 then $Q_{m k} o Q^{m \pi}$

Sufficient conditions for a safe algorithm (works for any π and μ)

Tradeoff for trace coefficients C_S

• Contraction coefficient of the expected operator

$$\eta := \gamma - (1 - \gamma) \mathbb{E}_{\mu} \Big[\sum_{t \ge 1} \gamma^t (c_1 \cdots c_t) \Big] \in [0, \gamma]$$

- $\eta = \gamma$ when $c_s = 0$ (<u>one-step Bellman update</u>)
- $\eta = 0$ when $c_s = 1$ (full Monte-Carlo rollouts)
- Variance of the estimate (can be infinite for $c_s = \frac{\pi(a_s|x_s)}{\mu(a_s|x_s)}$ case)
 - \circ Large c_s : uses multi-steps returns, but large variance
 - Small c_s : low variance, but do not use multi-steps returns

Retrace(λ) for optimal control

Let (μ_k) and (π_k) sequences of behavior and target policies and:

$$Q_{k+1}(x,a) = Q_k(x,a) + \alpha_k \sum_{t \ge 0} (\lambda \gamma)^t \prod_{1 \le s \le t} \min\left(1, \frac{\pi_k(a_s | x_s)}{\mu_k(a_s | x_s)}\right) \left(r_t + \gamma \mathbb{E}_{\pi} Q_k(x_{t+1}, \cdot) - Q_k(x_t, a_t)\right)$$

Retrace(λ) for optimal control

Let (μ_k) and (π_k) sequences of behavior and target policies and:

$$Q_{k+1}(x,a) = Q_k(x,a) + \alpha_k \sum_{t \ge 0} (\lambda \gamma)^t \prod_{1 \le s \le t} \min\left(1, \frac{\pi_k(a_s | x_s)}{\mu_k(a_s | x_s)}\right) \left(r_t + \gamma \mathbb{E}_{\pi} Q_k(x_{t+1}, \cdot) - Q_k(x_t, a_t)\right)$$

Theorem 2

Under previous assumptions

Assume (π_k) are "increasingly greedy" wrt (Q_k)

Then, a.s.,

Remarks

- If (π_k) are greedy policies, then $c_s = \lambda \mathbb{I}\{a_s \in \arg \max_s Q_k(x_s, a)\}$
 - → **Convergence of Watkin's Q(** λ **)** to Q^* (open problem since 1989)

Under assumption of finite-state space:

- Convergence to optimal policy
- Cut traces when -and only when- needed
- Adjust the length of the backup to the "off-policy-ness" of the data

Retrace for deep RL

Several actor-critic architectures at DeepMind:

- **ACER** (Actor-Critic for Experience Replay) [Wang et al., 2017]. Policy gradient. Works for continuous actions.
- **Reactor** (Retrace-actor) [Gruesly et al., 2018]. Use beta-LOO to update policy. Use LSTM.
- **MPO** (Maximum a posteriori Policy Optimization) [Abdolmaleki et al., 2018] Soft (KL-regularized) policy improvement.
- **IMPALA** (IMPortance Weighted Actor-Learner Architecture) [Espeholt et al., 2018]. Heavily distributed agent. Uses V-trace.

Evaluation on Atari 2600

Performance comparison:

- Inter-algorithm scores are normalized so that 0 and 1 respectively correspond to the worst and best scores for a particular game (Roughly, a strictly higher curve corresponds to a better algorithm)
- Retrace(λ) performs best on 30 out of 60 games

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

Evaluation on Atari 2600: Retrace vs DQN

Games: (Blue: DQN Red: Retrace)

Asteroids, Defender, Demon Attack, Hero, Krull, River Raid, Space Invaders, Star Gunner, Wizard of Wor, Zaxxon

Evaluation on Atari 2600

- Sensitivity to the value of λ :
 - \circ Retrace(λ) is robust and consistently outperforms Tree-Backup
 - $\circ~~Q^{*}$ performs best for small values of λ
 - \circ ~ Note that the Q-learning scores are fixed across different λ

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

Conclusions

- General update rule for off-policy return-based RL
- Conditions under which an algo is safe and efficient
- We recommend to use **Retrace**:
 - Converges to Q^{*} (finite state/action space, policy π is increasingly greed)
 - Safe: cut the traces when needed
 - Efficient: but only when needed
 - Works for policy evaluation and for control
 - Particularly suited for deep RL
- Extensions:
 - Works in continuous action spaces
 - Can be used in off-policy policy-gradient [Wang et al., 2016]

A fast and sample-efficient Actor-Critic agent for Reinforcement Learning (Reactor)

A fast and sample-efficient Actor-Critic agent for Reinforcement Learning (Reactor)

[Contributions]

• <u>Sample-efficiency</u>:

Higher than Prioritized Dueling DQN (Wang et al., 2017) and Categorical DQN (Bellemare et al., 2017)

• <u>Time-efficiency</u>:

Better run-time performance than A3C (Mnih et al., 2016).

A fast and sample-efficient Actor-Critic agent for Reinforcement Learning (Reactor)

[Contributions]

• <u>Sample-efficiency</u>:

Higher than Prioritized Dueling DQN (Wang et al., 2017) and Categorical DQN (Bellemare et al., 2017)

• <u>Time-efficiency</u>:

Better run-time performance than A3C (Mnih et al., 2016).

[Reactor (Retrace-Actor)]

Combining the sample-efficiency of off-policy experience replay with the time-efficiency of asynchronous algorithms

The Reactor is a combination of four novel contributions on top of recent improvements to both deep value-based RL and policy-gradient algorithms.

• <u>β-leave-one-out:</u>

Improves the trade-off between variance and bias by using action values as a baseline.

• Distributional Retrace:

Brings multi-step off-policy updates to the distributional reinforcement learning setting

• Prioritized sequences replay:

Present the lazy initialization for more efficient replay prioritization.

• Agent Architecture:

Propose an optimized network and parallel training architecture

β -leave-one-out

 Need a policy gradient algorithm to train the actor policy π based on current estimate Q(x, a) of Q^π(x, a):

$$\nabla V^{\pi}(x_0) = \mathbb{E}\left[\sum_t \gamma^t \sum_a Q^{\pi}(x_t, a) \nabla \pi(a|x_t)\right]$$

β -leave-one-out

 Need a policy gradient algorithm to train the actor policy π based on current estimate Q(x, a) of Q^π(x, a):

$$\nabla V^{\pi}(x_0) = \mathbb{E}\left[\sum_t \gamma^t \sum_a Q^{\pi}(x_t, a) \nabla \pi(a|x_t)\right],$$

• Simplify the notations (find a way to estimate gradient G):

$$G = \sum_{a} Q^{\pi}(a) \nabla \pi(a).$$

β -leave-one-out

 Need a policy gradient algorithm to train the actor policy π based on current estimate Q(x, a) of Q^π(x, a):

$$\nabla V^{\pi}(x_0) = \mathbb{E}\left[\sum_t \gamma^t \sum_a Q^{\pi}(x_t, a) \nabla \pi(a|x_t)\right]$$

• Simplify the notations (find a way to estimate gradient G):

$$G = \sum_{a} Q^{\pi}(a) \nabla \pi(a).$$

• Unbiased estimate of G (sampled from behaviour policy μ with IS ratio):

$$\hat{G}_{\text{ISLR}} = \frac{\pi(\hat{a})}{\mu(\hat{a})} (R(\hat{a}) - V) \nabla \log \pi(\hat{a})$$

β -leave-one-out

 Need a policy gradient algorithm to train the actor policy π based on current estimate Q(x, a) of Q^π(x, a):

$$\nabla V^{\pi}(x_0) = \mathbb{E}\left[\sum_t \gamma^t \sum_a Q^{\pi}(x_t, a) \nabla \pi(a|x_t)\right].$$

• Simplify the notations (find a way to estimate gradient G):

$$G = \sum_{a} Q^{\pi}(a) \nabla \pi(a).$$

• Unbiased estimate of G (sampled from behaviour policy μ with IS ratio):

$$\hat{G}_{\text{ISLR}} = \frac{\pi(\hat{a})}{\mu(\hat{a})} (R(\hat{a}) - \bigvee \nabla \log \pi(\hat{a})$$

Baseline depends on the state

β -leave-one-out

 Need a policy gradient algorithm to train the actor policy π based on current estimate Q(x, a) of Q^π(x, a):

$$\nabla V^{\pi}(x_0) = \mathbb{E}\left[\sum_t \gamma^t \sum_a Q^{\pi}(x_t, a) \nabla \pi(a|x_t)\right]$$

• Simplify the notations (find a way to estimate gradient G):

$$G = \sum_{a} Q^{\pi}(a) \nabla \pi(a).$$

• Unbiased estimate of G (sampled from behaviour policy μ with IS ratio):

$$\hat{G}_{\text{ISLR}} = \frac{\pi(\hat{a})}{\mu(\hat{a})} (R(\hat{a}) - V \nabla \log \pi(\hat{a}))$$

Unbiased, but high variance, needs reducing!

β -leave-one-out

leave-one-out (LOO) estimate of G:
 Instead of applying IS, estimate G directly from the return R(a) for the chosen action a and current estimate Q(x, a) of Q^π(x, a)

$$\hat{G}_{\text{LOO}} = R(\hat{a})\nabla\pi(\hat{a}) + \sum_{a\neq\hat{a}}Q(a)\nabla\pi(a).$$

β -leave-one-out

leave-one-out (LOO) estimate of G:
 Instead of applying IS, estimate G directly from the return R(a) for the chosen action a and current estimate Q(x, a) of Q^π(x, a)

$$\hat{G}_{\text{LOO}} = R(\hat{a})\nabla\pi(\hat{a}) + \sum_{a\neq\hat{a}}Q(a)\nabla\pi(a).$$

Low variance

β -leave-one-out

leave-one-out (LOO) estimate of G:
 Instead of applying IS, estimate G directly from the return R(a) for the chosen action a and current estimate Q(x, a) of Q^π(x, a)

$$\hat{G}_{\text{LOO}} = R(\hat{a})\nabla\pi(\hat{a}) + \sum_{a\neq\hat{a}}Q(a)\nabla\pi(a).$$

but may be biased if the estimated Q(x,a) values differ from $Q^{\pi}(x,a)$

β-leave-one-out

leave-one-out (LOO) estimate of G:
 Instead of applying IS, estimate G directly from the return R(a) for the chosen action a and current estimate Q(x, a) of Q^π(x, a)

$$\hat{G}_{\text{LOO}} = R(\hat{a})\nabla\pi(\hat{a}) + \sum_{a\neq\hat{a}}Q(a)\nabla\pi(a).$$

• A better bias-variance tradeoff --> β -LOO policy-gradient estimate:

β-leave-one-out

leave-one-out (LOO) estimate of G:
 Instead of applying IS, estimate G directly from the return R(a) for the chosen action a and current estimate Q(x, a) of Q^π(x, a)

$$\hat{G}_{\text{LOO}} = R(\hat{a})\nabla\pi(\hat{a}) + \sum_{a\neq\hat{a}}Q(a)\nabla\pi(a).$$

• A better bias-variance tradeoff --> β -LOO policy-gradient estimate:

$$\hat{G}_{\beta-\text{LOO}} = \beta (R(\hat{a}) - Q(\hat{a})) \nabla \pi(\hat{a}) + \sum_{a} Q(a) \nabla \pi(a),$$

β-leave-one-out

leave-one-out (LOO) estimate of G:
 Instead of applying IS, estimate G directly from the return R(a) for the chosen action a and current estimate Q(x, a) of Q^π(x, a)

$$\hat{G}_{\text{LOO}} = R(\hat{a})\nabla\pi(\hat{a}) + \sum_{a\neq\hat{a}}Q(a)\nabla\pi(a).$$

• A better bias-variance tradeoff --> β -LOO policy-gradient estimate:

$$\hat{G}_{\beta-\text{LOO}} = \beta(R(\hat{a}) - Q(\hat{a}))\nabla\pi(\hat{a}) + \sum_{a}Q(a)\nabla\pi(a),$$

where $\beta = \beta(\mu, \pi, a)$ can be a function of both policies, π and μ , and the selected action a

β -leave-one-out

• Property of β -LOO for given β :

General case:
$$\hat{G}_{\beta-\text{LOO}} = \beta(R(\hat{a}) - Q(\hat{a}))\nabla\pi(\hat{a}) + \sum_{a}Q(a)\nabla\pi(a),$$
β -leave-one-out

• Property of β -LOO for given β :

When
$$\beta$$
 = 1: $\hat{G}_{\text{LOO}} = R(\hat{a})\nabla\pi(\hat{a}) + \sum_{a\neq\hat{a}}Q(a)\nabla\pi(a).$

β -leave-one-out

• Property of β -LOO for given β :

When
$$\beta = 1/\mu$$
: $\hat{G}_{\frac{1}{\mu}-\text{LOO}} = \frac{\pi(\hat{a})}{\mu(\hat{a})} (R(\hat{a}) - Q(\hat{a})) \nabla \log \pi(\hat{a}) + \sum_{a} Q(a) \nabla \pi(a).$

β -leave-one-out

• Property of β -LOO for given β :

When
$$\beta = 1/\mu$$
: $\hat{G}_{\frac{1}{\mu}\text{-LOO}} = \frac{\pi(\hat{a})}{\mu(\hat{a})} (R(\hat{a}) - Q(\hat{a})) \nabla \log \pi(\hat{a}) + \sum_{a} Q(a) \nabla \pi(a).$

- Choice of β :
 - Low bias: as $\beta(a)$ is close to $1/\mu(a)$ or Q(x, a) close to $Q^{\pi}(x, a)$.
 - <u>Unbiased</u>: as $\beta(a)$ is equal to $1/\mu(a)$
 - Low Variance: as $\beta(a)$ is small
- Bias-Variance tradeoff:

• Choose
$$\beta(\hat{a}) = \min\left(c, \frac{1}{\mu(\hat{a})}\right)$$
 for some constant $c \ge 1$

Distributional Retrace

Extend C51 to multi-step Bellman backup.

• The n-step distributional Bellman target:

$$\sum_{i} q_i(x_{t+n}, a) \delta_{z_i^n}, \text{ with } z_i^n = \sum_{s=t}^{t+n-1} \gamma^{s-t} r_s + \gamma^n z_i$$

• The expectation is:

$$\sum_{s=t}^{t+n-1} \gamma^{s-t} r_s + \gamma^n Q(x_{t+n}, a)$$

Distributional Retrace

• Original Retrace:

$$\Delta Q(x_t, a_t) \stackrel{\text{def}}{=} \sum_{s \ge t} \gamma^{s-t} (c_{t+1} \dots c_s) \delta_s^{\pi} Q$$

Distributional Retrace

• Original Retrace:

$$\Delta Q(x_t, a_t) \stackrel{\text{def}}{=} \sum_{s \ge t} \gamma^{s-t} (c_{t+1} \dots c_s) \delta_s^{\pi} Q$$

• Distributional Retrace:

$$\Delta Q(x_t, a_t) = \sum_{n \ge 1} \sum_{a \in \mathcal{A}} \alpha_{n,a} \Big[\underbrace{\sum_{s=t}^{t+n-1} \gamma^{s-t} r_s + \gamma^n Q(x_{t+n}, a)}_{n-\text{step Bellman backup}} \Big] - Q(x_t, a_t)$$

where $\alpha_{n,a} = (c_{t+1} \dots c_{t+n-1}) (\pi(a|x_{t+n}) - \mathbb{I}\{a = a_{t+n}\}c_{t+n})$

Distributional Retrace

• A mixture of n-step distribution (Retrace target distribution): $\sum_{i=1}^{n} q_i^*(x_t, a_t) \delta_{z_i}, \text{ with } q_i^*(x_t, a_t) = \sum_{n \ge 1}^{n} \sum_{a}^{n} \alpha_{n,a} \sum_{j}^{n} q_j(x_{t+n}, a_{t+n}) h_{z_i}(z_j^n)$

Distributional Retrace

- A mixture of n-step distribution (Retrace target distribution): $\sum_{i=1}^{n} q_i^*(x_t, a_t) \delta_{z_i}, \text{ with } q_i^*(x_t, a_t) = \sum_{n \ge 1}^{n} \sum_{a}^{n} \alpha_{n,a} \sum_{j}^{n} q_j(x_{t+n}, a_{t+n}) h_{z_i}(z_j^n)$
- Update the current probabilities by performing a gradient step on the KL-Loss: $\nabla \text{KL}(q^*(x_t, a_t), q(x_t, a_t)) = -\sum_{i=1}^{n} q_i^*(x_t, a_t) \nabla \log q_i(x_t, a_t)$

Distributional Retrace

- A mixture of n-step distribution (Retrace target distribution): $\sum_{i=1}^{n} q_i^*(x_t, a_t) \delta_{z_i}, \text{ with } q_i^*(x_t, a_t) = \sum_{n \ge 1}^{n} \sum_{a}^{n} \alpha_{n,a} \sum_{j}^{n} q_j(x_{t+n}, a_{t+n}) h_{z_i}(z_j^n)$
- Update the current probabilities by performing a gradient step on the KL-Loss: $\nabla \text{KL}(q^*(x_t, a_t), q(x_t, a_t)) = -\sum_{i=1}^{n} q_i^*(x_t, a_t) \nabla \log q_i(x_t, a_t)$
- Distributional Retrace is a **linear combination** of n-step Bellman backups

Distributional Retrace

Single Step (C51)

Distributional Retrace

Multi Steps Distributional Retrace

Prioritized sequences replay

- Prioritized experience replay adds new transitions to the replay buffer with a constant priority
- Propose a way to add experience to the buffer with no priority, inserting a priority only after the transition has been sampled and used for training.
- Also, instead of sampling transitions, we assign priorities to all (overlapping) sequences of length n.
- When sampling, sequences with an assigned priority are sampled proportionally to that priority.

Architecture

Agent architecture

Action value estimate

Decouple agent training: Action-learning pair

Agent architecture

Thread for action or learning

Agent architecture

Worker for action-learning pair

Architecture

Agent architecture

Architecture

Agent architecture

Experiments

TISLR -> add β -LOO -> add Prioritization -> add distributional

Experiments

Reactor (10+1) means:

- 10 workers for action-learner pair
- 1 worker for shared parameter server (for network)

Experiments

Reactor performances on Atari

ALGORITHM	NORMALIZED	MEAN	ELO	Algorithm	NORMALIZED	MEAN	Elo
	SCORES	RANK			SCORES	RANK	
RANDOM	0.00	11.65	-563	RANDOM	0.00	10.93	-673
HUMAN	1.00	6.82	0	HUMAN	1.00	6.89	0
DQN	0.69	9.05	-172	DQN	0.79	8.65	-167
DDQN	1.11	7.63	-58	DDQN	1.18	7.28	-27
DUEL	1.17	6.35	32	DUEL	1.51	5.19	143
PRIOR	1.13	6.63	13	Prior	1.24	6.11	70
PRIOR. DUEL.	1.15	6.25	40	PRIOR. DUEL.	1.72	5.44	126
A3C LSTM	1.13	6.30	37	ACER ⁶ 500м	1.9	-	-
RAINBOW	1.53	4.18	186	RAINBOW	2.31	3.63	270
REACTOR ND ⁵	1.51	4.98	126	REACTOR ND 5	1.80	4.53	195
REACTOR	1.65	4.58	156	REACTOR	1.87	4.46	196
REACTOR 500M	1.82	3.65	227	REACTOR 500M	2.30	3.47	280

Table 1: Random human starts

Table 2: 30 random no-op starts.

Experiments

Reactor performances on Atari

Rainbow in no-op case is more sample efficiency, But may be overfitting

Algorithm	NORMALIZED	MEAN	Elo	Algorithm	NORMALIZED	MEAN	ELO
	SCORES	RANK			SCORES	RANK	
RANDOM	0.00	11.65	-563	RANDOM	0.00	10.93	-673
HUMAN	1.00	6.82	0	HUMAN	1.00	6.89	0
DQN	0.69	9.05	-172	DQN	0.79	8.65	-167
DDQN	1.11	7.63	-58	DDQN	1.18	7.28	-27
DUEL	1.17	6.35	32	DUEL	1.51	5.19	143
PRIOR	1.13	6.63	13	Prior	1.24	6.11	70
PRIOR. DUEL.	1.15	6.25	40	PRIOR. DUEL.	1.72	5.44	126
A3C LSTM	1.13	6.30	37	ACER ⁶ 500м	1.9	-	-
RAINBOW	1.53	4.18	186	RAINBOW	2.31	3.63	270
Reactor ND 5	1.51	4.98	126	REACTOR ND 5	1.80	4.53	195
REACTOR	1.65	4.58	156	REACTOR	1.87	4.46	196
REACTOR 500M	1.82	3.65	227	Reactor 500m	2.30	3.47	280

Table 1: Random human starts

Table 2: 30 random no-op starts.

Thank you !