
Chapter 1

Introduction to Distributed
Systems

Why Distributed Systems?

Today’s computing and information systems are inherently distributed. Many
companies are operating on a global scale, with thousands or even millions of
machines on all the continents. Data is stored in various data centers, computing
tasks are performed on multiple machines. At the other end of the spectrum,
also your mobile phone is a distributed system. Not only does it probably share
some of your data with the cloud, the phone itself contains multiple processing
and storage units. Your phone is a complicated distributed architecture.

Moreover, computers have come a long way. In the early 1970s, microchips
featured a clock rate of roughly 1 MHz. Ten years later, in the early 1980s,
you could get a computer with a clock rate of roughly 10 MHz. In the early
1990s, clock speed was around 100 MHz. In the early 2000s, the first 1 GHz
processor was shipped to customers. In 2002 one could already buy a processor
with a clock rate between 3 and 4 GHz. If you buy a new computer today,
chances are that the clock rate is still between 3 and 4 GHz, since clock rates
basically stopped increasing. Clock speed can apparently not go beyond a few
GHz without running into physical issues such as overheating. Since 2003,
computing architectures are mostly developing by the multi-core revolution.
Computers are becoming more parallel, concurrent, and distributed.

Finally, data is more reliably stored on multiple geographically distributed
machines. This way, the data can withstand regional disasters such as floods,
fire, meteorites, or electromagnetic pulses, for instance triggered by solar super-
storms. In addition, geographically distributed data is also safer from human
attacks. Recently we learned that computer hardware is pretty insecure. Scary
attacks exist, with scary names such as spectre, meltdown, rowhammer, memory
deduplication. There are even attacks on hardware that is considered secure! If
we store our data on multiple machines, it may be safe assuming hackers can-
not attack all machines concurrently. Moreover, data and software replication
also help availability, as computer systems do not need to be shut down for
maintenance.

In summary, today almost all computer systems are distributed, for different
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2 CHAPTER 1. INTRODUCTION TO DISTRIBUTED SYSTEMS

reasons:

• Geography: Large organizations and companies are inherently geograph-
ically distributed, and a computer system needs to deal with this issue
anyway.

• Parallelism: To speed up computation, we employ multicore processors or
computing clusters.

• Reliability: Data is replicated on different machines to prevent data loss.

• Availability: Data is replicated on different machines to allow for access
at any time, without bottlenecks, minimizing latency.

Even though distributed systems have many benefits, such as increased stor-
age or computational power, they also introduce challenging coordination prob-
lems. Some say that going from one computer to two is a bit like having a
second child. When you have one child and all cookies are gone from the cookie
jar, you know who did it!

Coordination problems are so prevalent, they come with various flavors and
names. Probably there is a term for every letter of the alphabet: agreement,
blockchain, consensus, consistency, distributed ledger, event sourcing, fault-
tolerance, etc.

Coordination problems will happen quite often in a distributed system. Even
though every single node (node is a general term for anything that computes,
e.g. a computer, a multiprocessor core, a network switch, etc.) of a distributed
system will only fail once every few years, with millions of nodes, you can expect
a failure every minute. On the bright side, one may hope that a distributed
system may have enough redundancy to tolerate node failures and continue to
work correctly.

Distributed Systems Overview

We introduce some basic techniques to building distributed systems, with a
focus on fault-tolerance. We will study different protocols and algorithms that
allow for fault-tolerant operation, and we will discuss practical systems that
implement these techniques.

We will see different models (and even more combinations of models) that
can be studied. We will not discuss them in detail now, but simply define them
when we use them. Towards the end of the course a general picture should
emerge, hopefully!

The focus is on protocols and systems that matter in practice. In other
words, in this course, we do not discuss concepts because they are fun, but
because they are practically relevant.

Nevertheless, have fun!

Chapter Notes

Many good textbooks have been written on the subject, e.g. [AW04, CGR11,
CDKB11, Lyn96, Mul93, Ray13, TS01]. James Aspnes has written an excellent
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freely available script on distributed systems [Asp14]. Similarly to our course,
these texts focus on large-scale distributed systems, and hence there is some
overlap with our course. There are also some excellent textbooks focusing on
small-scale multicore systems, e.g. [HS08].

Some chapters of this course have been developed in collaboration with (for-
mer) PhD students, see chapter notes for details. Many colleagues and stu-
dents have helped to improve exercises and script. Thanks go to Georg Bach-
meier, Pascal Bissig, Philipp Brandes, Christian Decker, Manuel Eichelberger,
Klaus-Tycho Förster, Arthur Gervais, Pankaj Khanchandani, Barbara Keller,
Rik Melis, Darya Melnyk, Tejaswi Nadahalli, Peter Robinson, Jakub Sliwinski,
Selma Steinhoff, Julian Steger, David Stolz, and Saravanan Vijayakumaran.
Jinchuan Chen, Qiang Lin, Yunzhi Xue, and Qing Zhu translated this text
into Simplified Chinese, and along the way found improvements to the English
version as well. Thanks!
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Chapter 2

Fault-Tolerance & Paxos

Notes:

• Bring Laptop for Paxos code

• After the 10’ intro, explain what nodes, message passing (not shared mem-
ory), single client and single server, acks, multiple servers, multiple clients,
+1 vs. *2, state replication with master-slave replication (serializer), two-
phase protocols, discussion thereof, what is issue with locks (what if no-
body can get it) -¿ tickets. In the last 2’ the two properties of tickets

• after the break the naive ticket protocol, trying to get problems (many are
on the table, including malicious clients, missing acks, which command will
be excecuted, and at some point also main problem, executing the wrong
command (prepare this point well). Then (maybe 25’ left) Paxos with
projector, explain the basic protocol, then going into proof (prepare this
point well). They want to discuss how to have more than 1 command...
we do not really go into liveness problem, no time for that. All in all,
the lecture is good, but not spectacular. They seem to know a few things
already from DB, e.g. Quorum.

How do you create a fault-tolerant distributed system? In this chapter we
start out with simple questions, and, step by step, improve our solutions until
we arrive at a system that works even under adverse circumstances, Paxos.

2.1 Client/Server

Definition 2.1 (node). We call a single actor in the system node. In a com-
puter network the computers are the nodes, in the classical client-server model
both the server and the client are nodes, and so on. If not stated otherwise, the
total number of nodes in the system is n.

Model 2.2 (message passing). In the message passing model we study dis-
tributed systems that consist of a set of nodes. Each node can perform local
computations, and can send messages to every other node.
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2.1. CLIENT/SERVER 5

Remarks:

• We start with two nodes, the smallest number of nodes in a distributed
system. We have a client node that wants to “manipulate” data (e.g.,
store, update, . . . ) on a remote server node.

Notes: Example: NAS at home, want to store/manipulate files. Assume that
we can send a whole file in one message.

Algorithm 2.3 Näıve Client-Server Algorithm

1: Client sends commands one at a time to server

Model 2.4 (message loss). In the message passing model with message loss,
for any specific message, it is not guaranteed that it will arrive safely at the
receiver.

Notes:

client storage

store: FILE

move: FILE

Figure 2.5: A simple protocol

Remarks:

• A related problem is message corruption, i.e., a message is received
but the content of the message is corrupted. In practice, in contrast
to message loss, message corruption can be handled quite well, e.g. by
including additional information in the message, such as a checksum.

• Algorithm 2.3 does not work correctly if there is message loss, so we
need a little improvement.

Algorithm 2.6 Client-Server Algorithm with Acknowledgments

1: Client sends commands one at a time to server
2: Server acknowledges every command
3: If the client does not receive an acknowledgment within a reasonable time,

the client resends the command

Notes:
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client storage

store: FILE

move: FILE

store: FILE

ack

timeout

ack

Figure 2.7: A protocol that handles message loss.

Remarks:

• Sending commands “one at a time” means that when the client sent
command c, the client does not send any new command c′ until it
received an acknowledgment for c.

• Since not only messages sent by the client can be lost, but also ac-
knowledgments, the client might resend a message that was already
received and executed on the server. To prevent multiple executions of
the same command, one can add a sequence number to each message,
allowing the receiver to identify duplicates.

• This simple algorithm is the basis of many reliable protocols, e.g.
TCP.

• The algorithm can easily be extended to work with multiple servers:
The client sends each command to every server, and once the client
received an acknowledgment from each server, the command is con-
sidered to be executed successfully.

• What about multiple clients?

Model 2.8 (variable message delay). In practice, messages might experience
different transmission times, even if they are being sent between the same two
nodes.

Remarks:

• Throughout this chapter, we assume the variable message delay model.

Theorem 2.9. If Algorithm 2.6 is used with multiple clients and multiple
servers, the servers might see the commands in different order, leading to an
inconsistent state.
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Proof. Assume we have two clients u1 and u2, and two servers s1 and s2. Both
clients issue a command to update a variable x on the servers, initially x = 0.
Client u1 sends command x = x+ 1 and client u2 sends x = 2 · x.

Let both clients send their message at the same time. With variable message
delay, it can happen that s1 receives the message from u1 first, and s2 receives
the message from u2 first.1 Hence, s1 computes x = (0 + 1) · 2 = 2 and s2
computes x = (0 · 2) + 1 = 1.

Definition 2.10 (state replication). A set of nodes achieves state replication,
if all nodes execute a (potentially infinite) sequence of commands c1, c2, c3, . . . ,
in the same order.

Remarks:

• State replication is a fundamental property for distributed systems.

• For people working in the financial tech industry, state replication is
often synonymous with the term blockchain. The Bitcoin blockchain
we will discuss in Chapter 6 is indeed one way to implement state
replication. However, as we will see in all the other chapters, there
are many alternative concepts that are worth knowing, with different
properties.

• Since state replication is trivial with a single server, we can desig-
nate a single server as a serializer. By letting the serializer distribute
the commands, we automatically order the requests and achieve state
replication!

Algorithm 2.11 State Replication with a Serializer

1: Clients send commands one at a time to the serializer
2: Serializer forwards commands one at a time to all other servers
3: Once the serializer received all acknowledgments, it notifies the client about

the success

Remarks:

• This idea is sometimes also referred to as master-slave replication.

• What about node failures? Our serializer is a single point of failure!

• Can we have a more distributed approach of solving state replication?
Instead of directly establishing a consistent order of commands, we
can use a different approach: We make sure that there is always at
most one client sending a command; i.e., we use mutual exclusion,
respectively locking.

1For example, u1 and s1 are (geographically) located close to each other, and so are u2

and s2.
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Algorithm 2.12 Two-Phase Protocol

Phase 1

1: Client asks all servers for the lock

Phase 2

2: if client receives lock from every server then
3: Client sends command reliably to each server, and gives the lock back
4: else
5: Clients gives the received locks back
6: Client waits, and then starts with Phase 1 again
7: end if

Remarks:

• This idea appears in many contexts and with different names, usually
with slight variations, e.g. two-phase locking (2PL).

• Another example is the two-phase commit (2PC) protocol, typically
presented in a database environment. The first phase is called the
preparation of a transaction, and in the second phase the transaction
is either committed or aborted. The 2PC process is not started at the
client but at a designated server node that is called the coordinator.

• It is often claimed that 2PL and 2PC provide better consistency guar-
antees than a simple serializer if nodes can recover after crashing. In
particular, alive nodes might be kept consistent with crashed nodes,
for transactions that started while the crashed node was still running.
This benefit was even improved in a protocol that uses an additional
phase (3PC).

• The problem with 2PC or 3PC is that they are not well-defined if
exceptions happen.

• Does Algorithm 2.12 really handle node crashes well? No! In fact,
it is even worse than the simple serializer approach (Algorithm 2.11):
Instead of needing one available node, Algorithm 2.12 requires all
servers to be responsive!

• Does Algorithm 2.12 also work if we only get the lock from a subset
of servers? Is a majority of servers enough?

• What if two or more clients concurrently try to acquire a majority
of locks? Do clients have to abandon their already acquired locks, in
order not to run into a deadlock? How? And what if they crash before
they can release the locks?

• Bad news: It seems we need a slightly more complicated concept.

• Good news: We postpone the complexity of achieving state replication
and first show how to execute a single command only.
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2.2 Paxos

Definition 2.13 (ticket). A ticket is a weaker form of a lock, with the following
properties:

• Reissuable: A server can issue a ticket, even if previously issued tickets
have not yet been returned.

• Ticket expiration: If a client sends a message to a server using a previ-
ously acquired ticket t, the server will only accept t, if t is the most recently
issued ticket.

Remarks:

• There is no problem with crashes: If a client crashes while holding
a ticket, the remaining clients are not affected, as servers can simply
issue new tickets.

• Tickets can be implemented with a counter: Each time a ticket is
requested, the counter is increased. When a client tries to use a ticket,
the server can determine if the ticket is expired.

• What can we do with tickets? Can we simply replace the locks in
Algorithm 2.12 with tickets? We need to add at least one additional
phase, as only the client knows if a majority of the tickets have been
valid in Phase 2.

Algorithm 2.14 Näıve Ticket Protocol

Phase 1

1: Client asks all servers for a ticket

Phase 2

2: if a majority of the servers replied then
3: Client sends command together with ticket to each server
4: Server stores command only if ticket is still valid, and replies to client
5: else
6: Client waits, and then starts with Phase 1 again
7: end if

Phase 3

8: if client hears a positive answer from a majority of the servers then
9: Client tells servers to execute the stored command

10: else
11: Client waits, and then starts with Phase 1 again
12: end if
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Remarks:

• There are problems with this algorithm: Let u1 be the first client
that successfully stores its command c1 on a majority of the servers.
Assume that u1 becomes very slow just before it can notify the servers
(Line 9), and a client u2 updates the stored command in some servers
to c2. Afterwards, u1 tells the servers to execute the command. Now
some servers will execute c1 and others c2!

• How can this problem be fixed? We know that every client u2 that
updates the stored command after u1 must have used a newer ticket
than u1. As u1’s ticket was accepted in Phase 2, it follows that u2
must have acquired its ticket after u1 already stored its value in the
respective server.

• Idea: What if a server, instead of only handing out tickets in Phase
1, also notifies clients about its currently stored command? Then, u2
learns that u1 already stored c1 and instead of trying to store c2, u2
could support u1 by also storing c1. As both clients try to store and
execute the same command, the order in which they proceed is no
longer a problem.

• But what if not all servers have the same command stored, and u2
learns multiple stored commands in Phase 1. What command should
u2 support? Notes: Even if a majority of the servers store c1, a
client u2 might not realize that there is a majority, since u2 is only
required to contact any majority in Phase 1, and not all servers.

• Observe that it is always safe to support the most recently stored
command. As long as there is no majority, clients can support any
command. However, once there is a majority, clients need to support
this value.

• So, in order to determine which command was stored most recently,
servers can remember the ticket number that was used to store the
command, and afterwards tell this number to clients in Phase 1.

• If every server uses its own ticket numbers, the newest ticket does not
necessarily have the largest number. This problem can be solved if
clients suggest the ticket numbers themselves!
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Algorithm 2.15 Paxos

Client (Proposer)
[1.9]Initialization
c / command to execute
t = 0 / ticket number to try

[1.9]Phase 1
1: t = t+ 1
2: Ask all servers for ticket t

[1.9]Phase 2
7: if a majority answers ok then
8: Pick (Tstore, C) with largest Tstore

9: if Tstore > 0 then
10: c = C
11: end if
12: Send propose(t, c) to same

majority
13: end if

[1.9]Phase 3
19: if a majority answers success

then
20: Send execute(c) to every server
21: end if

Server (Acceptor)

Tmax = 0 / largest issued ticket

C = ⊥ / stored command
Tstore = 0 / ticket used to store C

3: if t > Tmax then
4: Tmax = t
5: Answer with ok(Tstore, C)
6: end if

14: if t = Tmax then
15: C = c
16: Tstore = t
17: Answer success
18: end if

Remarks:

• Unlike previously mentioned algorithms, there is no step where a client
explicitly decides to start a new attempt and jumps back to Phase 1.
Note that this is not necessary, as a client can decide to abort the
current attempt and start a new one at any point in the algorithm.
This has the advantage that we do not need to be careful about se-
lecting “good” values for timeouts, as correctness is independent of
the decisions when to start new attempts.

• The performance can be improved by letting the servers send negative
replies in phases 1 and 2 if the ticket expired.

• The contention between different clients can be alleviated by random-
izing the waiting times between consecutive attempts.
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Lemma 2.16. We call a message propose(t,c) sent by clients on Line 12 a
proposal for (t,c). A proposal for (t,c) is chosen, if it is stored by a majority
of servers (Line 15). For every issued propose(t′,c′) with t′ > t holds that
c′ = c, if there was a chosen propose(t,c).

Proof. Observe that there can be at most one proposal for every ticket number
τ since clients only send a proposal if they received a majority of the tickets for
τ (Line 7). Hence, every proposal is uniquely identified by its ticket number τ .

Assume that there is at least one propose(t′,c′) with t′ > t and c′ 6= c; of
such proposals, consider the proposal with the smallest ticket number t′. Since
both this proposal and also the propose(t,c) have been sent to a majority of the
servers, we can denote by S the non-empty intersection of servers that have been
involved in both proposals. Recall that since propose(t,c) has been chosen, this
means that that at least one server s ∈ S must have stored command c; thus,
when the command was stored, the ticket number t was still valid. Hence, s
must have received the request for ticket t′ after it already stored propose(t,c),
as the request for ticket t′ invalidates ticket t.

Therefore, the client that sent propose(t′,c′) must have learned from s that
a client already stored propose(t,c). Since a client adapts its proposal to the
command that is stored with the highest ticket number so far (Line 8), the client
must have proposed c as well. There is only one possibility that would lead to
the client not adapting c: If the client received the information from a server
that some client stored propose(t∗,c∗), with c∗ 6= c and t∗ > t. In this case, a
client must have sent propose(t∗,c∗) with t < t∗ < t′, but this contradicts the
assumption that t′ is the smallest ticket number of a proposal issued after t.

Theorem 2.17. If a command c is executed by some servers, all servers (even-
tually) execute c.

Proof. From Lemma 2.16 we know that once a proposal for c is chosen, every
subsequent proposal is for c. As there is exactly one first propose(t,c) that is
chosen, it follows that all successful proposals will be for the command c. Thus,
only proposals for a single command c can be chosen, and since clients only
tell servers to execute a command, when it is chosen (Line 20), each client will
eventually tell every server to execute c.

Remarks:

• If the client with the first successful proposal does not crash, it will
directly tell every server to execute c.

• However, if the client crashes before notifying any of the servers, the
servers will execute the command only once the next client is success-
ful. Once a server received a request to execute c, it can inform every
client that arrives later that there is already a chosen command, so
that the client does not waste time with the proposal process. Notes:
Of course, all proposers (clients) could crash before they succeed in
informing all acceptors (servers). But in that case, there is no client
anymore anyway. . . and if a new client ever starts to participate in the
system, Paxos guarantees that this client will propose command c to
every acceptor.
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• Note that Paxos cannot make progress if half (or more) of the servers
crash, as clients cannot achieve a majority anymore.

• The original description of Paxos uses three roles: Proposers, accep-
tors and learners. Learners have a trivial role: They do nothing, they
just learn from other nodes which command was chosen.

• We assigned every node only one role. In some scenarios, it might
be useful to allow a node to have multiple roles. For example in a
peer-to-peer scenario nodes need to act as both client and server.

• Clients (Proposers) must be trusted to follow the protocol strictly.
However, this is in many scenarios not a reasonable assumption. In
such scenarios, the role of the proposer can be executed by a set of
servers, and clients need to contact proposers, to propose values in
their name.

• So far, we only discussed how a set of nodes can reach decision for a
single command with the help of Paxos. We call such a single decision
an instance of Paxos.

• For state replication as in Definition 2.10, we need to be able to exe-
cute multiple commands, we can extend each instance with an instance
number, that is sent around with every message. Once the 1st com-
mand is chosen, any client can decide to start a new instance and
compete for the 2nd command. If a server did not realize that the 1st

instance already came to a decision, the server can ask other servers
about the decisions to catch up.

Chapter Notes

Two-phase protocols have been around for a long time, and it is unclear if there
is a single source of this idea. One of the earlier descriptions of this concept can
found in the book of Gray [Gra78].

Leslie Lamport introduced Paxos in 1989. But why is it called Paxos? Lam-
port described the algorithm as the solution to a problem of the parliament
of a fictitious Greek society on the island Paxos. He even liked this idea so
much, that he gave some lectures in the persona of an Indiana-Jones-style ar-
chaeologist! When the paper was submitted, many readers were so distracted by
the descriptions of the activities of the legislators, they did not understand the
meaning and purpose of the algorithm. The paper was rejected. But Lamport
refused to rewrite the paper, and he later wrote that he “was quite annoyed at
how humorless everyone working in the field seemed to be”. A few years later,
when the need for a protocol like Paxos arose again, Lamport simply took the
paper out of the drawer and gave it to his colleagues. They liked it. So Lamport
decided to submit the paper (in basically unaltered form!) again, 8 years after
he wrote it – and it got accepted! But as this paper [Lam98] is admittedly hard
to read, he had mercy, and later wrote a simpler description of Paxos [Lam01].

Leslie Lamport is an eminent scholar when it comes to understanding dis-
tributed systems, and we will learn some of his contributions in almost every
chapter. Not surprisingly, Lamport has won the 2013 Turing Award for his
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fundamental contributions to the “theory and practice of distributed and con-
current systems, notably the invention of concepts such as causality and logical
clocks, safety and liveness, replicated state machines, and sequential consis-
tency” [Mal13]. One can add arbitrarily to this official citation, for instance
Lamports popular LaTeX typesetting system, based on Donald Knuths TeX.

This chapter was written in collaboration with David Stolz.
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Chapter 3

Consensus

Notes:

• TODO: need to fix lemma 2.16: it must say somewhere before (or in title
of lemma) that this is for f < n/2.

• just briefly two friends, then model: consensus, nodes, crash, correct, msgs
correct, agreement, termination, ask for trivial protocol always 0, then va-
lidity, then asynchronous model (upon, no notion of time). then discuss
a few possible protocols, suggested by students. Then claim that consen-
sus cannot be solved with a single failure, and go into proof, as in script
(configuration, univalent, 0,1-valent, bivalent, proof of bivalent initial con-
figuration, transition, configuration tree, commutative transitions...) now
break, which is not the best time.

• after the break continuing the proof (again path, critical, receiving nodes
must be same for 0- and 1- (and then also for all 0- and 1-), and then let’s
crash that receiving node, and we are in a bivalent state. With about 35’
on the clock in go into Ben-Or (blackboard), explaining algorithm, validity,
then that only one value can be proposed, then the case where somebody
manages to go into decision branch, and all others will go into second
branch, and finally the case where nobody goes into decision branch, but
all others luckily choose the same. Quick quip with replacing the random-
ized line with just deterministically choosing 0 (not too much, it is in the
exercises). Finally (almost 20’ on clock, I am hurrying already) shared
coin: coins, sets, multiset C with (n−f)2 coins. Let W be all coins I have
in at least f+1 sets. I claim that |W | ≥ f+1. If not, we have strictly less
than (n− f)2 coins in multiset. Hence true, and also coins in W are seen
by everybody! Then quick (5’) probability math for 1 and 0, and then
plugging it back in. The second part today is stressful, it would be good
to finish FLP proof in the first part to have enough time for second part.

3.1 Two Friends

Alice wants to arrange dinner with Bob, and since both of them are very re-
luctant to use the “call” functionality of their phones, she sends a text message
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suggesting to meet for dinner at 6pm. However, texting is unreliable, and Alice
cannot be sure that the message arrives at Bob’s phone, hence she will only go
to the meeting point if she receives a confirmation message from Bob. But Bob
cannot be sure that his confirmation message is received; if the confirmation is
lost, Alice cannot determine if Bob did not even receive her suggestion, or if
Bob’s confirmation was lost. Therefore, Bob demands a confirmation message
from Alice, to be sure that she will be there. But as this message can also be
lost. . .

You can see that such a message exchange continues forever, if both Alice
and Bob want to be sure that the other person will come to the meeting point!

Remarks:

• Such a protocol cannot terminate: Assume that there are protocols
which lead to agreement, and P is one of the protocols which require
the least number of messages. As the last confirmation might be lost
and the protocol still needs to guarantee agreement, we can simply
decide to always omit the last message. This gives us a new protocol
P ′ which requires less messages than P , contradicting the assumption
that P required the minimal amount of messages.

• Can Alice and Bob use Paxos?

3.2 Consensus

In Chapter 2 we studied a problem that we vaguely called agreement. We will
now introduce a formally specified variant of this problem, called consensus.

Definition 3.1 (consensus). There are n nodes, of which at most f might crash,
i.e., at least n− f nodes are correct. Node i starts with an input value vi. The
nodes must decide for one of those values, satisfying the following properties:

• Agreement All correct nodes decide for the same value.

• Termination All correct nodes terminate in finite time.

• Validity The decision value must be the input value of a node.

Remarks:

• We assume that every node can send messages to every other node,
and that we have reliable links, i.e., a message that is sent will be
received.

• There is no broadcast medium. If a node wants to send a message
to multiple nodes, it needs to send multiple individual messages. If a
node crashes while broadcasting, not all nodes may receive the broad-
casted message. Later we will call this best-effort broadcast.

• Does Paxos satisfy all three criteria? If you study Paxos carefully, you
will notice that Paxos does not guarantee termination. For example,
the system can be stuck forever if two clients continuously request
tickets, and neither of them ever manages to acquire a majority.
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3.3 Impossibility of Consensus

Model 3.2 (asynchronous). In the asynchronous model, algorithms are event
based (“upon receiving message . . . , do . . . ”). Nodes do not have access to a
synchronized wall-clock. A message sent from one node to another will arrive
in a finite but unbounded time.

Remarks:

• The asynchronous time model is a widely used formalization of the
variable message delay model (Model 2.8).

Definition 3.3 (asynchronous runtime). For algorithms in the asynchronous
model, the runtime is the number of time units from the start of the execution
to its completion in the worst case (every legal input, every execution scenario),
assuming that each message has a delay of at most one time unit.

Remarks:

• The maximum delay cannot be used in the algorithm design, i.e., the
algorithm must work independent of the actual delay.

• Asynchronous algorithms can be thought of as systems, where local
computation is significantly faster than message delays, and thus can
be done in no time. Nodes are only active once an event occurs (a
message arrives), and then they perform their actions “immediately”.

• We will show now that crash failures in the asynchronous model can
be quite harsh. In particular there is no deterministic fault-tolerant
consensus algorithm in the asynchronous model, not even for binary
input.

Definition 3.4 (configuration). We say that a system is fully defined (at any
point during the execution) by its configuration C. The configuration includes
the state of every node, and all messages that are in transit (sent but not yet
received).

Definition 3.5 (univalent). We call a configuration C univalent, if the deci-
sion value is determined independently of what happens afterwards.

Remarks:

• We call a configuration that is univalent for value v v-valent.

• Note that a configuration can be univalent, even though no single
node is aware of this. For example, the configuration in which all
nodes start with value 0 is 0-valent (due to the validity requirement).

• As we restricted the input values to be binary, the decision value
of any consensus algorithm will also be binary (due to the validity
requirement).

Definition 3.6 (bivalent). A configuration C is called bivalent if the nodes
might decide for 0 or 1.
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Remarks:

• The decision value depends on the order in which messages are re-
ceived or on crash events. I.e., the decision is not yet made.

• We call the initial configuration of an algorithm C0. When nodes are
in C0, all of them executed their initialization code and possibly, based
on their input values, sent some messages. These initial messages are
also included in C0. In other words, in C0 the nodes are now waiting
for the first message to arrive.

Lemma 3.7. There is at least one selection of input values V such that the
according initial configuration C0 is bivalent, if f ≥ 1.

Proof. As explained in the previous remark, C0 only depends on the input values
of the nodes. Let V = [v0, v1, . . . , vn−1] denote the array of input values, where
vi is the input value of node i.

We construct n+1 arrays V0, V1, . . . , Vn, where the index i in Vi denotes the
position in the array up to which all input values are 1. So, V0 = [0, 0, 0, . . . , 0],
V1 = [1, 0, 0, . . . , 0], and so on, up to Vn = [1, 1, 1, . . . , 1].

Note that the configuration corresponding to V0 must be 0-valent so that the
validity requirement is satisfied. Analogously, the configuration corresponding
to Vn must be 1-valent. Assume that all initial configurations with starting
values Vi are univalent. Therefore, there must be at least one index b, such
that the configuration corresponding to Vb−1 is 0-valent, and configuration cor-
responding to Vb is 1-valent. Observe that only the input value of the bth node
differs from Vb−1 to Vb.

Since we assumed that the algorithm can tolerate at least one failure, i.e.,
f ≥ 1, we look at the following execution: All nodes except b start with their
initial value according to Vb−1 respectively Vb. Node b is “extremely slow”;
i.e., all messages sent by b are scheduled in such a way, that all other nodes
must assume that b crashed, in order to satisfy the termination requirement.
Since the nodes cannot determine the value of b, and we assumed that all initial
configurations are univalent, they will decide for a value v independent of the
initial value of b. Since Vb−1 is 0-valent, v must be 0. However we know that
Vb is 1-valent, thus v must be 1. Since v cannot be both 0 and 1, we have a
contradiction.

Definition 3.8 (transition). A transition from configuration C to a following
configuration Cτ is characterized by an event τ = (u,m), i.e., node u receiving
message m.

Remarks:

• Transitions are the formally defined version of the “events” in the
asynchronous model we described before.

• A transition τ = (u,m) is only applicable to C, if m was still in transit
in C.

• Cτ differs from C as follows: m is no longer in transit, u has possibly
a different state (as u can update its state based on m), and there are
(potentially) new messages in transit, sent by u.
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Definition 3.9 (configuration tree). The configuration tree is a directed tree
of configurations. Its root is the configuration C0 which is fully characterized by
the input values V . The edges of the tree are the transitions; every configuration
has all applicable transitions as outgoing edges.

Remarks:

• For any algorithm, there is exactly one configuration tree for every
selection of input values.

• Leaves are configurations where the execution of the algorithm termi-
nated. Note that we use termination in the sense that the system as
a whole terminated, i.e., there will not be any transition anymore.

• Every path from the root to a leaf is one possible asynchronous exe-
cution of the algorithm.

• Leaves must be univalent, or the algorithm terminates without agree-
ment.

• If a node u crashes when the system is in C, all transitions (u, ∗) are
removed from C in the configuration tree.

Lemma 3.10. Assume two transitions τ1 = (u1,m1) and τ2 = (u2,m2) for
u1 6= u2 are both applicable to C. Let Cτ1τ2 be the configuration that follows C
by first applying transition τ1 and then τ2, and let Cτ2τ1 be defined analogously.
It holds that Cτ1τ2 = Cτ2τ1 .

Proof. Observe that τ2 is applicable to Cτ1 , since m2 is still in transit and τ1
cannot change the state of u2. With the same argument τ1 is applicable to Cτ2 ,
and therefore both Cτ1τ2 and Cτ2τ1 are well-defined. Since the two transitions
are completely independent of each other, meaning that they consume the same
messages, lead to the same state transitions and to the same messages being
sent, it follows that Cτ1τ2 = Cτ2τ1 .

Definition 3.11 (critical configuration). We say that a configuration C is crit-
ical, if C is bivalent, but all configurations that are direct children of C in the
configuration tree are univalent.

Remarks:

• Informally, C is critical, if it is the last moment in the execution where
the decision is not yet clear. As soon as the next message is processed
by any node, the decision will be determined.

Lemma 3.12. If a system is in a bivalent configuration, it must reach a critical
configuration within finite time, or it does not always solve consensus.

Proof. Recall that there is at least one bivalent initial configuration (Lemma
3.7). Assuming that this configuration is not critical, there must be at least one
bivalent following configuration; hence, the system may enter this configura-
tion. But if this configuration is not critical as well, the system may afterwards
progress into another bivalent configuration. As long as there is no critical con-
figuration, an unfortunate scheduling (selection of transitions) can always lead
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the system into another bivalent configuration. The only way how an algo-
rithm can enforce to arrive in a univalent configuration is by reaching a critical
configuration.

Therefore we can conclude that a system which does not reach a critical
configuration has at least one possible execution where it will terminate in a
bivalent configuration (hence it terminates without agreement), or it will not
terminate at all.

Lemma 3.13. If a configuration tree contains a critical configuration, crashing
a single node can create a bivalent leaf; i.e., a crash prevents the algorithm from
reaching agreement.

Proof. Let C denote critical configuration in a configuration tree, and let T
be the set of transitions applicable to C. Let τ0 = (u0,m0) ∈ T and τ1 =
(u1,m1) ∈ T be two transitions, and let Cτ0 be 0-valent and Cτ1 be 1-valent.
Note that T must contain these transitions, as C is a critical configuration.

Assume that u0 6= u1. Using Lemma 3.10 we know that C has a following
configuration Cτ0τ1 = Cτ1τ0 . Since this configuration follows Cτ0 it must be 0-
valent. However, this configuration also follows Cτ1 and must hence be 1-valent.
This is a contradiction and therefore u0 = u1 must hold.

Therefore we can pick one particular node u for which there is a transition
τ = (u,m) ∈ T which leads to a 0-valent configuration. As shown before, all
transitions in T which lead to a 1-valent configuration must also take place on
u. Since C is critical, there must be at least one such transition. Applying the
same argument again, it follows that all transitions in T that lead to a 0-valent
configuration must take place on u as well, and since C is critical, there is no
transition in T that leads to a bivalent configuration. Therefore all transitions
applicable to C take place on the same node u!

If this node u crashes while the system is in C, all transitions are removed,
and therefore the system is stuck in C, i.e., it terminates in C. But as C is
critical, and therefore bivalent, the algorithm fails to reach an agreement.

Theorem 3.14. There is no deterministic algorithm which always achieves
consensus in the asynchronous model, with f > 0.

Proof. We assume that the input values are binary, as this is the easiest non-
trivial possibility. From Lemma 3.7 we know that there must be at least one
bivalent initial configuration C. Using Lemma 3.12 we know that if an algo-
rithm solves consensus, all executions starting from the bivalent configuration
C must reach a critical configuration. But if the algorithm reaches a critical
configuration, a single crash can prevent agreement (Lemma 3.13).

Remarks:

• If f = 0, then each node can simply send its value to all others, wait
for all values, and choose the minimum.

• But if a single node may crash, there is no deterministic solution to
consensus in the asynchronous model.
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• How can the situation be improved? For example by giving each node
access to randomness, i.e., we allow each node to toss a coin.
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3.4 Randomized Consensus

Algorithm 3.15 Randomized Consensus (Ben-Or)

1: vi ∈ {0, 1} / input bit
2: round = 1
3: decided = false

4: Broadcast myValue(vi, round)

5: while true do

Propose

6: Wait until a majority of myValue messages of current round arrived
7: if all messages contain the same value v then
8: Broadcast propose(v, round)
9: else

10: Broadcast propose(⊥, round)
11: end if

12: if decided then
13: Broadcast myValue(vi, round+1)
14: Decide for vi and terminate
15: end if

Vote

16: Wait until a majority of propose messages of current round arrived
17: if all messages propose the same value v then
18: vi = v
19: decided = true
20: else if there is at least one proposal for v then
21: vi = v
22: else
23: Choose vi randomly, with Pr[vi = 0] = Pr[vi = 1] = 1/2
24: end if
25: round = round + 1
26: Broadcast myValue(vi, round)
27: end while

Remarks:

• The idea of Algorithm 3.15 is very simple: Either all nodes start with
the same input bit, which makes consensus easy. Otherwise, nodes
toss a coin until a large number of nodes get – by chance – the same
outcome.

Lemma 3.16. As long as no node sets decided to true, Algorithm 3.15 does
not get stuck, independent of which nodes crash.

Proof. The only two steps in the algorithm when a node waits are in Lines 6
and 16. Since a node only waits for a majority of the nodes to send a message,
and since f < n/2, the node will always receive enough messages to continue,
as long as no correct node set its value decided to true and terminates.
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Lemma 3.17. Algorithm 3.15 satisfies the validity requirement.

Proof. Observe that the validity requirement of consensus, when restricted to
binary input values, corresponds to: If all nodes start with v, then v must be
chosen; otherwise, either 0 or 1 is acceptable, and the validity requirement is
automatically satisfied.

Assume that all nodes start with v. In this case, all nodes propose v in the
first round. As all nodes only hear proposals for v, all nodes decide for v (Line
17) and exit the loop in the following round.

Lemma 3.18. Algorithm 3.15 satisfies the agreement requirement.

Proof. Observe that proposals for both 0 and 1 cannot occur in the same round,
as nodes only send a proposal for v, if they hear a majority for v in Line 8.

Let u be the first node that decides for a value v in round r. Hence, it
received a majority of proposals for v in r (Line 17). Note that once a node
receives a majority of proposals for a value, it will adapt this value and terminate
in the next round. Since there cannot be a proposal for any other value in r, it
follows that no node decides for a different value in r.

In Lemma 3.16 we only showed that nodes do not get stuck as long as no
node decides, thus we need to be careful that no node gets stuck if u terminates.

Any node u′ 6= u can experience one of two scenarios: Either it also receives
a majority for v in round r and decides, or it does not receive a majority. In
the first case, the agreement requirement is directly satisfied, and also the node
cannot get stuck. Let us study the latter case. Since u heard a majority of
proposals for v, it follows that every node hears at least one proposal for v.
Hence, all nodes set their value vi to v in round r. Therefore, all nodes will
broadcast v at the end of round r, and thus all nodes will propose v in round
r + 1. The nodes that already decided in round r will terminate in r + 1 and
send one additional myValue message (Line 13). All other nodes will receive a
majority of proposals for v in r+ 1, and will set decided to true in round r+ 1,
and also send a myValue message in round r + 1. Thus, in round r + 2 some
nodes have already terminated, and others hear enough myValue messages to
continue in Line 6. They send another propose and a myValue message and
terminate in r + 2, deciding for the same value v.

Lemma 3.19. Algorithm 3.15 satisfies the termination requirement, i.e., all
nodes terminate in expected time O(2n).

Proof. We know from the proof of Lemma 3.18 that once a node hears a majority
of proposals for a value, all nodes will terminate at most two rounds later. Hence,
we only need to show that a node receives a majority of proposals for the same
value within expected time O(2n).

Assume that no node receives a majority of proposals for the same value.
In such a round, some nodes may update their value to v based on a proposal
(Line 20). As shown before, all nodes that update the value based on a proposal,
adapt the same value v. The rest of the nodes choses 0 or 1 randomly. The
probability that all nodes choose the same value v in one round is hence at
least 1/2n. Therefore, the expected number of rounds is bounded by O(2n). As
every round consists of two message exchanges, the asymptotic runtime of the
algorithm is equal to the number of rounds.
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Theorem 3.20. Algorithm 3.15 achieves binary consensus with expected run-
time O(2n) if up to f < n/2 nodes crash.

Remarks:

• How good is a fault tolerance of f < n/2?

Theorem 3.21. There is no consensus algorithm for the asynchronous model
that tolerates f ≥ n/2 many failures.

Proof. Assume that there is an algorithm that can handle f = n/2 many fail-
ures. We partition the set of all nodes into two sets N,N ′ both containing n/2
many nodes. Let us look at three different selection of input values: In V0 all
nodes start with 0. In V1 all nodes start with 1. In Vhalf all nodes in N start
with 0, and all nodes in N ′ start with 1.

Assume that nodes start with Vhalf. Since the algorithm must solve consensus
independent of the scheduling of the messages, we study the scenario where
all messages sent from nodes in N to nodes in N ′ (or vice versa) are heavily
delayed. Note that the nodes in N cannot determine if they started with V0 or
Vhalf. Analogously, the nodes in N ′ cannot determine if they started in V1 or
Vhalf. Hence, if the algorithm terminates before any message from the other set
is received, N must decide for 0 and N ′ must decide for 1 (to satisfy the validity
requirement, as they could have started with V0 respectively V1). Therefore,
the algorithm would fail to reach agreement.

The only possibility to overcome this problem is to wait for at least one
message sent from a node of the other set. However, as f = n/2 many nodes
can crash, the entire other set could have crashed before they sent any message.
In that case, the algorithm would wait forever and therefore not satisfy the
termination requirement.

Remarks:

• Algorithm 3.15 solves consensus with optimal fault-tolerance – but it
is awfully slow. The problem is rooted in the individual coin tossing:
If all nodes toss the same coin, they could terminate in a constant
number of rounds.

• Can this problem be fixed by simply always choosing 1 at Line 22?!
Notes: This is a question for the audience

• This cannot work: Such a change makes the algorithm deterministic,
and therefore it cannot achieve consensus (Theorem 3.14). Simulating
what happens by always choosing 1, one can see that it might happen
that there is a majority for 0, but a minority with value 1 prevents
the nodes from reaching agreement. Notes:

– This is covered in the exercise sheet, don’t go into too many
details.

– M is the majority, which all nodes have 0.

– Only one node m hears all messages from M .
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– m proposes 0, all other nodes propose ⊥.

– All nodes in M hear the proposal of m and stay with 0. All other
nodes (the minority) do not hear m and choose deterministically
1.

– Repeat forever.

• Nevertheless, the algorithm can be improved by tossing a so-called
shared coin. A shared coin is a random variable that is 0 for all nodes
with constant probability, and 1 with constant probability. Of course,
such a coin is not a magic device, but it is simply an algorithm. To
improve the expected runtime of Algorithm 3.15, we replace Line 22
with a function call to the shared coin algorithm.

3.5 Shared Coin

Algorithm 3.22 Shared Coin (code for node u)

1: Choose local coin cu = 0 with probability 1/n, else cu = 1
2: Broadcast myCoin(cu)

3: Wait for n− f coins and store them in the local coin set Cu
4: Broadcast mySet(Cu)

5: Wait for n− f coin sets
6: if at least one coin is 0 among all coins in the coin sets then
7: return 0
8: else
9: return 1

10: end if

Remarks:

• Since at most f nodes crash, all nodes will always receive n− f coins
respectively coin sets in Lines 3 and 5. Therefore, all nodes make
progress and termination is guaranteed.

• We show the correctness of the algorithm for f < n/3. To simplify
the proof we assume that n = 3f + 1, i.e., we assume the worst case.

Lemma 3.23. Let u be a node, and let W be the set of coins that u received in
at least f + 1 different coin sets. It holds that |W | ≥ f + 1.

Proof. Let C be the multiset of coins received by u. Observe that u receives
exactly |C| = (n−f)2 many coins, as u waits for n−f coin sets each containing
n− f coins.

Assume that the lemma does not hold. Then, at most f coins are in all n−f
coin sets, and all other coins (n− f) are in at most f coin sets. In other words,
the total number of coins that u received is bounded by

|C| ≤ f · (n− f) + (n− f) · f = 2f(n− f).

Our assumption was that n > 3f , i.e., n−f > 2f . Therefore |C| ≤ 2f(n−f) <
(n− f)2 = |C|, which is a contradiction.
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Lemma 3.24. All coins in W are seen by all correct nodes.

Proof. Let w ∈ W be such a coin. By definition of W we know that w is in at
least f + 1 sets received by u. Since every other node also waits for n− f sets
before terminating, each node will receive at least one of these sets, and hence
w must be seen by every node that terminates.

Theorem 3.25. If f < n/3 nodes crash, Algorithm 3.22 implements a shared
coin.

Proof. Let us first bound the probability that the algorithm returns 1 for all
nodes. With probability (1 − 1/n)n ≈ 1/e ≈ 0.37 all nodes chose their local
coin equal to 1 (Line 1), and in that case 1 will be decided. This is only a lower
bound on the probability that all nodes return 1, as there are also other scenarios
based on message scheduling and crashes which lead to a global decision for 1.
But a probability of 0.37 is good enough, so we do not need to consider these
scenarios.

With probability 1 − (1 − 1/n)|W | there is at least one 0 in W . Using
Lemma 3.23 we know that |W | ≥ f + 1 ≈ n/3, hence the probability is about
1 − (1 − 1/n)n/3 ≈ 1 − (1/e)1/3 ≈ 0.28. We know that this 0 is seen by all
nodes (Lemma 3.24), and hence everybody will decide 0. Thus Algorithm 3.22
implements a shared coin.

Remarks:

• We only proved the worst case. By choosing f fairly small, it is clear
that f + 1 6≈ n/3. However, Lemma 3.23 can be proved for |W | ≥
n − 2f . To prove this claim you need to substitute the expressions
in the contradictory statement: At most n − 2f − 1 coins can be in
all n− f coin sets, and n− (n− 2f − 1) = 2f + 1 coins can be in at
most f coin sets. The remainder of the proof is analogous, the only
difference is that the math is not as neat. Using the modified Lemma
we know that |W | ≥ n/3, and therefore Theorem 3.25 also holds for
any f < n/3.

• We implicitly assumed that message scheduling was random; if we
need a 0 but the nodes that want to propose 0 are “slow”, nobody is
going to see these 0’s, and we do not have progress. There exist more
complicated protocols that solve this problem.

Notes:

• we need a better shared coin, even only in the case of crash failures! darya
is working on a new chapter...

Theorem 3.26. Plugging Algorithm 3.22 into Algorithm 3.15 we get a ran-
domized consensus algorithm which terminates in a constant expected number
of rounds tolerating up to f < n/3 crash failures.
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Chapter Notes

The problem of two friends arranging a meeting was presented and studied under
many different names; nowadays, it is usually referred to as the Two Generals
Problem. The impossibility proof was established in 1975 by Akkoyunlu et
al. [AEH75].

The proof that there is no deterministic algorithm that always solves con-
sensus is based on the proof of Fischer, Lynch and Paterson [FLP85], known
as FLP, which they established in 1985. This result was awarded the 2001
PODC Influential Paper Award (now called Dijkstra Prize). The idea for the
randomized consensus algorithm was originally presented by Ben-Or [Ben83].
The concept of a shared coin was introduced by Bracha [Bra87]. A shared coin
that can withstand worst-case scheduling has been developed by Alistarh et al.
[AAKS14]; this shared coin was inspired by earlier shared coin solutions in the
shared memory model [Cha96].

Apart from randomization, there are other techniques to still get consensus.
One possibility is to drop asynchrony and rely on time more, e.g. by assuming
partial synchrony [DLS88] or timed asynchrony [CF98]. Another possibility is
to add failure detectors [CT96].

This chapter was written in collaboration with David Stolz.
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Chapter 4

Byzantine Agreement

Notes:

• Quick recap from chapter 2, then story why crash failures may be wrong,
and then byzantine/agreement. Then discussion about validity. After the
first 20’ derive f = 1 algo, and then with about 15’ on clock n = 4 lower
bound and then 3f + 1 lower bound. At the end somebody asks for 3f + 1
upper bound, and I quickly sketch the exponential paths algorithm. Break
2’ early. (This year I didn’t even quite manage to do the general f ≥ n/3
proof, which I must study carefully!)

• After the break the King algorithm, with proof (maybe 20’), and then
quickly the f+1 round lower bound (the simple version, very quick. With
about 20’ on clock left into byzantine Ben-Or, including slow proof. Alto-
gether about 5’ before the end finished, time for discussion (in particular
whether any of this can be considered practical). All in all a good lecture,
even though I am finished 2’ early twice.

In order to make flying safer, researchers studied possible failures of various
sensors and machines used in airplanes. While trying to model the failures,
they were confronted with the following problem: Failing machines did not just
crash, instead they sometimes showed arbitrary behavior before stopping com-
pletely. With these insights researchers modeled failures as arbitrary failures,
not restricted to any patterns.

Definition 4.1 (Byzantine). A node which can have arbitrary behavior is called
byzantine. This includes “anything imaginable”, e.g., not sending any mes-
sages at all, or sending different and wrong messages to different neighbors, or
lying about the input value.

Remarks:

• Byzantine behavior also includes collusion, i.e., all byzantine nodes
are being controlled by the same adversary.

• We assume that any two nodes communicate directly, and that no
node can forge an incorrect sender address. This is a requirement, such
that a single byzantine node cannot simply impersonate all nodes!

29
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• We call non-byzantine nodes correct nodes.

Definition 4.2 (Byzantine Agreement). Finding consensus as in Definition 3.1
in a system with byzantine nodes is called byzantine agreement. An algorithm
is f -resilient if it still works correctly with f byzantine nodes.

Remarks:

• As for consensus (Definition 3.1) we also need agreement, termination
and validity. Agreement and termination are straight-forward, but
what about validity?
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4.1 Validity

Definition 4.3 (Any-Input Validity). The decision value must be the input
value of any node.

Remarks:

• This is the validity definition we used for consensus, in Definition 3.1.

• Does this definition still make sense in the presence of byzantine
nodes? What if byzantine nodes lie about their inputs?

• We would wish for a validity definition which differentiates between
byzantine and correct inputs.

Definition 4.4 (Correct-Input Validity). The decision value must be the input
value of a correct node.

Remarks:

• Unfortunately, implementing correct-input validity does not seem to
be easy, as a byzantine node following the protocol but lying about
its input value is indistinguishable from a correct node. Here is an
alternative.

Definition 4.5 (All-Same Validity). If all correct nodes start with the same
input v, the decision value must be v.

Remarks:

• If the decision values are binary, then correct-input validity is induced
by all-same validity.

• If the input values are not binary, but for example from sensors that
deliever values in R, all-same validity is in most scenarios not really
useful.

Definition 4.6 (Median Validity). If the input values are orderable, e.g. v ∈ R,
byzantine outliers can be prevented by agreeing on a value close to the median
of the correct input values – how close depends on the number of byzantine nodes
f .

Remarks:

• Is byzantine agreement possible? If yes, with what validity condition?

• Let us try to find an algorithm which tolerates 1 single byzantine node,
first restricting to the so-called synchronous model.

Model 4.7 (synchronous). In the synchronous model, nodes operate in syn-
chronous rounds. In each round, each node may send a message to the other
nodes, receive the messages sent by the other nodes, and do some local compu-
tation.

Definition 4.8 (synchronous runtime). For algorithms in the synchronous model,
the runtime is simply the number of rounds from the start of the execution to
its completion in the worst case (every legal input, every execution scenario).
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4.2 How Many Byzantine Nodes?

Algorithm 4.9 Byzantine Agreement with f = 1.

1: Code for node u, with input value x:

Round 1

2: Send tuple(u, x) to all other nodes
3: Receive tuple(v, y) from all other nodes v
4: Store all received tuple(v, y) in a set Su

Round 2

5: Send set Su to all other nodes
6: Receive sets Sv from all nodes v
7: T = set of tuple(v, y) seen in at least two sets Sv, including own Su
8: Let tuple(v, y) ∈ T be the tuple with the smallest value y
9: Decide on value y

Remarks:

• Byzantine nodes may not follow the protocol and send syntactically in-
correct messages. Such messages can easily be deteced and discarded.
It is worse if byzantine nodes send syntactically correct messages, but
with a bogus content, e.g., they send different messages to different
nodes.

• Some of these mistakes cannot easily be detected: For example, if a
byzantine node sends different values to different nodes in the first
round; such values will be put into Su. However, some mistakes can
and must be detected: Observe that all nodes only relay information
in Round 2, and do not say anything about their own value. So, if a
byzantine node sends a set Sv which contains a tuple(v, y), this tuple
must be removed by u from Sv upon receiving it (Line 6).

• Recall that we assumed that nodes cannot forge their source address;
thus, if a node receives tuple(v, y) in Round 1, it is guaranteed that
this message was sent by v.

Lemma 4.10. If n ≥ 4, all correct nodes have the same set T .

Proof. With f = 1 and n ≥ 4 we have at least 3 correct nodes. A correct node
will see every correct value at least twice, once directly from another correct
node, and once through the third correct node. So all correct values are in T .
If the byzantine node sends the same value to at least 2 other (correct) nodes,
all correct nodes will see the value twice, so all add it to set T . If the byzantine
node sends all different values to the correct nodes, none of these values will
end up in any set T .

Theorem 4.11. Algorithm 4.9 reaches byzantine agreement if n ≥ 4.

Proof. We need to show agreement, any-input validity and termination. With
Lemma 4.10 we know that all correct nodes have the same set T , and therefore
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agree on the same minimum value. The nodes agree on a value proposed by any
node, so any-input validity holds. Moreover, the algorithm terminates after two
rounds.

Remarks:

• If n > 4 the byzantine node can put multiple values into T .

• Algorithm 4.9 only provides any-input agreement, which is question-
able in the byzantine context. One can achieve all-same validity by
choosing the smallest value that occurs at least twice, if a value ap-
pears at least twice.

• The idea of this algorithm can be generalized for any f and n >
3f . In the generalization, every node sends in every of f + 1 rounds
all information it learned so far to all other nodes. In other words,
message size increases exponentially with f .

• Does Algorithm 4.9 also work with n = 3?

Notes:

• generalized algorithm sketch: memorize all paths without loops.

Theorem 4.12. Three nodes cannot reach byzantine agreement with all-same
validity if one node among them is byzantine.

Proof. We will assume that the three nodes satisfy all-same validity and show
that they will violate the agreement condition under this assumption.

In order to achieve all-same validity, nodes have to deterministically decide
for a value x if it is the input value of every correct node. Recall that a Byzantine
node which follows the protocol is indistinguishable from a correct node. Assume
a correct node sees that n−f nodes including itself have an input value x. Then,
by all-same validity, this correct node must deterministically decide for x.

In the case of three nodes (n − f = 2) a node has to decide on its own
input value if another node has the same input value. Let us call the three
nodes u, v and w. If correct node u has input 0 and correct node v has input
1, the byzantine node w can fool them by telling u that its value is 0 and
simultaneously telling v that its value is 1. By all-same validity, this leads to u
and v deciding on two different values, which violates the agreement condition.
Even if u talks to v, and they figure out that they have different assumptions
about w’s value, u cannot distinguish whether w or v is byzantine.

Theorem 4.13. A network with n nodes cannot reach byzantine agreement with
f ≥ n/3 byzantine nodes.

Proof. Assume (for the sake of contradiction) that there exists an algorithm
A that reaches byzantine agreement for n nodes with f ≥ dn/3e byzantine
nodes. We will show that A cannot satisfy all-same validity and agreement
simultaneously.

Let us divide the n nodes into three groups of size n/3 (either bn/3c or
dn/3e, if n is not divisible by 3). Assume that one group of size dn/3e ≥ n/3
contains only Byzantine and the other two groups only correct nodes. Let one
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group of correct nodes start with input value 0 and the other with input value
1. As in Lemma 4.12, the group of Byzantine nodes supports the input value
of each of the node, so each correct node observes at least n − f nodes who
support its own input value. Because of all-same validity, every correct node
has to deterministically decide on its own input value. Since the two groups
of correct nodes had different input values, the nodes will decide on different
values respectively, thus violating the agreement property.

4.3 The King Algorithm

Algorithm 4.14 King Algorithm (for f < n/3)

1: x = my input value
2: for phase = 1 to f + 1 do

Round 1

3: Broadcast value(x)

Round 2

4: if some value(y) received at least n− f times then
5: Broadcast propose(y)
6: end if
7: if some propose(z) received more than f times then
8: x = z
9: end if

Round 3

10: Let node vi be the predefined king of this phase i
11: The king vi broadcasts its current value w
12: if received strictly less than n− f propose(y) then
13: x = w
14: end if
15: end for

Lemma 4.15. Algorithm 4.14 fulfills the all-same validity.

Proof. If all correct nodes start with the same value, all correct nodes propose
it in Round 2. All correct nodes will receive at least n − f proposals, i.e., all
correct nodes will stick with this value, and never change it to the king’s value.
This holds for all phases.

Lemma 4.16. If a correct node proposes x, no other correct node proposes y,
with y 6= x, if n > 3f .

Proof. Assume (for the sake of contradiction) that a correct node proposes value
x and another correct node proposes value y. Since a good node only proposes
a value if it heard at least n−f value messages, we know that both nodes must
have received their value from at least n− 2f distinct correct nodes (as at most
f nodes can behave byzantine and send x to one node and y to the other one).
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Hence, there must be a total of at least 2(n − 2f) + f = 2n − 3f nodes in the
system. Using 3f < n, we have 2n− 3f > n nodes, a contradiction.

Lemma 4.17. There is at least one phase with a correct king.

Proof. There are f + 1 phases, each with a different king. As there are only f
byzantine nodes, one king must be correct.

Lemma 4.18. After a round with a correct king, the correct nodes will not
change their values v anymore, if n > 3f .

Proof. If all correct nodes change their values to the king’s value, all correct
nodes have the same value. If some correct node does not change its value to
the king’s value, it received a proposal at least n − f times, therefore at least
n−2f correct nodes broadcasted this proposal. Thus, all correct nodes received
it at least n − 2f > f times (using n > 3f), therefore all correct nodes set
their value to the proposed value, including the correct king. Note that only
one value can be proposed more than f times, which follows from Lemma 4.16.
With Lemma 4.15, no node will change its value after this round.

Theorem 4.19. Algorithm 4.14 solves byzantine agreement.

Proof. The king algorithm reaches agreement as either all correct nodes start
with the same value, or they agree on the same value latest after the phase where
a correct node was king according to Lemmas 4.17 and 4.18. Because of Lemma
4.15 we know that they will stick with this value. Termination is guaranteed
after 3(f + 1) rounds, and all-same validity is proved in Lemma 4.15.

Remarks:

• Algorithm 4.14 requires f + 1 predefined kings. We assume that the
kings (and their order) are given. Finding the kings indeed would be
a byzantine agreement task by itself, so this must be done before the
execution of the King algorithm.

• Do algorithms exist which do not need predefined kings? Yes, see
Section 4.5.

• Can we solve byzantine agreement (or at least consensus) in less than
f + 1 rounds?

4.4 Lower Bound on Number of Rounds

Theorem 4.20. A synchronous algorithm solving consensus in the presence of
f crashing nodes needs at least f + 1 rounds, if nodes decide for the minimum
seen value.

Proof. Let us assume (for the sake of contradiction) that some algorithm A
solves consensus in f rounds. Some node u1 has the smallest input value x, but
in the first round u1 can send its information (including information about its
value x) to only some other node u2 before u1 crashes. Unfortunately, in the
second round, the only witness u2 of x also sends x to exactly one other node u3
before u2 crashes. This will be repeated, so in round f only node uf+1 knows
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about the smallest value x. As the algorithm terminates in round f , node uf+1

will decide on value x, all other surviving (correct) nodes will decide on values
larger than x.

Remarks:

• A general proof without the restriction to decide for the minimum
value exists as well.

• Since byzantine nodes can also just crash, this lower bound also holds
for byzantine agreement, so Algorithm 4.14 has an asymptotically
optimal runtime.

• So far all our byzantine agreement algorithms assume the synchronous
model. Can byzantine agreement be solved in the asynchronous model?

4.5 Asynchronous Byzantine Agreement

Algorithm 4.21 Asynchronous Byzantine Agreement (Ben-Or, for f < n/10)

1: xu ∈ {0, 1} / input bit
2: r = 1 / round
3: decided = false
4: Broadcast propose(xu,r)
5: repeat
6: Wait until n− f propose messages of current round r arrived
7: if at least n/2 + 3f + 1 propose messages contain same value x then
8: xu = x, decided = true
9: else if at least n/2+f +1 propose messages contain same value x then

10: xu = x
11: else
12: choose xu randomly, with Pr[xu = 0] = Pr[xu = 1] = 1/2
13: end if
14: r = r + 1
15: Broadcast propose(xu,r)
16: until decided (see Line 8)
17: decision = xu

Lemma 4.22. Let a correct node choose value x in Line 10, then no other
correct node chooses value y 6= x in Line 10.

Proof. For the sake of contradiction, assume that both 0 and 1 are chosen
in Line 10. This means that both 0 and 1 had been proposed by at least
n/2 + 1 out of n− f correct nodes. In other words, we have a total of at least
2 · n/2 + 2 = n+ 2 > n− f correct nodes. Contradiction!

Theorem 4.23. Algorithm 4.21 solves binary byzantine agreement as in Defi-
nition 4.2 for up to f < n/10 byzantine nodes.
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Proof. First note that it is not a problem to wait for n− f propose messages in
Line 6, since at most f nodes are byzantine. If all correct nodes have the same
input value x, then all (except the f byzantine nodes) will propose the same
value x. Thus, every node receives at least n− 2f propose messages containing
x. Observe that for f < n/10, we get n − 2f > n/2 + 3f and the nodes will
decide on x in the first round already. We have established all-same validity!
If the correct nodes have different (binary) input values, the validity condition
becomes trivial as any result is fine.

What about agreement? Let u be the first node to decide on value x (in
Line 8). Due to asynchrony another node v received messages from a different
subset of the nodes, however, at most f senders may be different. Taking
into account that byzantine nodes may lie (send different propose messages to
different nodes), f additional propose messages received by v may differ from
those received by u. Since node u had at least n/2 + 3f + 1 propose messages
with value x, node v has at least n/2 + f + 1 propose messages with value x.
Hence every correct node will propose x in the next round, and then decide on
x.

So we only need to worry about termination: We have already seen that
as soon as one correct node terminates (Line 8) everybody terminates in the
next round. So what are the chances that some node u terminates in Line 8?
Well, we can hope that all correct nodes randomly propose the same value (in
Line 12). Maybe there are some nodes not choosing randomly (entering Line 10
instead of 12), but according to Lemma 4.22 they will all propose the same.

Thus, at worst all n−f correct nodes need to randomly choose the same bit,
which happens with probability 2−(n−f)+1. If so, all correct nodes will send the
same propose message, and the algorithm terminates. So the expected running
time is exponential in the number of nodes n in the worst case.

Remarks:

• This Algorithm is a proof of concept that asynchronous byzantine
agreement can be achieved. Unfortunately this algorithm is not useful
in practice, because of its runtime.

• Note that for f ∈ O(
√
n), the probability for some node to terminate

in Line 8 is greater than some positive constant. Thus, the Ben-Or
algorithm terminates within expected constant number of rounds for
small values of f .

Notes:

Remarks:

• Since byzantine agreement seems to be hard, we might want to have
an algorithm that learns as much information as possible. At the
beginning, all nodes only know their initial value, hence, the most
they can do is send around this value. In all later rounds, they can at
most send around all information they learned in all previous rounds
– but how can we structure this information?

Definition 4.24 (value with path). We call m a value with path, if m =
(u → v → . . . → w, x). The first argument of the message is the path that the
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message took (originated from u, sent to v, . . . , and at the end received by w),
and the second argument x is the value.

Remarks:

• In the first round of an algorithm, every node u with initial value x
can send (⊥, x) to all other nodes.

• In the second round, every node u already received (⊥, y) from every
node v. u updates the path, since it received the message from v, such
that the message becomes (v, y) and sends it to all other nodes. In
the third round, the message is received by a node w, which updates
the message to (v → u, y).

• Every node always updates the path upon receiving a message; this
prevents byzantine nodes from lying about the sender address.

Algorithm 4.25 Exponential Information Gathering

u / own id
x / initial value
R = {} / set of received values with path
V = new Array(n), each entry∞ / learned initial values from all nodes

Information gathering

1: P = {(⊥, x)}
2: for round = 1 to f + 1 do
3: Broadcast valuesWithPaths(P )
4: Receive values with path Pv from every node v
5: Remove all values with path from each Pv with a path length 6= round−1

6: Add v to all paths of all values with path in Pv
7: P =

⋃
v Pv

8: Add all values with paths in P to R
9: end for

Information analysis

10: Remove all values with path from R which have a path containing u
11: Remove all values with path from R which have a non-node-disjoint path

12: V [u] = x / u knows its own value

13: for all nodes v 6= u do
14: Fromv = all values with path in R with a path starting from v
15: if majority of tuples in Fromv have the same value y then
16: V [v] = y
17: end if
18: end for

19: Decide on minimal value in V
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Remarks:

• The goal of Algorithm 4.9 is that all nodes learn the same V , i.e., they
agree on an initial value for each node.

• When they agree on all initial values, it is trivial to achieve consensus;
e.g., they can simply pick the smallest initial value.

• We prove the correctness of this algorithm for n ≥ 4 and f = 1.

• Observe that since f = 1, all nodes receive all values with path with
path length 1 and 2.

Lemma 4.26. Every node u stores at least 1 + (n − f − 2) many values with
path in R for any correct node v 6= u, which all contain the true initial value y
of v.

Proof. In Round 1 u receives a value from v directly, and puts (v, y) into R.
In Round 2, u receives messages (v, y) from all (at least n − f) correct nodes.
Note that exactly two of these messages will be removed: One in Line 10, i.e.,
(v → u, y) and one in Line 11, i.e., (v → v, y).

Note that all these messages are only sent by correct nodes which do not
alter the value, hence all these messages contain value y.

Lemma 4.27. All correct nodes learn the true initial value of all correct nodes.

Proof. Since f = 1 and n ≥ 4, every node stores at least 1 + (4 − 1 − 2) = 2
tuples with the correct value in R. Let b be the byzantine node. For every
correct node v, it can only add a single value with path into R, namely (v → b,
z). Thus, there are always at least two tuples for the true value, and at most
one for a wrong value, hence the true value will be chosen.

Remarks:

• Indeed the byzantine node could send more more paths in one round
or not stick to the protocol at all. But such behavior can easily be
detected, and the byzantine messages could simply be removed. We
omitted such filtering of messages to enhance readability of the algo-
rithm.

Lemma 4.28. If any correct node u choses a value V [b] = y 6=∞ for a byzan-
tine node b, every correct node v choses the same V [b] = y.

Proof. Recall that all values with path from R which contain b multiple times
in the path are removed. Thus, for every correct node u, there is at most one
message in R which is directly received from b, namely (b, ∗). Note that such a
message must be sent in Round 1, as otherwise it would be removed (Line 5),
as nodes could recognize it as incorrect behavior. Assume that a correct node
u received (b, y) in Round 1. In that case, u will relay this message, and all
correct nodes will have (b→ u, y) in their set R. Therefore, all nodes will have
the same number of values with path for any value y sent by b in R. Since they
all decide deterministically, all will decide for the same initial value of b.
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Theorem 4.29. Algorithm 4.9 reaches byzantine agreement if n ≥ 4.

Proof. We need to show agreement, any-input validity and termination. With
Lemmas 4.27 and 4.28 we know that all correct nodes have the same array
V , and therefore agree on the same minimum value. The nodes agree on a
value proposed by a node, so any-input validity holds. Moreover, the algorithm
terminates after two rounds, if f = 1.

Remarks:

• The algorithm works correctly for every f ≥ 0 and n ≥ 3f + 1, but
the proof for a general n and f is significantly more involved.

• The disadvantage of this approach is that the message size is expo-
nentially large in n, as there are a lot of paths between two nodes.

• Does Algorithm 4.9 also work with n = 3?

Chapter Notes

The project which started the study of byzantine failures was called SIFT and
was founded by NASA [WLG+78], and the research regarding byzantine agree-
ment started to get significant attention with the results by Pease, Shostak, and
Lamport [PSL80, LSP82]. In [PSL80] they presented the generalized version
of Algorithm 4.9 and also showed that byzantine agreement is unsolvable for
n ≤ 3f . The algorithm presented in that paper is nowadays called Exponential
Information Gathering (EIG), due to the exponential size of the messages.

There are many algorithms for the byzantine agreement problem. For ex-
ample the Queen Algorithm [BG89] which has a better runtime than the King
algorithm [BGP89], but tolerates less failures. That byzantine agreement re-
quires at least f + 1 many rounds was shown by Dolev and Strong [DS83],
based on a more complicated proof from Fischer and Lynch [FL82].

While many algorithms for the synchronous model have been around for a
long time, the asynchronous model is a lot harder. The only results were by
Ben-Or and Bracha. Ben-Or [Ben83] was able to tolerate f < n/5. Bracha
[BT85] improved this tolerance to f < n/3.

Nearly all developed algorithms only satisfy all-same validity. There are a
few exceptions, e.g., correct-input validity [FG03], available if the initial values
are from a finite domain, median validity [SW15, MW18, DGM+11] if the input
values are orderable, or values inside the convex hull of all correct input values
[VG13, MH13, MHVG15] if the input is multidimensional.

Before the term byzantine was coined, the terms Albanian Generals or Chi-
nese Generals were used in order to describe malicious behavior. When the
involved researchers met people from these countries they moved – for obvious
reasons – to the historic term byzantine [LSP82].

Hat tip to Peter Robinson for noting how to improve Algorithm 4.9 to all-
same validity. This chapter was written in collaboration with Barbara Keller.
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Chapter 5

Broadcast & Shared Coins

In Chapter 4 we have developed a fast solution for synchronous byzantine agree-
ment (Algorithm 4.14), yet our asynchronous byzantine agreement solution (Al-
gorithm 4.21) is still awfully slow. Is there a fast asynchronous algorithm, pos-
sibly based on some advanced communication methods?

5.1 Random Oracle and Bitstring

Definition 5.1 (Random Oracle). A random oracle is a trusted (non-byzantine)
random source which can generate random values.

Algorithm 5.2 Shared Coin with Magic Random Oracle

1: return ci, where ci is ith random bit by oracle

Remarks:

• Algorithm 5.2 as well as the following shared coin algorithms will for
instance be called in Line 12 of Algorithm 4.21. So instead of every
node throwing a local coin (and hoping that they all show the same),
the nodes throw a shared coin. In other words, the value xu in Line
12 of Algorithm 4.21 will be set to the return value of the shared coin
subroutine.

• We have already seen a shared coin in Algorithm 3.22. This concept
deserves a proper definition.

Definition 5.3 (Shared Coin). A shared coin is a binary random variable
shared among all nodes. It is 0 for all nodes with constant probability, and 1 for
all nodes with constant probability. The shared coin is allowed to fail (be 0 for
some nodes and 1 for other nodes) with constant probability.

Theorem 5.4. Algorithm 5.2 plugged into Algorithm 4.21 solves asynchronous
byzantine agreement in expected constant number of rounds.

43
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Proof. If there is a large majority for one of the input values in the system,
all nodes will decide within two rounds since Algorithm 4.21 satisfies all-same-
validity; the shared coin is not even used.

If there is no significant majority for any of the input values at the beginning
of algorithm 4.21, all correct nodes will run Algorithm 5.2. Therefore, they will
set their new value to the bit given by the random oracle and terminate in the
following round.

If neither of the above cases holds, some of the nodes see an n/2 + f + 1
majority for one of the input values, while other nodes rely on the oracle. With
probability 1/2, the value of the oracle will coincide with the deterministic ma-
jority value of the other nodes. Therefore, with probability 1/2, the nodes will
terminate in the following round. The expected number of rounds for termina-
tion in this case is 3.

Remarks:

• Unfortunately, random oracles are a bit like pink fluffy unicorns: they
do not really exist in the real world. Can we fix that?

Definition 5.5 (Random Bitstring). A random bitstring is a string of ran-
dom binary values, known to all participating nodes when starting a protocol.

Algorithm 5.6 Naive Shared Coin with Random Bitstring

1: return bi, where bi is ith bit in common random bitstring

Remarks:

• But is such a precomputed bitstring really random enough? We should
be worried because of Theorem 3.14.

Theorem 5.7. If the scheduling is worst-case, Algorithm 5.6 plugged into Al-
gorithm 4.21 does not terminate.

Proof. We start Algorithm 5.6 with the following input: n/2 +f + 1 nodes have
input value 1, and n/2− f − 1 nodes have input value 0. Assume w.l.o.g. that
the first bit of the random bitstring is 0.

If the second random bit in the bitstring is also 0, then a worst-case scheduler
will let n/2 + f + 1 nodes see all n/2 + f + 1 values 1, these will therefore
deterministically choose the value 1 as their new value. Because of scheduling
(or byzantine nodes), the remaining n/2− f − 1 nodes receive strictly less than
n/2 + f + 1 values 1 and therefore have to rely on the value of the shared coin,
which is 0. The nodes will not come to a decision in this round. Moreover, we
have created the very same distribution of values for the next round (which has
also random bit 0).

If the second random bit in the bitstring is 1, then a worst-case scheduler can
let n/2−f −1 nodes see all n/2+f +1 values 1, and therefore deterministically
choose the value 1 as their new value. Because of scheduling (or byzantine
nodes), the remaining n/2 + f + 1 nodes receive strictly less than n/2 + f + 1
values 1 and therefore have to rely on the value of the shared coin, which is 0.
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The nodes will not decide in this round. And we have created the symmetric
situation for input value 1 that is coming in the next round.

So if the current and the next random bit are known, worst-case scheduling
will keep the system in one of two symmetric states that never decide.

Remarks:

• Theorem 5.7 shows that a worst-case scheduler cannot be allowed to
know the random bits of the future.

• Note that in the proof of Theorem 5.7 we did not even use any byzan-
tine nodes. Just bad scheduling was enough to prevent termination.

• Worst-case scheduling is an issue that we have not considered so far, in
particular in Chapter 3 we implicitly assumed that message scheduling
was random. What if scheduling is worst-case in Algorithm 3.22?

Lemma 5.8. Algorithm 3.22 has exponential expected running time under worst-
case scheduling.

Proof. In Algorithm 3.22, worst-case scheduling may hide up to f rare zero coin-
flips. In order to receive a zero as the outcome of the shared coin, the nodes need
to generate at least f + 1 zeros. The probability for this to happen is (1/n)f+1,
which is exponentially small for f ∈ Ω(n). In other words, with worst-case
scheduling, with probability 1− (1/n)f+1 the shared coin will be 1. The worst-
case scheduler must make sure that some nodes will always deterministically go
for 0, and the algorithm needs nf+1 rounds until it terminates.

Remarks:

• With worst-case asynchrony, some of our previous results do not hold
anymore. Can we at least solve asynchronous (assuming worst-case
scheduling) consensus if we have crash failures?

• This is indeed possible, but we need to sharpen our tools first.

5.2 Shared Coin on a Blackboard

Definition 5.9 (Blackboard Model). The blackboard is a trusted authority
which supports two operations. A node can write its message to the blackboard
and a node can read all the values that have been written to the blackboard so
far.

Remarks:

• We assume that the nodes cannot reconstruct the order in which the
messages are written to the blackboard, since the system is asynchro-
nous.
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Algorithm 5.10 Crash-Resilient Shared Coin with Blackboard (for node u)

1: while true do
2: Choose new local coin cu = +1 with probability 1/2, else cu = −1
3: Write cu to the blackboard
4: Set C = Read all coinflips on the blackboard
5: if |C| ≥ n2 then
6: return sign(sum(C))
7: end if
8: end while

Remarks:

• In Algorithm 5.10 the outcome of a coinflip is −1 or +1 instead of 0
or 1 because it simplifies the analysis, i.e., “−1 ≈ 0”.

• The sign function is used for the decision values. The sign function
returns +1 if the sum of all coinflips in C is positive, and −1 if it is
negative.

• The algorithm is unusual compared to other asynchronous algorithms
we have dealt with so far. So far we often waited for n − f mes-
sages from other nodes. In Algorithm 5.10, a single node can single-
handedly generate all n2 coinflips, without waiting.

• If a node does not need to wait for other nodes, we call the algorithm
wait-free.

• Many similar definitions beyond wait-free exist: lock-free, deadlock-
free, starvation-free, and generally non-blocking algorithms.

Theorem 5.11 (Central Limit Theorem). Let {X1, X2, . . . , XN} be a sequence
of independent random variables with Pr[Xi = −1] = Pr[Xi = 1] = 1/2 for all
i = 1, . . . , N . Then for every real number z,

lim
N→∞

Pr

[
N∑
i=1

Xi ≤ z
√
N

]
= Φ(z) <

1√
2π
e−z

2/2,

where Φ(z) is the cumulative distribution function of the standard normal dis-
tribution evaluated at z.

Theorem 5.12. Algorithm 5.10 implements a polynomial shared coin.

Proof. Each node in the algorithm terminates once at least n2 coinflips are
written to the blackboard. Before terminating, nodes may write one additional
coinflip. Therefore, every node decides after reading at least n2 and at most
n2 + n coinflips. The power of the adversary lies in the fact that it can prevent
n − 1 nodes from writing their coinflips to the blackboard by delaying their
writes. Here, we will consider an even stronger adversary that can hide up to n
coinflips which were written on the blackboard.

We need to show that both outcomes for the shared coin (+1 or −1 in Line
6) will occur with constant probability, as in Definition 5.3. Let X be the sum of
all coinflips that are visible to every node. Since some of the nodes might read
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n more values from the blackboard than others, the nodes cannot be prevented
from deciding if |X| > n. By applying Theorem 5.11 with N = n2 and z = 1,
we get:

Pr(X < −n) = Pr(X > n) = 1− Pr(X ≤ n) = 1− Φ(1) > 0.15.

Lemma 5.13. Algorithm 5.10 uses n2 coinflips, which is optimal in this model.

Proof. The proof for showing quadratic lower bound makes use of configurations
that are indistinguishable to all nodes, similar to Theorem 3.14. It requires
involved stochastic methods and we therefore will only sketch the idea of where
the n2 comes from.

The basic idea follows from Theorem 5.11. The standard deviation of the
sum of n2 coinflips is n. The central limit theorem tells us that with constant
probability the sum of the coinflips will be only a constant factor away from
the standard deviation. As we showed in Theorem 5.12, this is large enough
to disarm a worst-case scheduler. However, with much less than n2 coinflips, a
worst-case scheduler is still too powerful. If it sees a positive sum forming on
the blackboard, it delays messages trying to write +1 in order to turn the sum
temporarily negative, so the nodes finishing first see a negative sum, and the
delayed nodes see a positive sum.

Remarks:

• Algorithm 5.10 cannot tolerate even one byzantine failure: assume
the byzantine node generates all the n2 coinflips in every round due
to worst-case scheduling. Then this byzantine node can make sure
that its coinflips always sum up to a value larger than n, thus making
the outcome −1 impossible.

• In Algorithm 5.10, we assume that the blackboard is a trusted cen-
tral authority. Like the random oracle of Definition 5.1, assuming a
blackboard does not seem practical. However, fortunately, we can use
advanced broadcast methods in order to implement something like a
blackboard with just messages.

5.3 Broadcast Abstractions

Definition 5.14 (Accept). A message received by a node v is called accepted
if node v can consider this message for its computation.

Definition 5.15 (Best-Effort Broadcast). Best-effort broadcast ensures that
a message that is sent from a correct node u to another correct node v will
eventually be received and accepted by v.
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Remarks:

• Note that best-effort broadcast is equivalent to the simple broadcast
primitive that we have used so far.

• Reliable broadcast is a stronger paradigm which implies that byzantine
nodes cannot send different values to different nodes. Such behavior
will be detected.

Definition 5.16 (Reliable Broadcast). Reliable broadcast ensures that the
nodes eventually agree on all accepted messages. That is, if a correct node v
considers message m as accepted, then every other node will eventually consider
message m as accepted.

Algorithm 5.17 Asynchronous Reliable Broadcast (code for node u)

1: Broadcast own message msg(u)
2: if received msg(v) from node v then
3: Broadcast echo(u,msg(v))
4: end if
5: if received echo(w,msg(v)) from n− 2f nodes w but not msg(v) then
6: Broadcast echo(u,msg(v))
7: end if
8: if received echo(w,msg(v)) from n− f nodes w then
9: Accept(msg(v))

10: end if

Theorem 5.18. Algorithm 5.17 satisfies the following properties:

1. If a correct node broadcasts a message reliably, it will eventually be accepted
by every other correct node.

2. If a correct node has not broadcast a message, it will not be accepted by
any other correct node.

3. If a correct node accepts a message, it will be eventually accepted by every
correct node

Proof. We start with the first property. Assume a correct node broadcasts a
message msg(v), then every correct node will receive msg(v) eventually. In Line
3, every correct node (including the originator of the message) will echo the
message and, eventually, every correct node will receive at least n − f echoes,
thus accepting msg(v).

The second property follows from byzantine nodes being unable to forge an
incorrect sender address, see Definition 4.1.

The third property deals with a byzantine originator b. If a correct node
accepted message msg(b), this node must have received at least n− f echoes for
this message in Line 8. Since at most f nodes are byzantine, at least n − 2f
correct nodes have broadcast an echo message for msg(b). Therefore, every
correct node will receive these n − 2f echoes eventually and will broadcast an
echo itself. Thus, all n− f correct nodes will have broadcast an echo for msg(b)
and every correct node will accept msg(b).
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Remarks:

• Algorithm 5.17 does not terminate. Only eventually, all messages by
correct nodes will be accepted.

• The algorithm has a linear message overhead, since every node again
broadcasts every message.

• Note that byzantine nodes can issue arbitrarily many messages. This
may be a problem for protocols where each node is only allowed to
send one message (per round). Can we fix this, for instance with
sequence numbers?

Definition 5.19 (FIFO Reliable Broadcast). The FIFO (reliable) broadcast
defines an order in which the messages are accepted in the system. If a node
u broadcasts message m1 before m2, then any node v will accept message m1

before m2.

Algorithm 5.20 FIFO Reliable Broadcast (code for node u)

1: Broadcast own round r message msg(u, r)
2: if received first message msg(v, r) from node v for round r then
3: Broadcast echo(u,msg(v, r))
4: end if
5: if not echoed any msg’(v, r) before then
6: if received echo(w,msg(v, r)) from f +1 nodes w but not msg(v, r) then
7: Broadcast echo(u,msg(v, r))
8: end if
9: end if

10: if received echo(w,msg(v, r)) from n− f nodes w then
11: if accepted msg(v, r − 1) then
12: Accept(msg(v, r))
13: end if
14: end if

Theorem 5.21. Algorithm 5.20 satisfies the properties of Theorem 5.18. Addi-
tionally, Algorithm 5.20 makes sure that no two messages msg(v, r) and msg’(v, r)
are accepted from the same node. It can tolerate f < n/3 Byzantine nodes or
f < n/2 crash failures.

Proof. Just as reliable broadcast, Algorithm 5.20 satisfies the first two properties
of Theorem 5.18 by simply following the flow of messages of a correct node.

For the third property, assume again that some message originated from a
byzantine node b. If a correct node accepted message msg(b), this node must
have received at least n− f echoes for this message in Line 10.

• Byzantine case: If at most f nodes are byzantine, at least n− 2f > f + 1
correct nodes have broadcast an echo message for msg(b).

• Crash-failure case: If at most f nodes can crash, at least n − f > f + 1
nodes have broadcast an echo message for msg(b).
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In both cases, every correct node will receive these f + 1 echoes eventually and
will broadcast an echo. Thus, all n − f correct nodes will have broadcast an
echo for msg(b) and every correct node will accept msg(b).

It remains to show that at most one message will be accepted from some
node v in a round r.

• Byzantine case: Assume that some correct node u has accepted msg(v, r) in
Line 12. Then, u has received n−f echoes for this message, n−2f of which
were the first echoes of the correct nodes. Assume for contradiction that
another correct node accepts msg’(v, r). This node must have collected
n−f messages echo(w, msg’(v, r)). Since at least n−2f of these messages
must be the first echo messages sent by correct nodes, we have n − 2f +
n− 2f = 2n− 4f > n− f (for f < n/3) echo messages sent by the correct
nodes as their first echo. This is a contradiction.

• Crash-failure case: At least n − 2f not crashed nodes must have echoed
msg(v, r), while n−f nodes have echoed msg’(v, r). In total 2n−3f > n−f
(for f < n/2) correct nodes must have echoed either of the messages, which
is a contradiction.

Definition 5.22 (Atomic Broadcast). Atomic broadcast makes sure that all
messages are received in the same order by every node. That is, for any pair of
nodes u, v, and for any two messages m1 and m2, node u receives m1 before m2

if and only if node v receives m1 before m2.

Remarks:

• Definition 5.22 is equivalent to Definition 2.10, i.e., atomic broadcast
= state replication.

• Now we have all the tools to finally solve asynchronous consensus.

Notes:
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5.4 Blackboard with Message Passing

Algorithm 5.23 Crash-Resilient Asynchronous Shared Coin (code for node u)

1: In general, node u will only participate in (echo) FIFO-broadcasting
coin(i+ 1, cw) if node u already accepted the previous coin(i, cw)

Phase 1: Build bb-matrix row by row

2: for round j = 1 to n do
3: Choose local cu = +1 with probability 1/2, else cu = −1
4: FIFO-broadcast coin(j, cu)
5: Wait until accepted coin(j, cw) from n− f nodes
6: end for
7: Save all accepted messages as a matrix bb(u)

Phase 2: Update bb-matrix

8: FIFO-broadcast bb(u)
9: repeat

10: Update accepted entries in bb(u)
11: Echo bb(w) only if bb(w) ⊆ bb(u) and bb(w) has n− f full columns
12: until accepted (f + 1) bb-matrices

Phase 3: Decide on the coinflip

13: Broadcast updated matrix bb(u)
14: Wait for n− f other updated matrices
15: Update every entry in bb(u) that was inside of at least one bb-matrix
16: return sign(sum(bb(u)))

Lemma 5.24. At the end of Phase 1, matrix bb(u) will contain n−f columns,
each having n accepted coinflips.

Proof. The matrix bb(u) only contains accepted entries at the end of Phase 1.
Each row of the matrix represents a round of communication and each column
represents a node. A node only increments its round when it has accepted all
coinflips from the previous rounds from n− f different nodes (including itself).
After the last round, the bb(u) matrix holds n− f full columns and f columns
where the top part is filled and the rest of the values is unknown.

Lemma 5.25. All nodes will finish Phase 2 of Algorithm 5.23.

Proof. Due to Theorem 5.18(3), every value of any correct bb matrix will be
accepted by every correct node eventually. Since the nodes keep updating their
bb matrix in Line 10, all correct nodes will eventually contain all correct matrices
as submatrices and participate in their FIFO broadcast. Once the first correct
node accepts (t+ 1) matrices, all nodes will accept the matrices eventually, an
therefore Phase 2 of the algorithm will be completed eventually.

Lemma 5.26. At the end of Phase 3, all correct bb matrices share the same
(n− f)× (n) submatrix.
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Proof. In order to show that there will be a common submatrix, we need consider
Phase 2 again. There, each node accepts f + 1 blackboard matrices. Among
these matrices there will be a matrix bb(v) from a correct node. Since the
matrices were FIFO broadcast, at least n− 2f correct nodes have accepted all
values from bb(v) and will broadcast a matrix containing these values in Line
13. Every node also receives matrices from at least n− f correct nodes, n− 2f
of which will contain all values from matrix bb(v). The above statement follows
from the assumption that f < n/2 and Lemma 5.24.

Lemma 5.27. At the end of the algorithm, the remaining f columns will only
differ in the latest value a node has received.

Proof. Assume one node has accepted a value in the round i. Then at least
n− 2f correct nodes have participated in FIFO broadcast of this value. By the
condition in Line ?? these correct nodes must have accepted the value from the
same node in the previous round. This means, at least n − 2f correct nodes
have accepted the value from the previous round. Therefore, every correct node
will accept this value in Phase 3 of the algorithm.

Theorem 5.28. Algorithm 5.23 solves the asynchronous agreement problem
with crash failures in the message passing model with high probability, while
exchanging O(n4) messages.

Proof. The blackboard model makes sure that for any number of iterations
chosen in Phase 1 of the algorithm, the local views of nodes differ in the same
f entries. For n rounds, the total number of generated coinflips is n2, just as in
Algorithm 5.10. With only f different entries, the analysis from Theorem 5.12
can be applied here. This implies a shared coin which generates the values −1
and 1 with constant probability.

The largest number of messages that is exchanged in the algorithm, is ex-
changed in Phase 2. There, each bb matrix which contains n2 messages is
broadcast reliably. This results in O(n4) messages in total.

Remarks:

• The probability of success can be increased by either increasing the
number of rounds (i.e. total number of coinflips) in Phase 1 of the
algorithm or executing the algorithm repeatedly.

• Algorithm 5.23 can be modified to tolerate n/3 byzantine nodes, while
satisfying the same conditions as in the crash failure model.

• Even though the assumption of only f different values among n2

or even nc coinflips is very appealing in the byzantine setting, also
this method has exponential expected running time. This is because
byzantine nodes control f ·n ≈ n2 entries of the matrix, and can thus
change the deviation of the sum easily.



5.5. BLACKBOARD WITH MESSAGE PASSING 53

5.5 Blackboard with Message Passing

Algorithm 5.29 Crash-Resilient Shared Coin (code for node u)

1: while true do
2: Choose local coin cu = +1 with probability 1/2, else cu = −1
3: FIFO-broadcast coin(cu, r) to all nodes
4: Save all received coins coin(cv, r) in a set Cu
5: Wait until accepted own coin(cu)
6: Request Cv from n− f nodes v, and add newly seen coins to Cu
7: if |Cu| ≥ n2 then
8: return sign(sum(Cu))
9: end if

10: end while

Theorem 5.30. Algorithm 5.29 solves asynchronous binary agreement for f <
n/2 crash failures.

Proof. The upper bound for the number of crash failures results from the upper
bound in 5.21. The idea of this algorithm is to simulate the read and write
operations from Algorithm 5.10.

Line 3 simulates a read operation: by accepting the own coinflip, a node
verifies that n−f correct nodes have received its most recent generated coinflip
coin(cu, r). At least n − 2f > 1 of these nodes will never crash and the value
therefore can be considered as stored on the blackboard. While a value is
not accepted and therefore not stored, node u will not generate new coinflips.
Therefore, at any point of the algorithm, there is at most n additional generated
coinflips next to the accepted coins.

Line 6 of the algorithm corresponds to a read operation. A node reads a
value by requesting Cv from at least n− f nodes v. Assume that for a coinflip
coin(cu, r), f nodes that participated in the FIFO broadcast of this message
have crashed. When requesting n − f sets of coinflips, there will be at least
(n − 2f) + (n − f) − (n − f) = n − 2f > 1 sets among the requested ones
containing coin(cu, r). Therefore, a node will always read all values that were
accepted so far.

This shows that the read and write operations are equivalent to the same op-
erations in Algorithm 5.10. Assume now that some correct node has terminated
after reading n2 coinflips. Since each node reads the stored coinflips before gen-
erating a new one in the next round, there will be at most n additional coins
accepted by any other node before termination. This setting is equivalent to
Theorem 5.12 and the rest of the analysis is therefore analogous to the analysis
in that theorem.

Remarks:

• So finally we can deal with worst-case crash failures and worst-case
scheduling.

• But what about byzantine agreement? We need even more powerful
methods!
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5.6 Using Cryptography

Definition 5.31 (Threshold Secret Sharing). Let t, n ∈ N with 1 ≤ t ≤ n.
An algorithm that distributes a secret among n participants such that t partici-
pants need to collaborate to recover the secret is called a (t, n)-threshold secret
sharing scheme.

Definition 5.32 (Signature). Every node can sign its messages in a way that
no other node can forge, thus nodes can reliably determine which node a signed
message originated from. We denote a message x signed by node u with msg(x)u.

Algorithm 5.33 (t, n)-Threshold Secret Sharing

1: Input: A secret s, represented as a real number.

Secret distribution by dealer d

2: Generate t− 1 random numbers a1, . . . , at−1 ∈ R
3: Obtain a polynomial p of degree t− 1 with p(x) = s+ a1x+ · · ·+ at−1x

t−1

4: Generate n distinct x1, . . . , xn ∈ R \ {0}
5: Distribute share msg(x1, p(x1))d to node v1, . . . , msg(xn, p(xn))d to node vn

Secret recovery

6: Collect t shares msg(xu, p(xu))d from at least t nodes
7: Use Lagrange’s interpolation formula to obtain p(0) = s

Remarks:

• Algorithm 5.33 relies on a trusted dealer, who broadcasts the secret
shares to the nodes.

• Using an (f + 1, n)-threshold secret sharing scheme, we can encrypt
messages in such a way that byzantine nodes alone cannot decrypt
them.

Algorithm 5.34 Preprocessing Step for Algorithm 5.35 (code for dealer d)

1: According to Algorithm 5.33, choose polynomial p of degree f
2: for i = 1, . . . , n do
3: Choose coinflip ci, where ci = 0 with probability 1/2, else ci = 1
4: Using Algorithm 5.33, generate n shares (xi1, p(x

i
1)), . . . , (xin, p(x

i
n)) for ci

5: end for
6: Send shares msg(x1u, p(x

1
u))d, . . . , msg(xnu, p(x

n
u))d to node u

Algorithm 5.35 Shared Coin using Secret Sharing (ith iteration)

1: Request shares from at least f + 1 nodes
2: Using Algorithm 5.33, let ci be the value reconstructed from the shares
3: return ci
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Theorem 5.36. Algorithm 4.21 together with Algorithm 5.34 and Algorithm
5.35 solves asynchronous byzantine agreement for f < n/3 in expected 3 number
of rounds.

Proof. In Line 1 of Algorithm 5.35, the nodes collect shares from f + 1 nodes.
Since a byzantine node cannot forge the signature of the dealer, it is restricted
to either send its own share or decide to not send it at all. Therefore, each
correct node will eventually be able to reconstruct secret ci of round i correctly
in Line 2 of the algorithm. The running time analysis follows then from the
analysis of Theorem 5.4.

Remarks:

• In Algorithm 5.34 we assume that the dealer generates the random
bitstring. This assumption is not necessary in general.

• We showed that cryptographic assumptions can speed up asynchro-
nous byzantine agreement.

• Algorithm 4.21 can also be implemented in the synchronous setting.

• A randomized version of a synchronous byzantine agreement algorithm
can improve on the lower bound of t+ 1 rounds for the deterministic
algorithms.

Definition 5.37 (Cryptographic Hash Function). A hash function hash : U →
S is called cryptographic, if for a given z ∈ S it is computationally hard to
find an element x ∈ U with hash(x) = z.

Remarks:

• Popular hash functions used in cryptography include the Secure Hash
Algorithm (SHA) and the Message-Digest Algorithm (MD).

Algorithm 5.38 Simple Synchronous Byzantine Shared Coin (for node u)

1: Each node has a public key that is known to all nodes.
2: Let r be the current round of Algorithm 4.21
3: Broadcast msg(r)u, i.e., round number r signed by node u
4: Compute hv = hash(msg(r)v) for all received messages msg(r)v
5: Let hmin = minv hv
6: return least significant bit of hmin

Remarks:

• In Algorithm 5.38, Line 3 each node can verify the correctness of the
signed message using the public key.

• Just as in Algorithm 4.9, the decision value is the minimum of all
received values. While the minimum value is received by all nodes
after 2 rounds there, we can only guarantee to receive the minimum
with constant probability in this algorithm.
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• Hashing helps to restrict byzantine power, since a byzantine node
cannot compute the smallest hash.

Theorem 5.39. Algorithm 5.38 plugged into Algorithm 4.21 solves synchronous
byzantine agreement in expected 5 rounds for up to f < n/10 byzantine failures.

Proof. With probability 1/3 the minimum hash value is generated by a byzan-
tine node. In such a case, we can assume that not all correct nodes will receive
the byzantine value and thus, different nodes might compute different values for
the shared coin.

With probability 2/3, the shared coin will be from a correct node, and with
probability 1/2 the value of the shared coin will correspond to the value which
was deterministically chosen by some of the correct nodes. Therefore, with
probability 1/3 the nodes will reach consensus in the next iteration of Algorithm
4.21. The expected number of rounds is:

1 +

∞∑
i=0

2 ·
(

2

3

)i
= 5

Chapter Notes

Asynchronous byzantine agreement is usually considered in one out of two com-
munication models – shared memory or message passing. The first polynomial
algorithm for the shared memory model that uses a shared coin was proposed by
Aspnes and Herlihy [AH90] and required exchanging O(n4) messages in total.
Algorithm 5.10 is also an implementation of the shared coin in the shared mem-
ory model and it requires exchanging O(n3) messages. This variant is due to
Saks, Shavit and Woll [SSW91]. Bracha and Rachman [BR92] later reduced the
number of messages exchanged to O(n2 log n). The tight lower bound of Ω(n2)
on the number of coinflips was proposed by Attiya and Censor [AC08] and
improved the first non-trivial lower bound of Ω(n2/ log2 n) by Aspnes [Asp98].

In the message passing model, the shared coin is usually implemented us-
ing reliable broadcast. Reliable broadcast was first proposed by Srikanth and
Toueg [ST87] as a method to simulate authenticated broadcast. There is also
another implementation which was proposed by Bracha [Bra87]. Today, a lot of
variants of reliable broadcast exist, including FIFO broadcast [AAD05], which
was considered in this chapter. A good overview over the broadcast routines is
given by Cachin et al. [CGR14]. A possible way to reduce message complexity
is by simulating the read and write commands [ABND95] as in Algorithm 5.29.
The message complexity of this method is O(n3). Alistarh et al. [AAKS14]
improved the number of exchanged messages to O(n2 log2 n) using a binary tree
that restricts the number of communicating nodes according to the depth of the
tree.

It remains an open question whether asynchronous byzantine agreement can
be solved in the message passing model without cryptographic assumptions.
If cryptographic assumptions are however used, byzantine agreement can be
solved in expected constant number of rounds. Algorithm 5.34 presents the
first implementation due to Rabin [Rab83] using threshold secret sharing. This
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algorithm relies on the fact that the dealer provides the random bitstring. Chor
et al. [CGMA85] proposed the first algorithm where the nodes use verifiable
secret sharing in order to generate random bits. Later work focuses on improving
resilience [CR93] and practicability [CKS00]. Algorithm 5.38 by Micali [Mic18]
shows that cryptographic assumptions can also help to improve the running
time in the synchronous model.

This chapter was written in collaboration with Darya Melnyk.
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