
Blockchains Cannot Rely on Honesty
Submission 43

ABSTRACT
This work proposes a novel blockchain with incentive scheme such

that following the protocol is guaranteed to be the optimal strategy.

Our blockchain takes the form of a directed acyclic graph, resulting

in improvements with respect to throughput and speed.

More importantly, for our blockchain to function, it is not ex-

pected that the miners conform to some presupposed protocol in

the interest of the system’s operability. Instead, our system works

if miners act selfishly, trying to get the maximum possible rewards,

with no consideration for the overall health of the blockchain.

To the best of our knowledge, our design is the first blockchain

to tolerate a majority of rational instead of a majority of honest
miners.

ACM Reference Format:
Submission 43. 2019. Blockchains Cannot Rely on Honesty. In Proceedings
of ACM AFT (AFT’19). ACM, New York, NY, USA, 6 pages. https://doi.org/

nn.nnnn/nnnnnnn.nnnnnnn

1 INTRODUCTION
A decade ago, Satoshi Nakamoto presented his now famous Bitcoin

protocol [10]. Nakamoto assembled some stimulating techniques

in an attractive package, such that the result was more than just

the sum of its parts.

The Bitcoin blockchain promises to order and store transactions

meticulously, despite being anarchistic, “without a trusted party".

Literally anybody can participate, as long as “honest nodes col-

lectively control more CPU power than any cooperating group of

attacker nodes." [10]

In Section 6 of his seminal paper, Nakamoto argues that it is

rational to be honest thanks to block rewards and fees. However,

it turns out that Nakamoto was overly optimistic, and rational

does not imply honest. If a miner has a fast network and/or a

significant fraction of the hashing power, the miner may be better

off by not being honest, holding blocks back instead of immediately

broadcasting them to the network [2].

If the material costs and payoffs of mining are low, one can argue

that the majority of miners will want to remain honest. After all,

if too many miners stop conforming to the protocol, the system

will break down. However, the costs and payoffs of participation

vary over time, and majority of miners remaining altruistic is never

guaranteed. Strategies outperforming the protocol may or may not

be discovered for different blockchain incentive designs. However,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

AFT’19, October 2019, Zurich
© 2019 Association for Computing Machinery.

ACM ISBN xxx-x-xxxx-xxxx-x/YY/MM. . . $XX.00

https://doi.org/nn.nnnn/nnnnnnn.nnnnnnn

as long as it is not proven that no such sophisticated strategy exists,

the system remains in jeopardy.

Our Contribution. We propose a blockchain design with an incen-

tive scheme guaranteeing that deviating from the protocol strictly

reduces the amount and overall share of rewards. Our approach is

to ensure that creating a fork will always be detrimental to all par-

ties involved. Our design allows blocks to reference more than one

previous block; in other words, the blocks form a directed acyclic

graph (DAG). We prove that miners creating a new block have an

incentive to always reference all previously unreferenced blocks.

Hence, all blocks are recorded in the blockchain and no blocks are

discarded.

2 MODEL AND PRELIMINARIES
2.1 Rounds
Communication between players (miners) is divided into rounds.

Each round consists of each player: 1) computing (mining) new

blocks, 2) sending newly found blocks to all other players, 3) re-

ceiving all messages before the next round commences. The length

of one round can be thought of as a network delay.

2.2 Players
To avoid confusion in how we build on previous work, we stick

to the usual terminology of honest players and an adversary. The
players that conform to the protocol are called honest. A coalition of

all parties that considers deviating from the protocol is controlled by

an adversary. We gradually introduce new elements, and eventually

show that by deviating from the protocol, the adversary reduces its

share and amount of rewards. Hence, rational becomes synonymous

with honest.

The adversary constitutes a minority as described in Section 2.5,

otherwise the adversary can take over the blockchain by simply

ignoring all actions by honest players.

The adversary is also more powerful than honest players. First

of all, we consider the adversary as a single entity. The adversary

does not have to send messages to itself, so the mine/send/receive

order within a round does not apply to the adversary. Moreover,

the adversary gets to see all messages sent by honest players in

round r before deciding its strategy of round r . After seeing the

honest messages, the adversary is not allowed to create new blocks

again in this round. Moreover, the adversary controls the order that

messages arrive to each player.

2.3 Blocks
Blocks are a type of message that the players exchange, and a

basic unit of the blockchain. Formally, a block B is a tuple B =
⟨TB ,RB , c,η⟩, where:

• TB is the content of the block

• RB is a set of references (hashes) to previously existing

blocks, i.e. RB = {h(B1), . . . ,h(Bm)}
• c is an address of the player that created the block

https://doi.org/nn.nnnn/nnnnnnn.nnnnnnn
https://doi.org/nn.nnnn/nnnnnnn.nnnnnnn
https://doi.org/nn.nnnn/nnnnnnn.nnnnnnn

AFT’19, October 2019, Zurich Submission 43

• η is the proof-of-work nonce, i.e., a number such that for a

hash function h and difficulty parameter D, h(B) < D holds.

The content of the block TB depends on the application. In gen-

eral, TB contains some information that the block creator wishes

to record in the blockchain for all participants to see. We consider

blockchain properties independently of the content TB . The content

TB is briefly discussed in Section 5.2.

The creator of B holds the private key for the address c . The
creator can later use the key to withdraw the reward for creating B.
The amount of reward is automatically determined by the protocol,

and at the core of our contribution in Section 5.

2.4 DAG
RB includes at least one hash of a previous block, which might be

the hash of a special genesis block ⟨∅, ∅,⊥, 0⟩. The hash function is

pre-image resistant, i.e. it is infeasible to find a message given its

hash. If a block B′ includes a reference to another block B, B′ must

include h(B), and hence has to be created after B.
A directed cycle of blocks is impossible, as the block which was

created earliest in such a cycle cannot include a hash to the other

blocks that were created later. Consequently, the blocks always

form a directed acyclic graph (DAG) with the genesis block as the

only root (block without any parent) of this DAG.

2.5 Mining
Creating a new block is achieved by varying η to find a hash value

that is smaller than the difficulty parameterD, i.e.,h(⟨TB ,RB , c,η⟩) <
D. Creating blocks in this way is called mining. Blocks are called
honest if mined by an honest player, or adversarial if mined by the

adversary.

By varying D, the protocol designer can set the probability of

mining a block with a single hashing query arbitrarily. The difficulty

D could also change during the execution of the protocol to adjust

the rate at which blocks are created. For simplicity and clarity we

leave the details of changing D to future work, and assume D to be

constant.

The computational power of the adversary is such that the ex-

pected number of blocks the adversary can mine in one round is

equal to β . The adversary does not experience a delay in commu-

nication with itself, so the adversary might mine multiple blocks

forming a chain in one round. The honest players control the com-

putational power to mine α blocks in expectation in one round.

Because of the delay in communication, the effective computa-

tional power of the honest players corresponds to the probability

α ′ ≈ αe−α [5] that in a given round exactly one honest player

mines a block.

Throughout the paper we assume:
1

(1) The honest players have more mining power: α ′ ≥ β(1 + ϵ)
for a constant ϵ > 0.

(2) The difficulty D is set such that the expected number of

blocks mined within one round is less than one: α + β < 1.

1
The following assumptions are made in order to satisfy the prerequisites of Lemma

2, which links our work to traditional blockchains. Intuitively, Lemma 2 states that

a traditional blockchain works with respect to the most basic requirement. If one

believes a blockchain to function in this basic way under some other assumptions,

those assumptions can be used instead, and our results would apply in the same way.

3 THE PROTOCOL
The protocol by which the honest players construct the block DAG

is quite natural:

• Every round, attempt to mine new blocks.

• Reference in RB all unreferenced blocks observed.

• Broadcast newly mined blocks to all other players immedi-

ately.

• Newly received blocks are also sent to all players.
2

4 THE BLOCK DAG
Each player stores the DAG formed by all blocks known to the

player. For each blockB, one of the referenced blocksBi is the parent
Bi = P(B), and B is the child of P(B). The parent is automatically

determined based on the DAG structure. The parent-child edges

induce the parent tree from the DAG.

The players use Algorithm 4 (proposed by [15]) to select a chain

of blocks going from the genesis block to a leaf in the parent tree.

The selected chain represents the current state of the blockchain; it

is called the main chain. The main chain of a player changes from

round to round. Players adopt main chains that may be different

from each other, depending on the blocks observed.

Algorithm 1:Main chain selection algorithm.

Input: a block tree T
Output: block B - the end of the selected chain

1 B ← genesis // start at the genesis block.

2 while B has a child in T do
3 B ← heaviest child of B

// continue with the child of B

// with most nodes in its subtree.

4 return B

Let past(B) denote the set of blocks reachable by references from
B and the DAG formed by those blocks. The protocol dictates refer-

encing all blocks that otherwise would not be included in past(B).
Then, by creating a new block B, the creator communicates only

being aware of blocks in past(B). Based on past(B), we determine

P(B) as the end of the main chain (Algorithm) of the DAG of the

player when creating a new block B [6].

Definition 1. A block B is the child of the block returned by
Algorithm 4 in the parent tree of past(B).

Lemma 2, proven by [5], encapsulates the notion that a blockchain

(represented by the parent tree in our description) functions prop-

erly with respect to a basic requirement. Intuitively, it states that

from any point in time, the longer one waits, the more probable it

becomes that some honest block mined after that point in time is

contained in a main chain of each honest player. The probability of

the contrary decreases exponentially with time.

2
One may wonder why this is needed, since honest players send their blocks to all

players anyway. However, the adversary may decide not to do that, and this statement

helps that adversarial blocks are seen by all players at most one round after the

first honest player has seen the block. This technique is generally known as reliable

broadcast.

Blockchains Cannot Rely on Honesty AFT’19, October 2019, Zurich

Lemma 2 (Fresh Block Lemma). For all r ,∆ ∈ N, with probability
1 − e−Ω(∆), there exists a block mined by an honest player on or after
round r that is contained in the main chain of each honest player on
and after round r + ∆.

Lemma 2 can be proved with respect to other chain selection

rules, for instance picking the child with the longest chain instead

of the heaviest child as in Algorithm 4. Our work can be applied

equally well using such chain selection rules.

If the protocol designer has control over some factor x , probabil-

ity of the form e−Ω(x) can be set arbitrarily lowwith relatively small

variation of x . Probability of the form e−Ω(x) is called negligible.
3

4.1 Block Order
We will now explain, how all blocks reachable by references will be

ordered, following the algorithm of [6]. According to the resulting

order, the contents of blocks that fall outside of the main chain can

be processed, as if all blocks formed one chain.

Definition 3. Each player processes blocks in the order Order(B),
where B is the last block of the main chain.

Algorithm 2: Order(B): a total order of blocks in past(B).
Input: a block B
Output: a total order of all blocks in past(B)

1 On the first invocation, visited(·) is initialized to false for each
block.

2 if visited(B) then return ∅
3 visited(B) ← true // Blocks are visited depth-first.

4 if B = genesis then return (B)
5 O ← Order(P(B))

// Get the order of P(B) recursively.

6 for i = 1, . . . ,m do
7 O ← O .append(Order(Bi))

// Append newly included blocks.

8 O ← O .append(B) // Append B at the end.

9 return O

Note the order of executing the FOR loop in line 6 of the Al-

gorithm 2 has to be the same for each player for them to receive

consistent orders of blocks. Algorithm 2 processes Bi ’s in the order

of inclusion in RB , but the order could be alphabetical or induced

by the chain selection rule.

Based on lines numbered 5-8 we can state Corollary 4.

Corollary 4. Order(B) extends Order(P(B)) by appending all
newly reachable blocks not included yet in Order(P(B)).

Lemma 5. Any announced block becomes referenced by a block
contained in the main chain of any honest player after ∆ rounds with
probability 1 − e−Ω(∆).

Proof. Suppose a block B is announced at round r . By Lemma 2,

some honest block A mined in the following ∆ rounds is contained

in the main chains adopted by honest players after round r + ∆.
Since A is honest, B ∈ past(A). □
3
Probabilities of this form are often disregarded completely in proofs [13].

Corollary 6. All announced blocks are eventually referenced in
the main chains of honest players.

4.2 Stale Blocks
We now introduce a mechanism to distinguish blocks that were

announced within a reasonable number of rounds from blocks that

where withheld by the miner for an extended period of time.

We call P i (B) the ith ancestor of B and B is a descendant of P i (B).4

By LCA(B1,B2) we denote the block that is an ancestor of B1 and

an ancestor of B2, such that none of its children are simultaneously

an ancestor of B1 and an ancestor of B2.

For blocks A and B, D(A,B) is the distance between A and B in

the parent tree, i.e. D(A, P(A)) = 1, D(A, P(P(A))) = 2, etc.

Algorithm 3 computes a sets of blocks SB , and S̄B = past(B) \SB .
If A ∈ SB we call A stale.

We introduce a constantp chosen by the protocol designer. Given
a main chain ending with block B including another block A, we
judge A by the distance one needs to backtrack along the main

chain to find an ancestor of A. If the distance exceeds p, A is stale.

Algorithm 3: Compute SB .

Input: a block B
Output: a set SB

1 if B = genesis then return ∅
2 S ← SP (B) // Copy SP (B) for blocks in past(P(B)).

3 for A ∈ past(B) \ past(P(B)) do
4 X = LCA(A,B)
5 Age = D(X ,B) // age = distance from B to LCA.

6 if Age > p then
7 S = S ∪ {A}

// A is stale iff age is bigger than p

8 return S

Corollary 7. If A ∈ past(P(B)) then A ∈ SB ⇐⇒ A ∈ SP (B).

Proof. Line 5 in Algorithm 3 sets SB as the same as SP (B), while
the following FOR loop adds only blocks A < past(P(B)). □

Theorem 8 shows that the probability of honest blocks being

labeled stale is negligible.

Theorem 8 (Honest Blocks are Not Stale). Let B be an honest
block mined on round r . With probability 1 − e−Ω(p), after round
r + O(p) each honest player H adopts a main chain ending with a
block BH such that B ∈ S̄BH .

Proof. Let ∆ = ⌊
p

2(α+β)(1+ϵ) −
1

2
⌋ = O(p). By Lemma 2, with

probability 1 − e−Ω(∆), on and after round r , honest players have
adopted main chains containing a block C mined between rounds

r −∆ and r (or the genesis block if r −∆ < 1). HenceC is an ancestor

of B. By Lemma 2, let D be the honest block mined between rounds

r + 1 and r + ∆ + 1 that honest players adopted in the main chain

on and after round r + ∆ + 1, again with probability 1 − e−Ω(∆). D
is honest and mined after round r , so B ∈ past(D).
4P i (B) is only defined on the parents in the tree, and not with the other blocks that

might be referenced by B in RB .

AFT’19, October 2019, Zurich Submission 43

Since C was mined on or after round r − ∆, and D was mined

on or before round r + ∆ + 1, D(C,D) is at most the number Y of

blocks mined between rounds r − ∆ and r + ∆ + 1. By the Chernoff

bound:

e−
ϵ2(2(α+β)∆)

3 ≥ Pr[Y ≥ (1 + ϵ)(α + β)(2∆ + 1)] ≥ Pr[Y ≥ p]

Since C is an ancestor of D, C is an ancestor of LCA(B,D), and
D(C,D) ≥ D(LCA(B,D),D). By Algorithm 3:

D(C,D) < p =⇒ B ∈ S̄D .

By union bound, the probability that suchC and D exist and that

B ∈ S̄D is at least equal

1 − 2e−Ω(∆) − e−
ϵ2(2(α+β)∆)

3 = 1 − e−Ω(p).

By Corollary 7 and induction, with probability 1 − e−Ω(p), after
round r +∆ all honest players adopt only chains ending with blocks

X such that B ∈ S̄X . □

5 THE REWARD SCHEME
Consider coupling the presented protocol with a reward mechanism

R0
granting some flat amount b of reward to all non-stale blocks.

R0
is a special case of the reward scheme defined in Definition 11.

Note thatR0
achieves the same fairness guarantee as the Fruitchains

protocol to be discussed in Section 6.3 — honest blocks are incorpo-

rated into the blockchain as non-stale, while withholding a block

for too long makes it lose its reward potential. Both protocols rely

on the honest majority of participants to guarantee this fairness.

The Fruitchains protocol relies critically on merged-mining [11]

(also called 2-for-1 POW [3]) fruits and blocks. While fruits are

mined for the rewards, blocks are supposed to be mined entirely

voluntarily with negligible extra cost. R0
avoids this complication.

Granting flat amount of reward for each non-stale block leaves

a lot of room for deviation that goes unpunished. In the case of the

Fruitchains protocol, mining blocks does not contribute rewards in

any way. Hence, any deviation with respect to mining blocks (which

decide the order of contents) is free of any cost for the adversary.

In the context of cryptocurrency transactions, a rational adversary

should always attempt to double-spend.

In the case of R0
, the adversary can refrain from referencing

some recent blocks, and suffer no penalty. However, attempting to

manipulate the order of older blocks would render the adversary’s

new block stale, and hence penalize.

5.1 Penalizing Deviations
Central to our design is the approach to treating forks i.e. blocks that

“compete" by referencing the same parent block but not each other.

Typically, blockchain schemes specify that one of the blocks even-

tually ’loses’ and the creator misses out on some rewards, hence

discouraging the competition. However, there are ways of manipu-

lating this process to one’s advantage, and the uncertainty of which

block will win the competition introduces unneeded incentives. We

penalize all parties involved in creating a fork.

Definition 9 introduces the conflict set. From the perspective of

a main chain ending with a block A, the conflict set of a non-stale
block B contains all non-stale blocks X that are not reachable by

references from B, and B is not reachable by references from X .

Definition 9 (Conflict Set). For blocks A and B where B ∈ S̄A,

XA(B) = {X : X ∈ past(A) ∧X ∈ S̄A ∧X < past(B) ∧ B < past(X)}.

Lemma 10. Let x ≥ p and B be a block. The probability that any
honest player adopts a main chain ending with a block A such that
|XA(B)| > xp is e−Ω(x).

Proof. Let r be the roundBwas announced. Let Pi , i ∈ {1, . . . , 2p}
(respectively Fi , i ∈ {1, . . . ,p}), be an honest block mined between

rounds r − xi
4
−1 and r − x (i−1)

4
−1 (resp. r + x (i−1)

4
+1 and r + xi

4
+1)

contained in the main chain of every honest player on and after

round r +
xp
4
+ 1; by Lemma 2 and union bound such blocks exist

with probability 1 − e−Ω(x).
Since F1 is honest, B ∈ past(F1). By Algorithm 3, if Pp < past(B),

then B ∈ SF1
and XA(B) remains undefined for honest players.

Otherwise, assume Pp ∈ past(B).
Let Z be a block such that Z < past(B) ∧ B < past(Z). Since

Z < past(B), Z < past(Pp). By Algorithm 3, either P2p ∈ past(Z), or
Z becomes stale in the main chains of honest players from round

r −
x (p−1)

4
− 1 on. Assume P2p ∈ past(Z), and hence Z is mined on

or after round r −
2xp

4
− 1.

Since B < past(Z), F1 < past(Z). Then, either Z is announced

before round r +
xp
4
+ 1, or by Algorithm 3, Z becomes stale in the

main chains of honest players afterwards. Assume Z is announced

before round r +
xp
4
+ 1.

Therefore, Z ∈ XA(B) implies that Z is mined between rounds

r −
2xp

4
− 1 and r +

xp
4
+ 1. Let Y be the number of blocks mined

between these rounds. By Chernoff bound:

Pr[Y ≥ xp] ≤ Pr[Y ≥
4

3

(α + β)(
3xp

4

+ 2)] = e−Ω(x).

Note the bound is appliable to anymain chain of an honest player

before round r +
xp
4
+ 1 as well. The claim follows from the union

bound. □

Definition 11 (Rewards). Rc,b is a rewards scheme whereby
given a block A, each block B ∈ past(A) is granted Rc,bA (B) amount
of reward:

R
c,b
A (B) =

{
0, if B ∈ SA or D(A, LCA(A,B)) ≤ 2p.

b − c |XA(B)|, otherwise.

We write Rc for Rc,b if b is clear from context, or just R if c is
clear from context.

Lemma 12. IfD(P(A), LCA(P(A),B)) > 2p thenXA(B) = XP (A)(B)

Proof. From Definition 9, XP (A)(B) ⊆ XA(B). Suppose for con-

tradiction ∃Y : Y ∈ XA(B) \ XP (A)(B). From Definition 9, B ∈ S̄A,

therefore B ∈ past(P i (A)). Hence, P i (A) < past(Y). Since Y <
past(P(A)), D(A, LCA(A,Y)) > p and Y ∈ SA, a contradiction. □

Corollary 13 (Rewards Are Final).

∀B ∈ past(A) : RP (A)(B) , 0 =⇒ RA(B) = RP (A)(B).

Proof. R
c,b
A (B) is non-zero only if D(A, LCA(A,B)) > 2p. The

corollary follows from Lemmas 7 and 12 and induction. □

Blockchains Cannot Rely on Honesty AFT’19, October 2019, Zurich

Corollary 14 (Rewards Are Non-Negative). Let B be a block.
The probability that any honest player adopts a main chain ending

with a block A such that Rc,bA (B) < 0 is e−Ω(
b
cp).

Proof. Follows directly from Lemma 10. □

Theorem 15. Any deviation from the protocol reduces the adver-
sary’s rewards and its proportion of rewards Rc,bA (B) with probability

1 − e−Ω(p) − e
−Ω(bcp).

Proof. With probability 1 − e−Ω(p) honest blocks are not-stale

(Theorem 8). With probability 1 − e
−Ω(bcp)

block rewards are final

and non-negative (Corollaries 13 and 14). Hence, eventual value of

Rc,b (B) depends only on |XA(B)|.
Referencing all blocks and immediately announcing new blocks

B minimizes |XA(B)|. Note Y ∈ XA(Z) ⇐⇒ Z ∈ XA(Y), so
by increasing |XA(B)| the adversary can only reduce the rewards

of honest players (by c |XA(B)|) if the adversary forfeits the same

amount. Since the adversary constitutes a minority, its proportion

of rewards decreases as well. □

Theorem 15 shows that minimizing the conflict set of mined

blocks is always in the interest of the miner. Notice that following

the protocol is the unique strategy minimizing the conflict set of

created blocks. There are negligibly improbable scenarios in which a

player can gain by deviating, and committing to a strategy different

from the protocol carries definite costs. Hence, the constants can be

set so that the unique Nash-equilibrium of the game is all players

conforming to the protocol.

However, if the adversary wishes to spend resources solely to

influence the behaviour of rational miners, there might always be

ways such as bribery (see Section 6.4).

5.2 Block Content and Transaction Fees
Depending on the use of the blockchain, miners can be rewarded

for including contents in their blocks in various ways. Typically, a

transaction fee is awarded to only one miner that first includes the

transaction in a block. As a result, the order of processing blocks

is important for determining who collects the fees, as it indicates

which block is the first. Problematic incentives are introduced with

respect to manipulating the order.

Any particular fee-sharing scheme cannot be enforced, because

the fee might be disguised as a regular transaction output paid to

the miner directly. This can benefit both the transaction issuer and

the miner, incentivizing the behavior.
5

To be incentive compatible, it is not necessary that the fees are

spread proportionally. What we want is that the miners never have

an incentive to omit a reference to another block. As all blocks are

assumed to eventually be included in the blockchain, it is enough to

ensure that sufficiently small changes of the linearized order of the

blocks have no effect on the miner rewards. This can be achieved

by allowing multiple blocks to claim the same inclusion of contents,

and having the fee be shared among the including blocks equally.

5
If we disregard this vulnerability, the same fee-sharing approach as employed by the

Fruitchains protocol can be applied to our work.

In other words, any player who wishes to include a transaction

can do so within a certain window, without an effect on their incen-

tives to reference other blocks. Crucially, sending the fee directly to

a miner as a transaction output removes the incentive for other min-

ers to include the transaction, as well as the incentive to manipulate

the place of the including block in the order.

The point of such a change would be to separate transaction in-

clusion from referencing blocks. Transaction inclusion is a complex

game in itself, similar to the game studied by [6].

6 RELATEDWORK
Themodel of round-based communication in the setting of blockchain

was introduced in [3]. This paper formalizes and studies the security

of Bitcoin.

6.1 Selfish Mining
Selfish mining is a branch of research studying a type of strate-

gies increasing the proportion of rewards obtained by players in a

Bitcoin-like system. Selfish mining exemplifies concerns stemming

from the lack of proven incentive compatibility. Selfish mining was

first described formally in [2], although the idea had been discussed

earlier [9]. Selfish mining strategies have been improved [14] and

generalized [12].

6.2 DAG
The way we order all blocks for the purpose of processing them

was introduced in [6]. The authors consider an incentive scheme

to accompany this modification. Their design relies on altruism,

as referring extra blocks has no benefit, other than to creators of

referred blocks. Hence, rational miners would never refer them,

possibly degenerating the DAG to a blockchain similar to Bitcoin’s.

Some other shortcomings are discussed by the authors.

The authors of [7] contribute an experimental implementation of

the directed acyclic graph structure and ordering of [6], in particular

its advantages with respect to the throughput.

6.3 Fruitchains
Fruitchains [13] is probably the closest work to ours, its discussion

deserves its own section. Fruitchains is a protocol that gives a

guarantee that miners are rewarded somewhat proportionally to

their mining power. The objective might seem similar to ours, but

there are fundamental differences. To achieve fairness, similarly to

existing solutions, the Fruitchains protocol requires that majority

of miners are honest. In other words, in order to contribute to the

common good of the system, players must put in altruistic work.

In contrast, we strive for a protocol such that any miner simply

trying to maximize their share or amount of rewards will inadver-

tently conform to the protocol.

The Fruitchains protocol rewards mining of “fruits", which are a

kind of blocks that do not contribute to the security of the system.

The Fruitchains protocol relies onmerged-mining
6
also called 2-for-

1 PoW in [3]. In addition to fruits, the miners can mine “normal"

blocks (containing the fruits) for a minimal extra effort and no

6
One of the first mentions of merged-mining as used today is [11], although the general

idea was mentioned as early as [4].

AFT’19, October 2019, Zurich Submission 43

reward. The functioning and security of the system depends on

majority of miners mining normals blocks according to the protocol.

Miners are asked to reference the fruits of other miners, benefit-

ing others but not themselves, similarly to [inclusive]. The proba-

bility of not doing so having any effect is negligible, since majority

of the miners are still assumed to reference said fruits.

The resulting system-wide cooperation guarantees fairness, in-

evitably removing many game-theoretic aspects from the resulting

game. In particular, misbehaviour does not result in any punishment.

It is common to analyze blockchain designs with respect to the ex-

pected cost of a double-spend attempt. In the case of Fruitchains,

while the probability of double-spends being successful is similar to

previous designs, the cost of attempting to double-spend is nullified.

As a result, any miner might attempt to double-spend constantly at

no cost, which we view as a serious jeopardy to the system.

In the absence of punishments, we also argue that not conform-

ing to the protocol is often simpler. Since transaction fees are shared

between miners, including transactions might be seen as pointless

altogether. Mining only fruits with dummy, zero-fee transactions,

while not including the fruits of others (or not mining for blocks al-

together), would relieve the miner of a vast majority of the network

communication.

Another game-theoretic issue of the Fruitchains protocol is that

while it prescribes sharing of the transaction fees, miners might ask

transaction issuers to disguise the fee as an additional transaction

output, locking it to a specific miner, potentially benefiting both

parties and disrupting the protocol.

In contrast to Fruitchains protocol, our approach is to employ

purely economic forces, clearly incentivizing desired behaviour

while making sure that deviations are punished.

6.4 Bribery
Recently, there have been works highlighting the problems of

bribery, e.g. [1, 8]. A bribing attacker might temporarily convince

some otherwise honest players (either using threats or incentives)

to join the adversary. Consequently, the adversary might gain more

than half of the computational power, taking over the system tem-

porarily.

Such bribery might be completely external to the reward scheme

itself, for example the adversary might program a smart contract

(even in another blockchain) that provably offers rewards to miners

that show they deviate from the protocol. Hence, no permissionless

blockchain can be safe against this type of attack.

7 CONCLUSIONS
Mining is a risky business, as block rewards must pay for hardware

investments, energy and other operation costs. At the time of this

writing, the Bitcoinmining turnover alone is worth almost $5 billion

per year, which is without a doubt a serious market. Miners in this

market are professionals, who will make sure that their investments

pay off. Yet, many believe that a majority of miners will follow

the protocol altruistically, in the best interests of everybody, the

“greater good". We argue that assuming altruistic miners is not

strong enough to be a foundation for a reliable protocol.

In this work, we introduced a blockchain incentive scheme such

that following the protocol is guaranteed to be the optimal strategy.

We showed that our design is tolerant to miners acting rationally,

trying to get the maximum possible rewards, with no consideration

for the overall health of the blockchain.

To the best of our knowledge, our design is the first to provably

allow for rational mining. Nakamoto [10] needed “honest nodes

collectively control more CPU power than any cooperating group

of attacker nodes". With our design it is possible to turn the word

honest into the word rational.

REFERENCES
[1] Joseph Bonneau. 2016. Why Buy When You Can Rent? - Bribery Attacks on

Bitcoin-Style Consensus. In Financial Cryptography and Data Security - FC 2016
International Workshops, BITCOIN, VOTING, and WAHC, Christ Church, Barbados,
February 26, 2016, Revised Selected Papers. 19–26.

[2] Ittay Eyal and Emin Gün Sirer. 2014. Majority Is Not Enough: Bitcoin Mining Is

Vulnerable. In 18th International Conference on Financial Cryptography and Data
Security. 436–454.

[3] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The bitcoin backbone

protocol: Analysis and applications. In 34th Annual International Conference on
the Theory and Applications of Cryptographic Techniques. 281–310.

[4] Markus Jakobsson and Ari Juels. 1999. Proofs of work and bread pudding proto-

cols. In Secure Information Networks. 258–272.
[5] Aggelos Kiayias and Georgios Panagiotakos. 2017. On Trees, Chains and Fast

Transactions in the Blockchain. In 5th International Conference on Cryptology
and Information Security in Latin America.

[6] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. 2015. Inclusive Block

Chain Protocols. In 19th International Conference on Financial Cryptography and
Data Security. 528–547.

[7] Chenxing Li, Peilun Li, Wei Xu, Fan Long, and Andrew Chi-Chih Yao. 2018.

Scaling Nakamoto Consensus to Thousands of Transactions per Second. arXiv
preprint arXiv:1805.03870 (2018).

[8] Patrick McCorry, Alexander Hicks, and Sarah Meiklejohn. 2018. Smart Contracts

for Bribing Miners. In Financial Cryptography and Data Security - FC 2018 Inter-
national Workshops, BITCOIN, VOTING, and WTSC, Nieuwpoort, Curaçao, March
2, 2018, Revised Selected Papers. 3–18.

[9] mtgox. 2010. https://bitcointalk.org/index.php?topic=2227.msg29606#msg29606.

[10] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. http:

//bitcoin.org/bitcoin.pdf. (2008).

[11] Satoshi Nakamoto. 2010. https://bitcointalk.org/index.php?topic=1790.

msg28696#msg28696.

[12] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. 2016. Stubborn

mining: Generalizing selfish mining and combining with an eclipse attack. In 1st
IEEE European Symposium on Security and Privacy.

[13] Rafael Pass and Elaine Shi. 2017. Fruitchains: A Fair Blockchain. In Symposium
on Principles of Distributed Computing. 315–324.

[14] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. 2016. Optimal self-

ish mining strategies in Bitcoin. In 20th International Conference on Financial
Cryptography and Data Security. 515–532.

[15] Yonatan Sompolinsky and Aviv Zohar. 2015. Secure high-rate transaction pro-

cessing in Bitcoin. In 19th International Conference on Financial Cryptography
and Data Security. 507–527.

https://bitcointalk.org/index.php?topic=2227.msg29606#msg29606
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://bitcointalk.org/index.php?topic=1790.msg28696#msg28696
https://bitcointalk.org/index.php?topic=1790.msg28696#msg28696

	Abstract
	1 Introduction
	2 Model and Preliminaries
	2.1 Rounds
	2.2 Players
	2.3 Blocks
	2.4 DAG
	2.5 Mining

	3 The Protocol
	4 The Block DAG
	4.1 Block Order
	4.2 Stale Blocks

	5 The Reward Scheme
	5.1 Penalizing Deviations
	5.2 Block Content and Transaction Fees

	6 Related Work
	6.1 Selfish Mining
	6.2 DAG
	6.3 Fruitchains
	6.4 Bribery

	7 Conclusions
	References

