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Safe and Efficient Off-Policy Reinforcement Learning

Retrace(λ) is a convergent off-policy multi-step algorithm extending the DQN agent



Safe and Efficient Off-Policy Reinforcement Learning

The Retrace algorithm comes with the theoretical guarantee that in 
finite state and action spaces, repeatedly updating our current 
estimate Q produces a sequence of Q functions which converges to 
Q^π for a fixed π or to Q* if we consider a sequence of policies π 
which become increasingly greedy w.r.t. the Q estimate



Preliminary (Off-policy)
● Learning the state (action) value function for a policy 𝜋:

● You can learn optimal control if it is a greedy policy to the current estimate 
Q(x; a) e.g. Q-learning

● On-policy: learning from data collected by 𝜋
● Off-policy: learning from data collected by 𝜇 ≠ 𝜋
● Off-policy methods have advantages:

○ Sample-efficient (e.g. experience replay)
○ Exploration by 𝜇

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.



Preliminary (Off-policy)
Off-policy Learning 

● Target policy (𝜋) : deterministic (optimal greedy)
● Behavior policy (𝜇) : stochastic (exploratory)
● Assumption of coverage: 𝜋(a|s) > 0 implies 𝜇(a|s) > 0

Ref: Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.
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● Importance sampling: 

Ref: Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.
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Preliminary (Importance Sampling)
Importance Sampling 

● Usage:
○ Wanted: the expected returns (values) under the target policy:
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Preliminary (Importance Sampling)
Importance Sampling 

● Usage:
○ Wanted: the expected returns (values) under the target policy:

 
○ Got: Returns Gt based on the wrong (behavior) policy:

○ Solution: introduce the importance sampling (for discrepancy correction):

The ratio 𝜌(t:T-1) transforms the returns to have the right expected value

Ref: Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.
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Preliminary (Importance Sampling)
Importance Sampling 

● Problem of variances:
○ Example: an episodes has 100 steps and 𝛾 = 0. 

The return from time 0 will then be just G0 = R1

Ref: Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.
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Preliminary (Importance Sampling)
Importance Sampling 

● Problem of variances:
○ Example: an episodes has 100 steps and 𝛾 = 0. 

The return from time 0 will then be just G0 = R1
○ Its importance sampling ratio will be a product of 100 factors:

○ But it is really only necessary to scale by the first factor. The other 99 
factors are irrelevant, but they add enormously to its variance.

Ref: Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.



Preliminary (N-steps Returns)
N-step TD Prediction 

● Monte Carlo Return:

● One Step Return:

● N steps Return:

Ref: Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.



Preliminary (N-steps Returns)
N-step TD Prediction 

● Monte Carlo Return:

● One Step Return:

● N steps Return:

● The natural state-value learning algorithm for using n-step returns

Ref: Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.



Preliminary (λ-steps Returns)
The λ-return 

An alternative way of moving smoothly between 
Monte Carlo and one-step TD methods

Ref: Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.



Preliminary (λ-steps Returns)
The λ-return 

An alternative way of moving smoothly between 
Monte Carlo and one-step TD methods

Ref: Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.



Preliminary (λ-steps Returns)
The λ-return  

● The λ-return could be written as:

● If λ = 1, you get MC return:

● If λ = 0, you get TD(0):

Ref: http://www-anw.cs.umass.edu/~barto/courses/cs687/Chapter%207.pdf
Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.



Preliminary (λ-steps Returns)
The λ-return  

● The λ-return could be written as:

● If λ = 1, you get MC return:

● If λ = 0, you get TD(0):

Questions:

● Can we apply to Q learning?
○ Policy evaluation: 

estimate      from samples collected by 𝜇 
○ Control:

estimate Q* from samples collected by 𝜇
● Possible solution

○ Watkins’s Q(λ) [Watkins 1989] method
○ Cut off traces whenever a non-greedy action 

is taken
○ Converges to Q* under a mild assumption 

(first proved in Retrace paper)

Ref: http://www-anw.cs.umass.edu/~barto/courses/cs687/Chapter%207.pdf
Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.



Preliminary (λ-steps Returns)
Watkins’s Q(λ)

Classic multi-step algorithm for 
off-policy control

This approach is an off-policy 
eligibility trace which updates 
more than one Q-value per step. 

This can result in a significant 
increase in the speed of learning 
at a cost to stability

unproven of convergence until 
Retrace (2016, ~30 years)

Ref: Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.



Safe and Efficient Off-Policy Reinforcement Learning



Retrace

● Proposes a new off-policy multi-step RL method:  Retrace(λ)

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.
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Retrace

● Proposes a new off-policy multi-step RL method:  Retrace(λ)
● Theoretical advantages

○ It converges for any 𝜋, 𝜇 (safe)
○ It makes the best use of samples if 𝜋 and 𝜇 are close to each other (efficient)
○ Its variance is lower than importance sampling

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.
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Retrace

● Proposes a new off-policy multi-step RL method:  Retrace(λ)
● Theoretical advantages

○ It converges for any 𝜋, 𝜇 (safe)
○ It makes the best use of samples if 𝜋 and 𝜇 are close to each other (efficient)
○ Its variance is lower than importance sampling

● Empirical evaluation
○ On Atari 2600, it beats one-step Q-learning (DQN) and the existing multi-step 

methods (Q*(λ), Tree-Backup)

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.
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Retrace

● Proposes a new off-policy multi-step RL method:  Retrace(λ)
● Theoretical advantages

○ It converges for any 𝜋, 𝜇 (safe)
○ It makes the best use of samples if 𝜋 and 𝜇 are close to each other (efficient)
○ Its variance is lower than importance sampling

● Empirical evaluation
○ On Atari 2600, it beats one-step Q-learning (DQN) and the existing multi-step 

methods (Q*(λ), Tree-Backup)
● Proves the convergence of Watkins's Q(λ) for the first time

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

Safe and Efficient Off-Policy Reinforcement Learning



On-policy multi-step methods

● A popular multi-step algorithm for on-policy policy evaluation
●                                     where λ ∈ [0,1] is chosen to balance bias and variance
● Multi-step methods have advantages:

○ Rewards are propagated rapidly
○ Bias introduced by bootstrapping is reduced

Retrace

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.



Off-policy multi-step methods

●
● Can you use     to estimate                  for all s ≤ t?

○ Three methods mentioned in the paper:

Retrace

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.
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Off-policy multi-step methods: 

●

● Pros: Unbiased estimate of
● Cons: Large variance since              is not bounded 

Retrace

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.



Off-policy multi-step methods: 

●

● Pros: Unbiased estimate of
● Cons: Large variance since              is not bounded (not efficient)

Retrace

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

Reweight the trace by the product of IS ratios



Off-policy multi-step methods: 

●
● Pros: Convergent if 𝜋 and 𝜇 are sufficiently close to each other or λ is 

sufficiently small:

● Cons: Not convergent otherwise

Retrace

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.



Off-policy multi-step methods: 

●
● Pros: Convergent if 𝜋 and 𝜇 are sufficiently close to each other or λ is 

sufficiently small:

● Cons: Not convergent otherwise (not safe)

Retrace

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

Cut traces by a constant λ^t



Off-policy multi-step methods: 

●

● Pros: Convergent for any 𝜋 and 𝜇. even if 𝜇 is unknown and/or non-Markov
● Cons:                          decays rapidly when near on-policy 

Retrace

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.



Off-policy multi-step methods: 

●

● Pros: Convergent for any 𝜋 and 𝜇. even if 𝜇 is unknown and/or non-Markov
● Cons:                          decays rapidly when near on-policy (not efficient)

Retrace

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.

Reweight the traces by the 
product of target probabilities



Retrace
General off-policy return-based algorithm

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.



Retrace
General off-policy return-based algorithm

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.



Retrace
General off-policy return-based algorithm

● None of the existing methods is perfect (low variance, safe and efficient)
○ Safe: i.e. convergent for any 𝜋 and 𝜇 (Q(λ))
○ Efficient: i.e. using full returns when on-policy (Tree-Backup)

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.



Retrace
Proposed Solution: Retrace(λ)

Ref: Remi Munos DeepMind, https://project.inria.fr/paiss/files/2018/07/munos-off-policy-dRL.pdf
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Retrace
Proposed Solution: Retrace(λ)

Properties:

○ Low variance: since

○ Safe (off policy): cut the traces when needed

○ Efficient (on policy): keep the traces near on policy. Note that

Ref: Remi Munos DeepMind, https://project.inria.fr/paiss/files/2018/07/munos-off-policy-dRL.pdf



Retrace
Proposed Solution: Retrace(λ)

Ref: Remi Munos DeepMind, https://project.inria.fr/paiss/files/2018/07/munos-off-policy-dRL.pdf



Retrace
Off-policy policy evaluation
Theorem-1: Assume finite state space. Generate trajectories according to behavior 
policy 𝜇. Update all states along trajectories according to

Ref: Remi Munos DeepMind, https://project.inria.fr/paiss/files/2018/07/munos-off-policy-dRL.pdf



Retrace
Off-policy policy evaluation
Theorem-1: Assume finite state space. Generate trajectories according to behavior 
policy 𝜇. Update all states along trajectories according to

Assume all states visited infinitely often. 

Ref: Remi Munos DeepMind, https://project.inria.fr/paiss/files/2018/07/munos-off-policy-dRL.pdf



Retrace
Off-policy policy evaluation
Theorem-1: Assume finite state space. Generate trajectories according to behavior 
policy 𝜇. Update all states along trajectories according to

Assume all states visited infinitely often. 

Sufficient conditions for a safe algorithm (works for any 𝜋 and 𝜇 )

Ref: Remi Munos DeepMind, https://project.inria.fr/paiss/files/2018/07/munos-off-policy-dRL.pdf



Retrace
Tradeoff for trace coefficients 

● Contraction coefficient of the expected operator

○ 𝜂 = 𝛾 when      = 0    (one-step Bellman update)
○ 𝜂 = 0 when      = 1    (full Monte-Carlo rollouts)

● Variance of the estimate (can be infinite for                     case)
○ Large      : uses multi-steps returns, but large variance
○ Small      : low variance, but do not use multi-steps returns

Ref: Remi Munos DeepMind, https://project.inria.fr/paiss/files/2018/07/munos-off-policy-dRL.pdf



Retrace
Retrace(λ) for optimal control
Let (     ) and (     ) sequences of behavior and target policies and:

Ref: Remi Munos DeepMind, https://project.inria.fr/paiss/files/2018/07/munos-off-policy-dRL.pdf



Retrace
Retrace(λ) for optimal control
Let (     ) and (     ) sequences of behavior and target policies and:

Theorem 2

Under previous assumptions 

Assume (      ) are “increasingly greedy” wrt (      )

Then, a.s.,

Ref: Remi Munos DeepMind, https://project.inria.fr/paiss/files/2018/07/munos-off-policy-dRL.pdf



Retrace
Remarks

Ref: Remi Munos DeepMind, https://project.inria.fr/paiss/files/2018/07/munos-off-policy-dRL.pdf



Retrace
Retrace for deep RL
Several actor-critic architectures at DeepMind:

● ACER (Actor-Critic for Experience Replay) [Wang et al., 2017]. Policy gradient. 
Works for continuous actions.

● Reactor (Retrace-actor) [Gruesly et al., 2018]. Use beta-LOO to update policy. 
Use LSTM.

● MPO (Maximum a posteriori Policy Optimization) [Abdolmaleki et al., 2018] 
Soft (KL-regularized) policy improvement.

● IMPALA (IMPortance Weighted Actor-Learner Architecture) [Espeholt et al., 
2018]. Heavily distributed agent. Uses V-trace.

Ref: Remi Munos DeepMind, https://project.inria.fr/paiss/files/2018/07/munos-off-policy-dRL.pdf



Retrace
Evaluation on Atari 2600

● Performance comparison:
○ Inter-algorithm scores are normalized so that 0 and 1 respectively correspond to 

the worst and best scores for a particular game (Roughly, a strictly higher curve 
corresponds to a better algorithm)

○ Retrace(λ) performs best on 30 out of 60 games
Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.



Retrace
Evaluation on Atari 2600: Retrace vs DQN

Games: (Blue: DQN  Red: Retrace)
Asteroids, Defender, Demon Attack, Hero, Krull, River Raid, Space Invaders, Star 
Gunner, Wizard of Wor, Zaxxon

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.



Retrace
Evaluation on Atari 2600

● Sensitivity to the value of λ:
○ Retrace(λ) is robust and consistently outperforms Tree-Backup
○ Q* performs best for small values of λ
○ Note that the Q-learning scores are fixed across different λ

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.



Retrace
Conclusions

● General update rule for off-policy return-based RL
● Conditions under which an algo is safe and efficient
● We recommend to use Retrace:

○ Converges to Q* (finite state/action space, policy 𝜋 is increasingly greed) 
○ Safe: cut the traces when needed
○ Efficient: but only when needed
○ Works for policy evaluation and for control
○ Particularly suited for deep RL

● Extensions:
○ Works in continuous action spaces
○ Can be used in off-policy policy-gradient [Wang et al., 2016]

Ref: slides from Yasuhiro Fujita, Preferred Networks Inc.
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 A fast and sample-efficient Actor-Critic agent for 
Reinforcement Learning (Reactor)

[Contributions] 

● Sample-efficiency: 
Higher than Prioritized Dueling DQN (Wang et al., 2017) and Categorical 
DQN (Bellemare et al., 2017)

● Time-efficiency:
Better run-time performance than A3C (Mnih et al., 2016).



 A fast and sample-efficient Actor-Critic agent for 
Reinforcement Learning (Reactor)

[Contributions] 

● Sample-efficiency: 
Higher than Prioritized Dueling DQN (Wang et al., 2017) and Categorical 
DQN (Bellemare et al., 2017)

● Time-efficiency:
Better run-time performance than A3C (Mnih et al., 2016).

[Reactor (Retrace-Actor)]
Combining the sample-efficiency of off-policy experience replay with the 
time-efficiency of asynchronous algorithms



Reactor
The Reactor is a combination of four novel contributions on top of recent 
improvements to both deep value-based RL and policy-gradient algorithms.

● β-leave-one-out:
Improves the trade-off between variance and bias by using action values as a baseline.

● Distributional Retrace: 
Brings multi-step off-policy updates to the distributional reinforcement learning setting

● Prioritized sequences replay:
Present the lazy initialization for more efficient replay prioritization. 

● Agent Architecture:
Propose an optimized network and parallel training architecture



Reactor
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estimate            of             : 
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Baseline depends on the state



Reactor
β-leave-one-out

● Need a policy gradient algorithm to train the actor policy 𝜋 based on current 
estimate            of             : 

● Simplify the notations (find a way to estimate gradient G):

● Unbiased estimate of G (sampled from behaviour policy 𝜇 with IS ratio):

Unbiased, but high variance, needs reducing!
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β-leave-one-out

● leave-one-out (LOO) estimate of G:
Instead of applying IS, estimate G directly from the return R(a) for the chosen 
action a and current estimate            of       
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action a and current estimate            of       

but may be biased if the estimated               values differ from   
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Reactor
β-leave-one-out

● leave-one-out (LOO) estimate of G:
Instead of applying IS, estimate G directly from the return R(a) for the chosen 
action a and current estimate            of       

● A better bias-variance tradeoff --> β-LOO policy-gradient estimate:

where β = β(µ, π, a) can be a function of both policies, π and µ, and the 
selected action a



Reactor
β-leave-one-out

● Property of β-LOO for given β:

General case: 
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● Property of β-LOO for given β:

When β = 1: 
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Reactor
β-leave-one-out

● Property of β-LOO for given β:

When β = 1/µ: 

● Choice of β:
○ Low bias: as β(a) is close to 1/µ(a)   or                close to              .    
○ Unbiased: as β(a) is equal to 1/µ(a)   
○ Low Variance: as β(a) is small

● Bias-Variance tradeoff: 
○ Choose                                              for some constant c ≥ 1



Reactor
Distributional Retrace
Extend C51 to multi-step Bellman backup.

● The n-step distributional Bellman target:

● The expectation is:



Reactor
Distributional Retrace

● Original Retrace:
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● A mixture of n-step distribution (Retrace target distribution):
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● Update the current probabilities by performing a gradient step on the KL-Loss:



Reactor
Distributional Retrace

● A mixture of n-step distribution (Retrace target distribution):

● Update the current probabilities by performing a gradient step on the KL-Loss:

● Distributional Retrace is a linear combination of n-step Bellman backups



Reactor
Distributional Retrace

Single Step (C51)



Reactor
Distributional Retrace

Multi Steps
Distributional Retrace



Reactor
Prioritized sequences replay

● Prioritized experience replay adds new transitions to the replay buffer with a 
constant priority

● Propose a way to add experience to the buffer with no priority, inserting a 
priority only after the transition has been sampled and used for training. 

● Also, instead of sampling transitions, we assign priorities to all (overlapping) 
sequences of length n. 

● When sampling, sequences with an assigned priority are sampled 
proportionally to that priority.



Architecture

Reactor

Network architectureAgent architecture
Decouple agent training: 
Action-learning pair
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Reactor

Network architectureAgent architecture Worker for action-learning pair



Architecture

Reactor

Network architectureAgent architecture

Instead of stacking 
frame, using RNN



Architecture

Reactor

Network architectureAgent architecture

Gradient block
For stability



Reactor
Experiments

TISLR -> add β-LOO -> add Prioritization -> add distributional



Reactor
Experiments

Reactor (10+1) means:
● 10 workers for action-learner pair
● 1 worker for shared parameter server (for network)



Reactor
Experiments



Reactor
Experiments

Rainbow in no-op case is more sample efficiency,
But may be overfitting



Thank you !


