Meta-Learning

Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks Chelsea Finn, Pieter Abbeel, Sergey Levine. ICML 2017

RL2: Fast Reinforcement Learning via Slow Reinforcement Learning Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, Pieter Abbeel. ICLR 2017

Presented by Chen Jinfan

[Meta-Learning is to tell] agents to learn how to learn new tasks faster by reusing previous experience, rather than considering each new task in isolation.

-Chelsea Finn

Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

Intuition

- Maximising the 'sensitivity' of the loss function of tasks w.r.t parameters
- By pre-training parameters for all tasks
- Sensitivity is high if small local changes lead to large improvement for tasks

Figure 1. Diagram of our model-agnostic meta-learning algorithm (MAML), which optimizes for a representation θ that can quickly adapt to new tasks.

Algorithm

- The parameters after gradient decent updates on task i $\theta'_i = \theta \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta}).$
- Our objective function (for a distribution of tasks) is

$$\min_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i}) = \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})})$$

• So one gradient update w.r.t.our objective is

$$\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$$

Regression Experiment

- Sinusoid Function with amplitude in [0.1, 0.5] and phase in [0, π]
- A model of 2 layers each with size 40 and ReLuactivation
- Compared with ground truth and model pre-trained on same metadata

Regression Experiment

Regression Experiment

RL Experiment

- Continuous control as proposed in Duan et al. 2016
- 2 hidden layers of size 100 with ReLu activation
- TRPO as metaoptimizer and vanilla policy gradient as actual update
- Compared with ground truth and model pre-trained on same metadata

RL Experiment

RL Experiment

More videos on: https://sites.google.com/view/maml

Wrap up MAML

- Model-agnostic: compatible with any gradient trained model
- Flexible: take advantage of any amount of data with any number of gradient steps
- Simple: No additional parameters needed
- Disadvantage: need to compute higher order derivatives during meta-training

RL2

RNN

General Architecture

Implementation

- RL problems seen as MDPs or POMDPs
- RNN implemented by GRU network
- First-order TRPO as training algorithm
- GAE to further reduce variance

Multi-Armed Bandits

Multi-Armed Bandits

Setup	Random	Gittins	TS	OTS	UCB1	ϵ -Greedy	Greedy	$\mathbf{R}\mathbf{L}^2$
	~ ^	0.0			~ -			a -
n = 10, k = 5	5.0	6.6	5.7	6.5	6.7	6.6	6.6	6.7
n = 10, k = 10	5.0	6.6	5.5	6.2	6.7	6.6	6.6	6.7
n = 10, k = 50	5.1	6.5	5.2	5.5	6.6	6.5	6.5	6.8
n = 100, k = 5	49.9	78.3	74.7	77.9	78.0	75.4	74.8	78.7
n = 100, k = 10	49.9	82.8	76.7	81.4	82.4	77.4	77.1	83.5
n = 100, k = 50	49.8	85.2	64.5	67.7	84.3	78.3	78.0	84.9
n = 500, k = 5	249.8	405.8	402.0	406.7	405.8	388.2	380.6	401.6
n = 500, k = 10	249.0	437.8	429.5	438.9	437.1	408.0	395.0	432.5
n = 500, k = 50	249.6	463.7	427.2	437.6	457.6	413.6	402.8	438.9

Tabular MDPs

Tabular MDPs

Setup	Random	PSRL	OPSRL	UCRL2	BEB	ϵ -Greedy	Greedy	\mathbf{RL}^2
n = 10	100.1	138.1	144.1	146.6	150.2	132.8	134.8	156.2
n = 25	250.2	408.8	425.2	424.1	427.8	377.3	368.8	445.7
n = 50	499.7	904.4	930.7	918.9	917.8	823.3	769.3	936.1
n = 75	749.9	1417.1	1449.2	1427.6	1422.6	1293.9	1172.9	1428.8
n = 100	999.4	1939.5	1973.9	1942.1	1935.1	1778.2	1578.5	1913.7

(a) Sample observation

(b) Layout of the 5×5 maze in (a)

(c) Layout of a 9×9 maze

(a) Average length of successful trajectories			(b)	%Success	(c) %Improved		
Episode	Small	Large	Episode	Small	Large	Small	Large
1	52.4 ± 1.3	180.1 ± 6.0	1	99.3%	97.1%	91.7%	71.4%
2	39.1 ± 0.9	151.8 ± 5.9	2	99.6%	96.7%		
3	42.6 ± 1.0	169.3 ± 6.3	3	99.7%	95.8%		
4	43.5 ± 1.1	162.3 ± 6.4	4	99.4%	95.6%		
5	43.9 ± 1.1	169.3 ± 6.5	5	99.6%	96.1%		

(a) Good behavior, 1st (b) Good behavior, 2nd episode

(c) Bad behavior, 1st (d) Bad behavior, 2nd episode episode

Wrap up RL2

- Fast reinforcement learning via slow reinforcement learning using RNN states
- Comparable to theoretical optimum in small problem setting
- Scalable to complicated vision tasks
- Potential improvement for RL algorithm and network architecture

Summary

Learning How to Learn

Thanks for listening

References

- Paper && Quotes:
 - Chelsea Finn, Pieter Abbeel, Sergey Levine: Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks arXiv:1703.03400
 - Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, Pieter Abbeel: RL2 Fast Reinforcement Learning arXiv:1611.02779
 - Yan Duan, Xi Chen, Rein Houthooft, John Schulman, Pieter Abbeel: Benchmarking Deep Reinforcement Learning for Continuous Control arXiv:1604.06778
 - https://bair.berkeley.edu/blog/2017/07/18/learning-to-learn/
- Pictures:
 - <u>https://paperswithcode.com/task/multi-armed-bandits</u>
 - <u>https://medium.com/@curiousily/solving-an-mdp-with-q-learning-from-scratch-deep-reinforcement-learning-for-hackers-part-1-45d1d360c120</u>
 - <u>https://www.coursera.org/learn/learning-how-to-learn</u>