Off-Policy Learning (Part 2)

Espeholt, Lasse et al. "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures." *ICML* (2018). <u>http://arxiv.org/abs/1802.01561</u>.

Haarnoja, Tuomas et al. "Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor." *ICML* (2018). <u>http://arxiv.org/abs/1801.01290</u>,

Yugdeep Bangar April 9, 2019

Leveraging Off-Policy methods

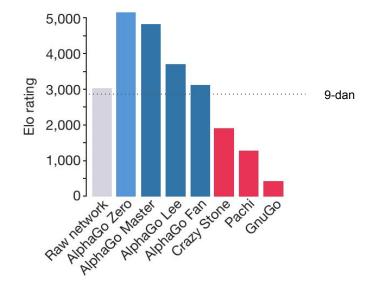
IMPALA - Distributed architecture for greater utilization of GPUs

Soft-Actor Critic - Practical RL for non-simulation environments

IMPALA

(Importance Weighted Actor-Learner Architectures)

Progress in Deep RL for expert agents



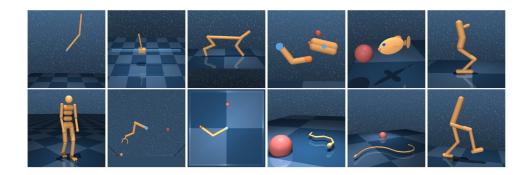
Silver, Schrittwieser, simonyan et al. (2017)

General Agents

Atari

General Agents

dm_contol



General Agents

DMLab-30

Objective

Solve large collection of tasks (e.g. DMLab-30), with

a single reinforcement learning agent (network), and

a single set of parameters

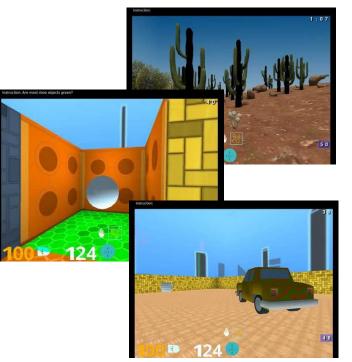
Challenges for a general agent

Data efficiency - (number of tasks) * (hundreds of millions of frames for each task) ?

Stability - multiple hyperparameters?

Scale - bigger networks?

Task interference - interference or positive transfer?



Approach

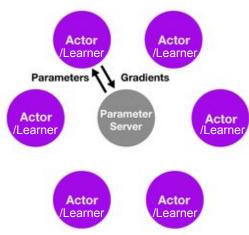
A scalable distributed agent (IMPALA)

Off-policy correction method V-trace

Asynchronous Advantage Actor-Critic (A3C)

- Agent learns a policy and a state value function
- Uses bootstrapped n-step return to reduce variance over REINFORCE with a baseline
- Distributed experience collection

- Adding more actor/learners leads to stale gradients
- Not GPU friendly

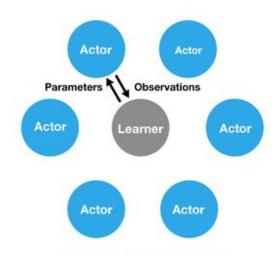


IMPALA - Single Learner

Centralized learner(s) and distributed actors

Actors receive parameters but send observations

Centralized learner can parallelize as much of the forward and backward passes as possible



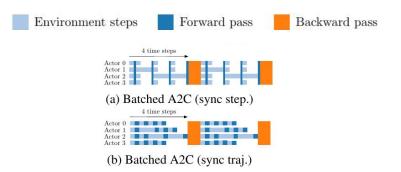
Update timeline

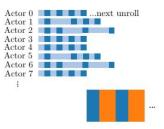
Batched A2C

- Rendering time variance
- Low GPU utilisation

IMPALA - decoupled backward pass

- Acting decoupled from learning
- Actor parameters can lag by several updates





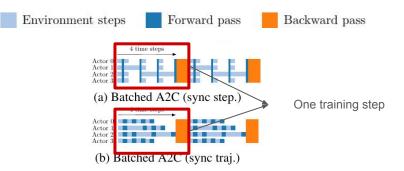
Update timeline

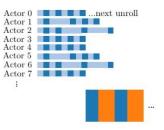
Batched A2C

- Rendering time variance
- Low GPU utilisation

IMPALA - decoupled backward pass

- Acting decoupled from learning
- Actor parameters can lag by several updates





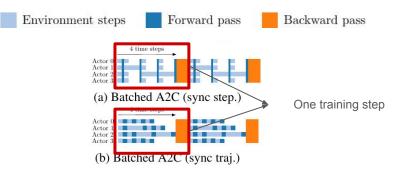
Update timeline

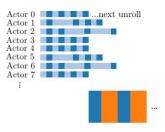
Batched A2C

- Rendering time variance
- Low GPU utilisation

IMPALA - decoupled backward pass

- Acting decoupled from learning
- Actor parameters can lag by several updates





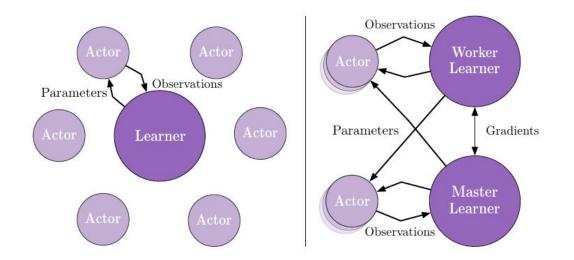
Easier to deal with stale experiences (using off-policy learning) than stale gradients

Actor-critic setup

- Learner off-policy π
- Baseline function V^{π}
- Local policy μ

GPU-accelerated learner

Distributed actors



Problem: policy-lag between the actors and learner

V-trace

Principled off-policy advantage actor critic called V-Trace

$$v_s \stackrel{\text{def}}{=} V(x_s) + \sum_{t=s}^{s+n-1} \gamma^{t-s} \Big(\prod_{i=s}^{t-1} c_i\Big) \underbrace{\rho_t \big(r_t + \gamma V(x_{t+1}) - V(x_t)\big)}_{\delta_t V}$$

where $\rho_i \stackrel{\text{def}}{=} \min \left(\bar{\rho}, \frac{\pi(a_i|x_i)}{\mu(a_i|x_i)}\right)$ and $c_i \stackrel{\text{def}}{=} \min \left(\bar{c}, \frac{\pi(a_i|x_i)}{\mu(a_i|x_i)}\right)$

 ho_i : which value function μ or π

 c_i : speed of convergence

Weights are truncated (at most 1) to reduce variance

V-trace

Principled off-policy advantage actor critic called V-Trace

$$v_s \stackrel{\text{def}}{=} V(x_s) + \sum_{t=s}^{s+n-1} \gamma^{t-s} \left(\prod_{i=s}^{t-1} c_i\right) \underbrace{\rho_t \left(r_t + \gamma V(x_{t+1}) - V(x_t)\right)}_{\delta_t V}$$

where $\rho_i \stackrel{\text{def}}{=} \min\left(\bar{\rho}, \frac{\pi(a_i|x_i)}{\mu(a_i|x_i)}\right)$ and $c_i \stackrel{\text{def}}{=} \min\left(\bar{c}, \frac{\pi(a_i|x_i)}{\mu(a_i|x_i)}\right)$

 ho_i : which value function μ or π

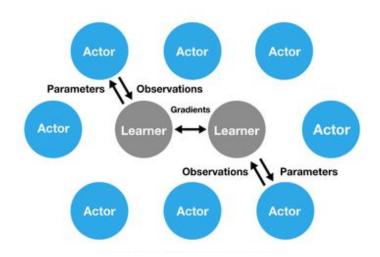
 c_i : speed of convergence

Weights are truncated (at most 1) to reduce variance

IMPALA - multiple learners

One or more GPU (or TPU) learners

Many CPU actors



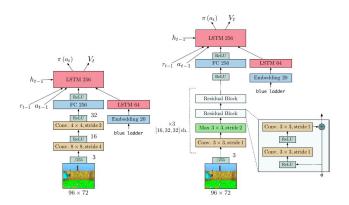
Evaluation

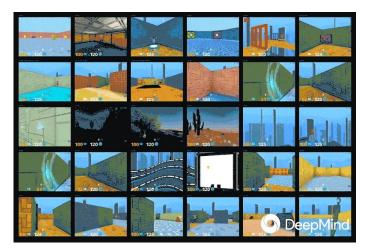
Two networks

- Small CNN-LSTM
- Deep ResNet CNN-LSTM

Two test suites

- Atari-57
- DMLab-30 language, memory, foraging, navigation





Throughput

Architecture	CPUs	GPUs¹	FPS ²	
Single-Machine			Task 1	Task 2
A3C 32 workers	64	0	6.5K	9K
Batched A2C (sync step)	48	0	9K	5K
Batched A2C (sync step)	48	1	13K	5.5K
Batched A2C (sync traj.)	48	0	16K	17.5K
Batched A2C (dyn. batch)	48	1	16K	13K
IMPALA 48 actors	48	0	17K	20.5K
IMPALA (dyn. batch) 48 actors ³	48	1	21K	24K
Distributed				
A3C	200	0	46K	50K
IMPALA	150	1	80K	
IMPALA (optimised)	375	1	200K	
IMPALA (optimised) batch 128	500	1	250K	

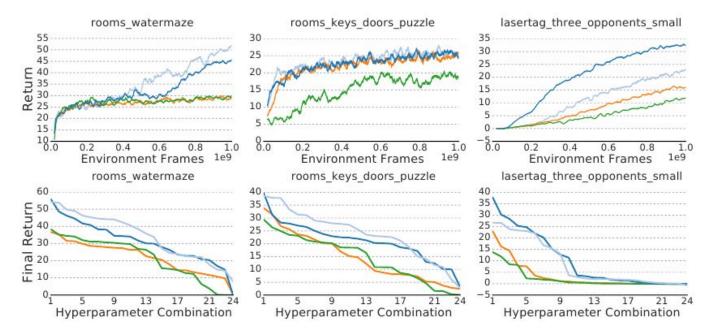
 $\frac{1}{1}$ Nvidia P100 2 In frames/sec (4 times the agent steps due to action repeat). 3 Limited by amount of rendering possible on a single machine.

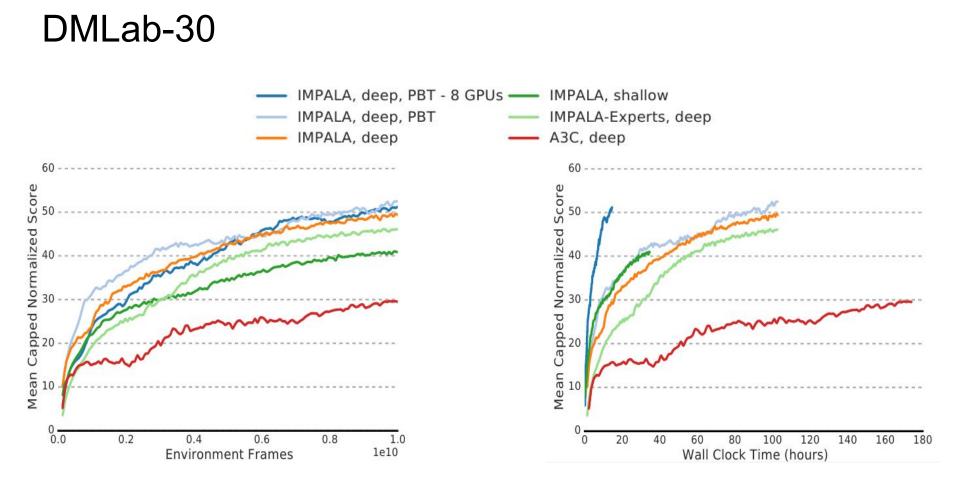
Throughput

Architecture	CPUs	GPUs¹	FPS ²	
Single-Machine			Task 1	Task 2
A3C 32 workers	64	0	6.5K	9K
atched A2C (sync step)	48	0	9K	5K
Batched A2C (sync step)	48	1	13K	5.5K
Batched A2C (sync traj.)	48	0	16K	17.5K
Batched A2C (dyn. batch)	48	1	16K	13K
MPALA 48 actors	48	0	17K	20.5K
MPALA (dyn. batch) 48 actors ³	48	1	21K	24K
Distributed				
A3C	200	0	46K	50K
MPALA	150	1	80K	
MPALA (optimised)	375	1	200K	
MPALA (optimised) batch 128	500	1	250K	

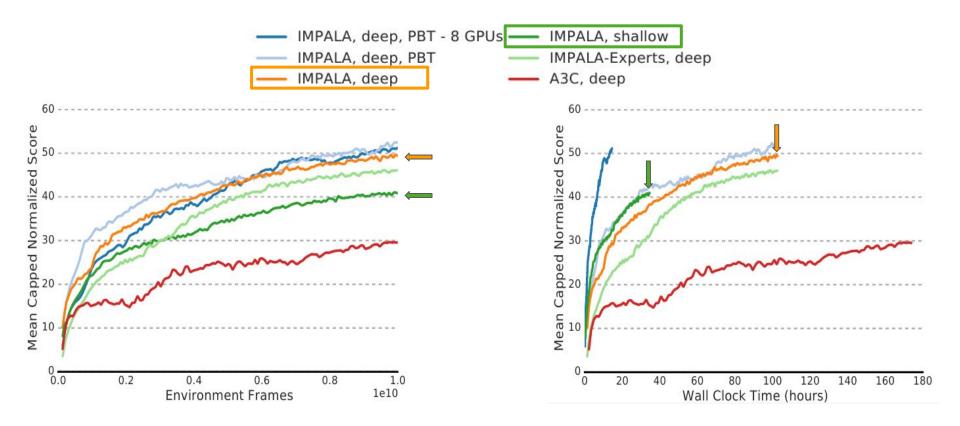
 $\frac{1}{1}$ Nvidia P100 2 In frames/sec (4 times the agent steps due to action repeat). 3 Limited by amount of rendering possible on a single machine.

Performance and stability

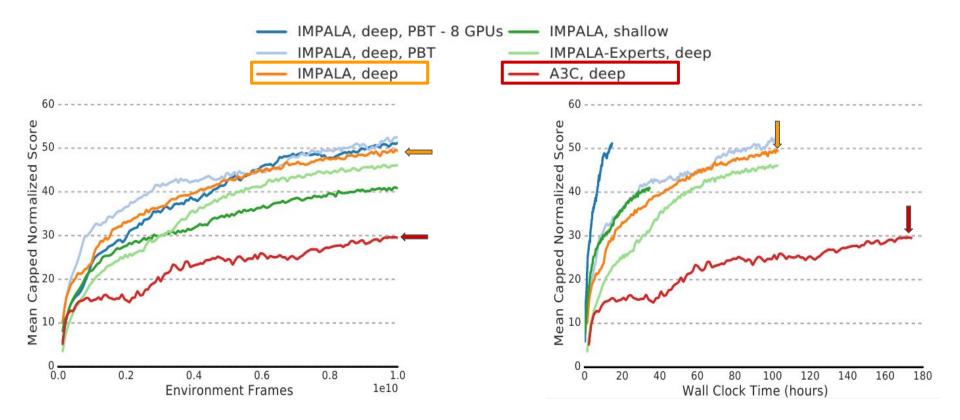




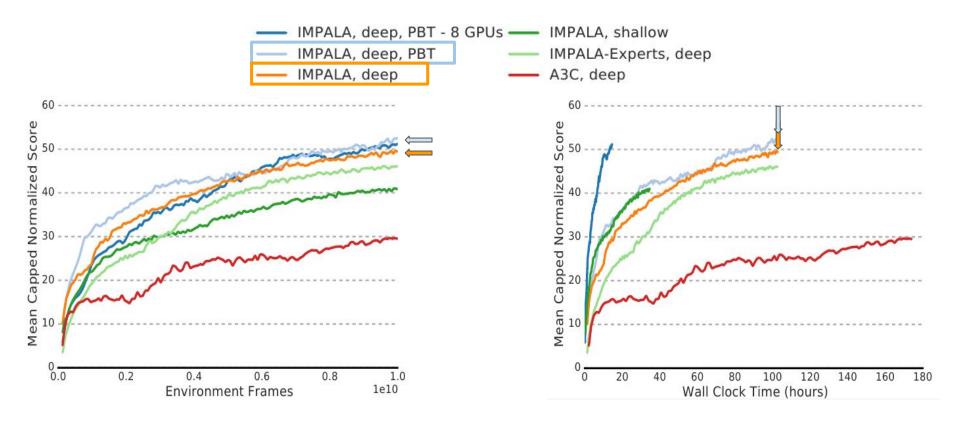
Shallow vs Deep networks

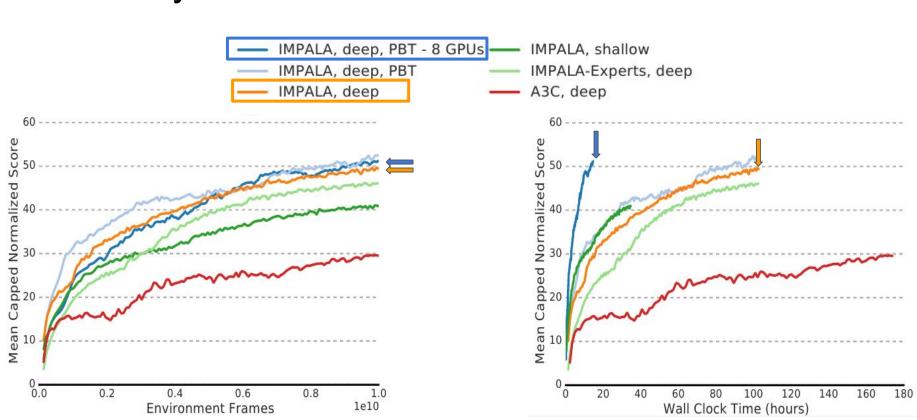


IMPALA vs A3C



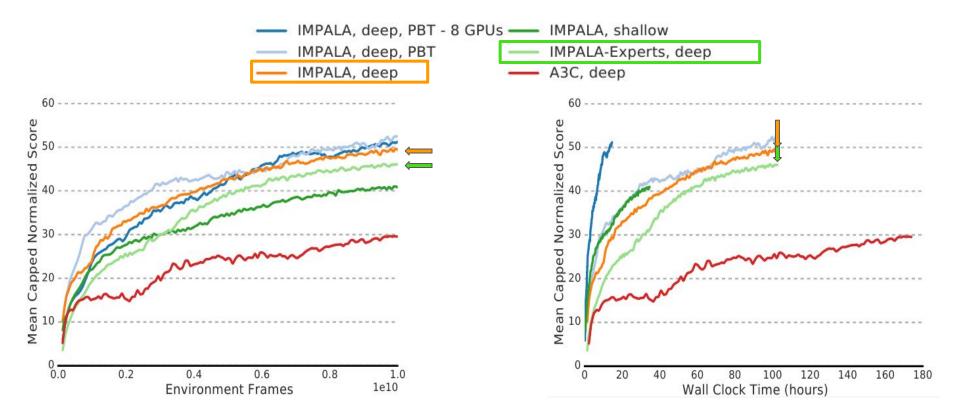
Integrating PBT





Scalability

Multi-agent vs experts

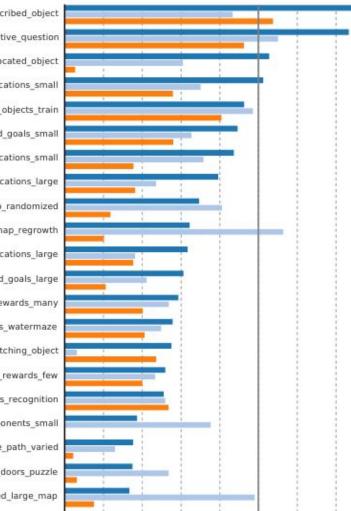


IMPALA, deep, PBT

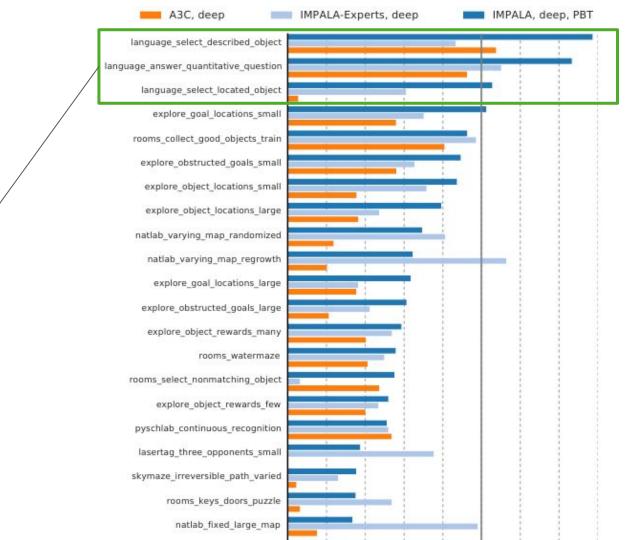
IMPALA-Experts, deep

A3C, deep

Level Breakdown

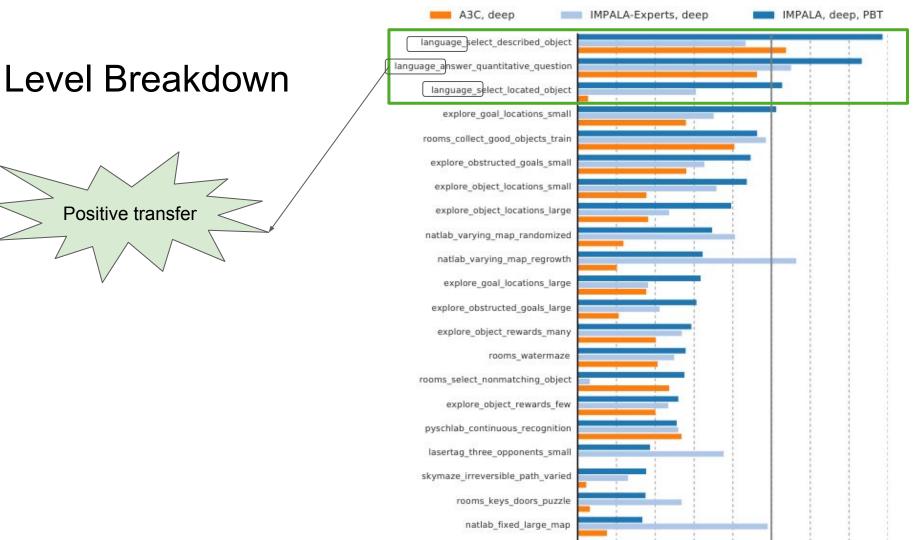


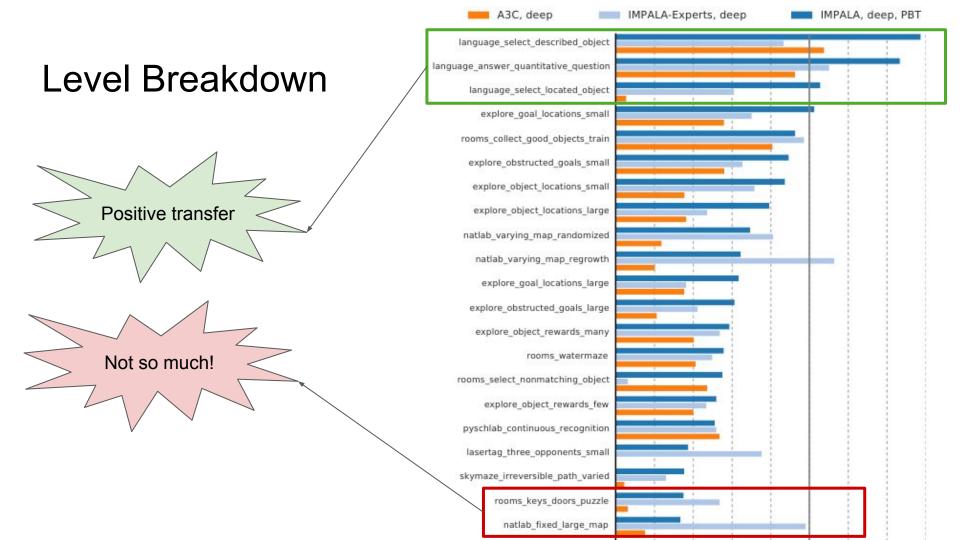
language_select_described_object language_answer_quantitative_question language select located object explore goal locations small rooms_collect_good_objects_train explore_obstructed_goals_small explore_object_locations_small explore_object_locations_large natlab_varying_map_randomized natlab_varying_map_regrowth explore_goal_locations_large explore_obstructed_goals_large explore_object_rewards_many rooms_watermaze rooms_select_nonmatching_object explore_object_rewards_few pyschlab_continuous_recognition lasertag_three_opponents_small skymaze_irreversible_path_varied rooms_keys_doors_puzzle natlab fixed large map



Level Breakdown

Positive transfer





Takeaways

- Efficient and scalable Deep-RL agent
 - Efficient on single machine
 - Scales to 1000s of machines
- New off-policy correction (V-trace)
- New level-suite **DMLab-30**
- Strong multi-task performance with some positive transfer
- Deeper networks perform better
- Effective across wide range of RL problems

TensorFlow Implementation: <u>https://github.com/deepmind/scalable_agent</u> * Star

DeepMind Lab: <u>https://github.com/deepmind/lab</u>

★ Star 5.728

616

DeepMind blog: <u>https://deepmind.com/blog/impala-scalable-distributed-deeprl-dmlab-30/</u>

Paper: https://arxiv.org/abs/1802.01561

Lectures

- ICLR 2018 (Koray Kavukcuoglu): https://www.youtube.com/watch?v=N5oZIO8pE40
- ICML 2018 (Lasse Espeholt): https://www.facebook.com/icml.imls/videos/session-1-reinforcement-learning/432150780632776/
- Fields Institute 2018 (Volodymyr Mnih): https://www.fields.utoronto.ca/video-archive/static/2018/01/2509-18003/mergedvideo.ogv

Soft Actor Critic

Desired features for real world applications

Sample efficiency

No sensitive hyperparameters

Off-policy learning

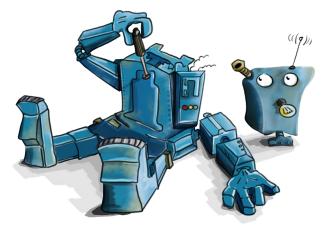
www.arl.army.mil

Desired features for real world experimentation

Asynchronous sampling

Stop/resume training

Action smoothing



Simultaneously maximizing reward and entropy (MaxEnt)

$$J(\pi) = \sum_{t=0}^{T} \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim \rho_{\pi}} \left[r(\mathbf{s}_t, \mathbf{a}_t) + \alpha \mathcal{H}(\pi(\cdot | \mathbf{s}_t)) \right].$$

Simultaneously maximizing reward and entropy (MaxEnt)

$$J(\pi) = \sum_{t=0}^{T} \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim \rho_{\pi}} \left[r(\mathbf{s}_t, \mathbf{a}_t) + \alpha \mathcal{H}(\pi(\cdot | \mathbf{s}_t)) \right].$$

Simultaneously maximizing reward and entropy

$$J(\pi) = \sum_{t=0}^{T} \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim \rho_{\pi}} \left[r(\mathbf{s}_t, \mathbf{a}_t) + \alpha \mathcal{H}(\pi(\cdot | \mathbf{s}_t)) \right].$$

How to optimize it?

Soft Q-learning?

Soft Q-learning methods?

- Intractable in continuous domains
- Continuous solutions rely on biased approximations

Soft Q-learning (SQL)?

- Intractable in continuous domains
- Continuous solutions rely on biased approximations

Proposed solution: Soft actor-critic (SAC)

Soft Q-learning (SQL)?

- Intractable in continuous domains
- Continuous solutions rely on biased approximations

Proposed solution: Soft actor-critic (SAC)

- Learns the soft Q-function of policy and the policy jointly.
- Similar to DDPG, but with a stochastic policy
- Easy to implement, sample efficient, and stable

Soft Policy Iteration

1. Soft policy evaluation: Fix policy, apply soft Bellman backup until converges:

$$\mathcal{T}^{\pi}Q(\mathbf{s}_{t}, \mathbf{a}_{t}) \triangleq r(\mathbf{s}_{t}, \mathbf{a}_{t}) + \gamma \mathbb{E}_{\mathbf{s}_{t+1} \sim p} \left[V(\mathbf{s}_{t+1}) \right],$$
$$V(\mathbf{s}_{t}) = \mathbb{E}_{\mathbf{a}_{t} \sim \pi} \left[Q(\mathbf{s}_{t}, \mathbf{a}_{t}) - \log \pi(\mathbf{a}_{t} | \mathbf{s}_{t}) \right]$$

This converges to Q^{π} .

2. Soft policy improvement: Update the policy through information projection $\pi_{\text{new}} = \arg\min_{\pi' \in \Pi} D_{\text{KL}} \left(\pi'(\cdot | \mathbf{s}_t) \| \frac{\exp\left(Q^{\pi_{\text{old}}}(\mathbf{s}_t, \cdot)\right)}{Z^{\pi_{\text{old}}}(\mathbf{s}_t)} \right)$

From the new policy, we have $Q^{\pi_{\text{new}}}(\mathbf{s}_t, \mathbf{a}_t) \geq Q^{\pi_{\text{old}}}(\mathbf{s}_t, \mathbf{a}_t)$

Soft Policy Iteration to Soft Actor-Critic

Use function approximators

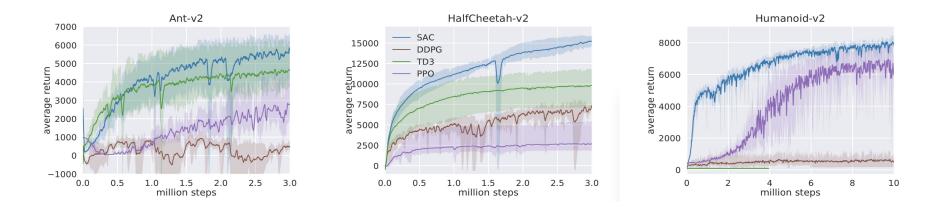
Alternate optimization between Q-function (V parameterized by ψ) and policy network (π parameterized by ϕ) with SGD

Additional network - Soft Q-function (Q parameterized by θ)

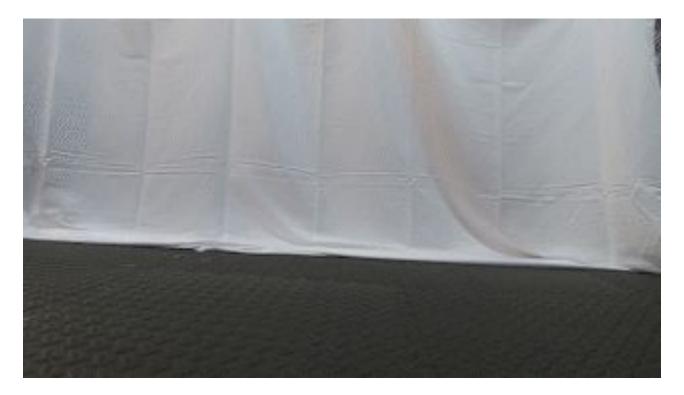
Soft Actor Critic

Initialize parameter vectors ψ , $\overline{\psi}$, θ , ϕ . for each iteration do for each environment step do $\mathbf{a}_t \sim \pi_\phi(\mathbf{a}_t | \mathbf{s}_t)$ $\mathbf{s}_{t+1} \sim p(\mathbf{s}_{t+1}|\mathbf{s}_t, \mathbf{a}_t)$ $\mathcal{D} \leftarrow \mathcal{D} \cup \{(\mathbf{s}_t, \mathbf{a}_t, r(\mathbf{s}_t, \mathbf{a}_t), \mathbf{s}_{t+1})\}$ end for for each gradient step do $\psi \leftarrow \psi - \lambda_V \hat{\nabla}_{\psi} J_V(\psi)$ $\theta_i \leftarrow \theta_i - \lambda_Q \hat{\nabla}_{\theta_i} J_Q(\theta_i) \text{ for } i \in \{1, 2\}$ $\phi \leftarrow \phi - \lambda_{\pi} \hat{\nabla}_{\phi} J_{\pi}(\phi)$ $\bar{\psi} \leftarrow \tau \psi + (1-\tau)\bar{\psi}$ end for end for

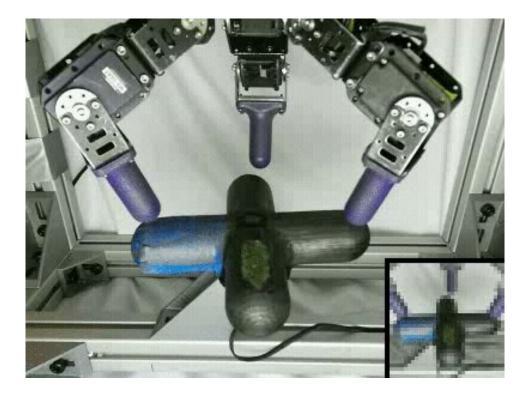
Simulated benchmarks



Real World experiments



Real World experiments



Resources

Implementations

- <u>https://github.com/rail-berkeley/softlearning</u> (by authors) * star 261
- https://github.com/vitchyr/rlkit * star 690
- <u>https://github.com/openai/spinningup</u> * star 2,707
- https://github.com/higgsfield/RL-Adventure-2 * star 1,663

Blogs/Tutorials

- https://spinningup.openai.com/en/latest/algorithms/sac.html
- <u>https://bair.berkeley.edu/blog/2018/12/14/sac/</u>

Talk - Tuomas Haarnoja (NIPS 2017) https://vimeo.com/252185258

Questions?