
Chapter 6

Eventual Consistency &
Bitcoin

Notes:

• First I discuss the ATM example, and the CAP theorem (all very slowly,
can be done in about 15’). Then I present the bitcoin addresses, transac-
tions, network, twix, doublespends. Then 45’ are over, and the break is
here.

• After the break the leaders, blocks, then proof-of-work, blockchain, forks,
reorg. Students ask many questions along the way. In the end I have about
15’ left to explain micropayment channels, and the network, which is prob-
ably not quite enough. I don’t do the other weak consistency definitions
at the end. Sometimes I do Decker/MtGox, sometimes not.

• Maybe weak and strong consistency should be its own chapter? Not sure,
but clearly Bitcoin by itself is good and plenty.

How would you implement an ATM? Does the following implementation
work satisfactorily?

Algorithm 6.1 Näıve ATM

1: ATM makes withdrawal request to bank
2: ATM waits for response from bank
3: if balance of customer sufficient then
4: ATM dispenses cash
5: else
6: ATM displays error
7: end if

Remarks:

• A connection problem between the bank and the ATM may block
Algorithm 6.1 in Line 2.

59

60 CHAPTER 6. EVENTUAL CONSISTENCY & BITCOIN

• A network partition is a failure where a network splits into at least
two parts that cannot communicate with each other. Intuitively any
non-trivial distributed system cannot proceed during a partition and
maintain consistency. In the following we introduce the tradeoff be-
tween consistency, availability and partition tolerance.

• There are numerous causes for partitions to occur, e.g., physical dis-
connections, software errors, or incompatible protocol versions. From
the point of view of a node in the system, a partition is similar to a
period of sustained message loss.

6.1 Consistency, Availability and Partitions

Definition 6.2 (Consistency). All nodes in the system agree on the current
state of the system.

Definition 6.3 (Availability). The system is operational and instantly process-
ing incoming requests.

Definition 6.4 (Partition Tolerance). Partition tolerance is the ability of a dis-
tributed system to continue operating correctly even in the presence of a network
partition.

Theorem 6.5 (CAP Theorem). It is impossible for a distributed system to
simultaneously provide Consistency, Availability and Partition Tolerance. A
distributed system can satisfy any two of these but not all three.

Proof. Assume two nodes, sharing some state. The nodes are in different par-
titions, i.e., they cannot communicate. Assume a request wants to update the
state and contacts a node. The node may either: 1) update its local state,
resulting in inconsistent states, or 2) not update its local state, i.e., the system
is no longer available for updates.

Algorithm 6.6 Partition tolerant and available ATM

1: if bank reachable then
2: Synchronize local view of balances between ATM and bank
3: if balance of customer insufficient then
4: ATM displays error and aborts user interaction
5: end if
6: end if
7: ATM dispenses cash
8: ATM logs withdrawal for synchronization

Remarks:

• Algorithm 6.6 is partition tolerant and available since it continues to
process requests even when the bank is not reachable.

• The ATM’s local view of the balances may diverge from the balances
as seen by the bank, therefore consistency is no longer guaranteed.

6.2. BITCOIN 61

• The algorithm will synchronize any changes it made to the local bal-
ances back to the bank once connectivity is re-established. This is
known as eventual consistency.

Definition 6.7 (Eventual Consistency). If no new updates to the shared state
are issued, then eventually the system is in a quiescent state, i.e., no more
messages need to be exchanged between nodes, and the shared state is consistent.

Remarks:

• Eventual consistency is a form of weak consistency.

• Eventual consistency guarantees that the state is eventually agreed
upon, but the nodes may disagree temporarily.

• During a partition, different updates may semantically conflict with
each other. A conflict resolution mechanism is required to resolve the
conflicts and allow the nodes to eventually agree on a common state.

• One example of eventual consistency is the Bitcoin cryptocurrency
system.

6.2 Bitcoin

Definition 6.8 (Bitcoin Network). The Bitcoin network is a randomly con-
nected overlay network of a few thousand nodes, controlled by a variety of own-
ers. All nodes perform the same operations, i.e., it is a homogenous network
and without central control.

Remarks:

• The lack of structure is intentional: it ensures that an attacker cannot
strategically position itself in the network and manipulate the infor-
mation exchange. Information is exchanged via a simple broadcasting
protocol.

Definition 6.9 (Address). Users may generate any number of private keys,
from which a public key is then derived. An address is derived from a public key
and may be used to identify the recipient of funds in Bitcoin. The private/public
key pair is used to uniquely identify the owner of funds of an address.

Remarks:

• The terms public key and address are often used interchangeably, since
both are public information. The advantage of using an address is that
its representation is shorter than the public key.

• It is hard to link addresses to the user that controls them, hence
Bitcoin is often referred to as being pseudonymous.

• Not every user needs to run a fully validating node, and end-users will
likely use a lightweight client that only temporarily connects to the
network.

62 CHAPTER 6. EVENTUAL CONSISTENCY & BITCOIN

• The Bitcoin network collaboratively tracks the balance in bitcoins of
each address.

• The address is composed of a network identifier byte, the hash of the
public key and a checksum. It is commonly stored in base 58 encoding,
a custom encoding similar to base 64 with some ambiguous symbols
removed, e.g., lowercase letter “l” since it is similar to the number
“1”.

• The hashing algorithm produces addresses of size 20 bytes. This
means that there are 2160 distinct addresses. It might be tempting
to brute force a target address, however at one billion trials per sec-
ond one still requires approximately 245 years in expectation to find
a matching private/public key pair. Due to the birthday paradox the
odds improve if instead of brute forcing a single address we attempt to
brute force any address. While the odds of a successful trial increase
with the number of addresses, lookups become more costly.

Definition 6.10 (Output). An output is a tuple consisting of an amount of bit-
coins and a spending condition. Most commonly the spending condition requires
a valid signature associated with the private key of an address.

Remarks:

• Spending conditions are scripts that offer a variety of options. Apart
from a single signature, they may include conditions that require the
result of a simple computation, or the solution to a cryptographic
puzzle.

• Outputs exist in two states: unspent and spent. Any output can be
spent at most once. The address balance is the sum of bitcoin amounts
in unspent outputs that are associated with the address.

• The set of unspent transaction outputs (UTXOs) and some additional
global parameters are the shared state of Bitcoin. Every node in the
Bitcoin network holds a complete replica of that state. Local replicas
may temporarily diverge, but consistency is eventually re-established.

Definition 6.11 (Input). An input is a tuple consisting of a reference to a
previously created output and arguments (signature) to the spending condition,
proving that the transaction creator has the permission to spend the referenced
output.

Definition 6.12 (Transaction). A transaction is a data structure that describes
the transfer of bitcoins from spenders to recipients. The transaction consists of
a number of inputs and new outputs. The inputs result in the referenced outputs
spent (removed from the UTXO), and the new outputs being added to the UTXO.

6.2. BITCOIN 63

Remarks:

• Inputs reference the output that is being spent by a (h, i)-tuple, where
h is the hash of the transaction that created the output, and i specifies
the index of the output in that transaction.

• Transactions are broadcast in the Bitcoin network and processed by
every node that receives them.

64 CHAPTER 6. EVENTUAL CONSISTENCY & BITCOIN

Algorithm 6.13 Node Receives Transaction

1: Receive transaction t
2: for each input (h, i) in t do
3: if output (h, i) is not in local UTXO or signature invalid then
4: Drop t and stop
5: end if
6: end for
7: if sum of values of inputs < sum of values of new outputs then
8: Drop t and stop
9: end if

10: for each input (h, i) in t do
11: Remove (h, i) from local UTXO
12: end for
13: Append t to local history
14: Forward t to neighbors in the Bitcoin network

Remarks:

• Note that the effect of a transaction on the state is deterministic. In
other words if all nodes receive the same set of transactions in the
same order (Definition 2.10), then the state across nodes is consistent.

• The outputs of a transaction may assign less than the sum of inputs, in
which case the difference is called the transaction fee. The fee is used
to incentivize other participants in the system (see Definition 6.19)

• Notice that so far we only described a local acceptance policy. Nothing
prevents nodes to locally accept different transactions that spend the
same output.

• Transactions are in one of two states: unconfirmed or confirmed. In-
coming transactions from the broadcast are unconfirmed and added
to a pool of transactions called the memory pool.

Definition 6.14 (Doublespend). A doublespend is a situation in which multiple
transactions attempt to spend the same output. Only one transaction can be valid
since outputs can only be spent once. When nodes accept different transactions
in a doublespend, the shared state becomes inconsistent.

Remarks:

• Doublespends may occur naturally, e.g., if outputs are co-owned by
multiple users. However, often doublespends are intentional – we call
these doublespend-attacks: In a transaction, an attacker pretends to
transfer an output to a victim, only to doublespend the same output
in another transaction back to itself.

• Doublespends can result in an inconsistent state since the validity
of transactions depends on the order in which they arrive. If two
conflicting transactions are seen by a node, the node considers the
first to be valid, see Algorithm 6.13. The second transaction is invalid

6.2. BITCOIN 65

since it tries to spend an output that is already spent. The order in
which transactions are seen, may not be the same for all nodes, hence
the inconsistent state.

• If doublespends are not resolved, the shared state diverges. Therefore
a conflict resolution mechanism is needed to decide which of the con-
flicting transactions is to be confirmed (accepted by everybody), to
achieve eventual consistency.

Definition 6.15 (Proof-of-Work). Proof-of-Work (PoW) is a mechanism that
allows a party to prove to another party that a certain amount of computa-
tional resources has been utilized for a period of time. A function Fd(c, x) →
{true, false}, where difficulty d is a positive number, while challenge c and
nonce x are usually bit-strings, is called a Proof-of-Work function if it has fol-
lowing properties:

1. Fd(c, x) is fast to compute if d, c, and x are given.

2. For fixed parameters d and c, finding x such that Fd(c, x) = true is com-
putationally difficult but feasible. The difficulty d is used to adjust the time
to find such an x.

Definition 6.16 (Bitcoin PoW function). The Bitcoin PoW function is given
by

Fd(c, x)→ SHA256(SHA256(c|x)) <
2224

d
.

Remarks:

• This function concatenates the challenge c and nonce x, and hashes
them twice using SHA256. The output of SHA256 is a cryptographic
hash with a numeric value in {0, . . . , 2256 − 1} which is compared to

a target value 2224

d , which gets smaller with increasing difficulty.

• SHA256 is a cryptographic hash function with pseudorandom output.
No better algorithm is known to find a nonce x such that the function
Fd(c, x) returns true than simply iterating over possible inputs. This
is by design to make it difficult to find such an input, but simple to
verify the validity once it has been found.

• If the PoW functions of all nodes had the same challenge, the fastest
node would always win. However, as we will see in Definition 6.19,
each node attempts to find a valid nonce for a node-specific challenge.

Definition 6.17 (Block). A block is a data structure used to communicate
incremental changes to the local state of a node. A block consists of a list of
transactions, a reference to a previous block and a nonce. A block lists some
transactions the block creator (“miner”) has accepted to its memory pool since
the previous block. A node finds and broadcasts a block when it finds a valid
nonce for its PoW function.

66 CHAPTER 6. EVENTUAL CONSISTENCY & BITCOIN

Algorithm 6.18 Node Finds Block

1: Nonce x = 0, challenge c, difficulty d, previous block bt−1
2: repeat
3: x = x+ 1
4: until Fd(c, x) = true
5: Broadcast block bt = (memory pool, bt−1, x)

Remarks:

• With their reference to a previous block, the blocks build a tree, rooted
in the so called genesis block.

• The primary goal for using the PoW mechanism is to adjust the rate
at which blocks are found in the network, giving the network time
to synchronize on the latest block. Bitcoin sets the difficulty so that
globally a block is created about every 10 minutes in expectation.

• Finding a block allows the finder to impose the transactions in its local
memory pool to all other nodes. Upon receiving a block, all nodes roll
back any local changes since the previous block and apply the new
block’s transactions.

• Transactions contained in a block are said to be confirmed by that
block.

Definition 6.19 (Reward Transaction). The first transaction in a block is called
the reward transaction. The block’s miner is rewarded for confirming transac-
tions by allowing it to mint new coins. The reward transaction has a dummy
input, and the sum of outputs is determined by a fixed subsidy plus the sum of
the fees of transactions confirmed in the block.

Remarks:

• A reward transaction is the sole exception to the rule that the sum of
inputs must be at least the sum of outputs.

• The number of bitcoins that are minted by the reward transaction and
assigned to the miner is determined by a subsidy schedule that is part
of the protocol. Initially the subsidy was 50 bitcoins for every block,
and it is being halved every 210,000 blocks, or 4 years in expectation.
Due to the halving of the block reward, the total amount of bitcoins
in circulation never exceeds 21 million bitcoins.

• It is expected that the cost of performing the PoW to find a block, in
terms of energy and infrastructure, is close to the value of the reward
the miner receives from the reward transaction in the block.

Definition 6.20 (Blockchain). The longest path from the genesis block, i.e.,
root of the tree, to a leaf is called the blockchain. The blockchain acts as a
consistent transaction history on which all nodes eventually agree.

6.2. BITCOIN 67

Remarks:

• The path length from the genesis block to block b is the height hb.

• Only the longest path from the genesis block to a leaf is a valid trans-
action history, since branches may contradict each other because of
doublespends.

• Since only transactions in the longest path are agreed upon, miners
have an incentive to append their blocks to the longest chain, thus
agreeing on the current state.

• The mining incentives quickly increased the difficulty of the PoW
mechanism: initially miners used CPUs to mine blocks, but CPUs
were quickly replaced by GPUs, FPGAs and even application specific
integrated circuits (AS-ICs) as bitcoins appreciated. This results in
an equilibrium today in which only the most cost efficient miners, in
terms of hardware supply and electricity, make a profit in expectation.

• If multiple blocks are mined more or less concurrently, the system is
said to have forked. Forks happen naturally because mining is a dis-
tributed random process and two new blocks may be found at roughly
the same time.

Algorithm 6.21 Node Receives Block

1: Receive block b
2: For this node the current head is block bmax at height hmax
3: Connect block b in the tree as child of its parent p at height hb = hp + 1
4: if hb > hmax then
5: hmax = hb
6: bmax = b
7: Compute UTXO for the path leading to bmax
8: Cleanup memory pool
9: end if

Remarks:

• Algorithm 6.21 describes how a node updates its local state upon
receiving a block. Notice that, like Algorithm 6.13, this describes
the local policy and may also result in node states diverging, i.e., by
accepting different blocks at the same height as current head.

• Unlike extending the current path, switching paths may result in con-
firmed transactions no longer being confirmed, because the blocks in
the new path do not include them. Switching paths is referred to as
a reorg.

• Cleaning up the memory pool involves 1) removing transactions that
were confirmed in a block in the current path, 2) removing transactions
that conflict with confirmed transactions, and 3) adding transactions
that were confirmed in the previous path, but are no longer confirmed
in the current path.

68 CHAPTER 6. EVENTUAL CONSISTENCY & BITCOIN

• In order to avoid having to recompute the entire UTXO at every
new block being added to the blockchain, all current implementations
use data structures that store undo information about the operations
applied by a block. This allows efficient switching of paths and updates
of the head by moving along the path.

Theorem 6.22. Forks are eventually resolved and all nodes eventually agree
on which is the longest blockchain. The system therefore guarantees eventual
consistency.

Proof. In order for the fork to continue to exist, pairs of blocks need to be
found in close succession, extending distinct branches, otherwise the nodes on
the shorter branch would switch to the longer one. The probability of branches
being extended almost simultaneously decreases exponentially with the length
of the fork, hence there will eventually be a time when only one branch is being
extended, becoming the longest branch.

6.3 Smart Contracts

Definition 6.23 (Smart Contract). A smart contract is an agreement between
two or more parties, encoded in such a way that the correct execution is guar-
anteed by the blockchain.

Remarks:

• Contracts allow business logic to be encoded in Bitcoin transactions
which mutually guarantee that an agreed upon action is performed.
The blockchain acts as conflict mediator, should a party fail to honor
an agreement.

• The use of scripts as spending conditions for outputs enables smart
contracts. Scripts, together with some additional features such as
timelocks, allow encoding complex conditions, specifying who may
spend the funds associated with an output and when.

Definition 6.24 (Timelock). Bitcoin provides a mechanism to make transac-
tions invalid until some time in the future: timelocks. A transaction may
specify a locktime: the earliest time, expressed in either a Unix timestamp or
a blockchain height, at which it may be included in a block and therefore be
confirmed.

Remarks:

• Transactions with a timelock are not released into the network until
the timelock expires. It is the responsibility of the node receiving
the transaction to store it locally until the timelock expires and then
release it into the network.

• Transactions with future timelocks are invalid. Blocks may not in-
clude transactions with timelocks that have not yet expired, i.e., they
are mined before their expiry timestamp or in a lower block than spec-
ified. If a block includes an unexpired transaction it is invalid. Upon
receiving invalid transactions or blocks, nodes discard them immedi-
ately and do not forward them to their peers.

6.3. SMART CONTRACTS 69

• Timelocks can be used to replace or supersede transactions: a time-
locked transaction t1 can be replaced by another transaction t0, spend-
ing some of the same outputs, if the replacing transaction t0 has an
earlier timelock and can be broadcast in the network before the re-
placed transaction t1 becomes valid.

Definition 6.25 (Singlesig and Multisig Outputs). When an output can be
claimed by providing a single signature it is called a singlesig output. In
contrast the script of multisig outputs specifies a set of m public keys and
requires k-of-m (with k ≤ m) valid signatures from distinct matching public
keys from that set in order to be valid.

Remarks:

• Most smart contracts begin with the creation of a 2-of-2 multisig out-
put, requiring a signature from both parties. Once the transaction
creating the multisig output is confirmed in the blockchain, both par-
ties are guaranteed that the funds of that output cannot be spent
unilaterally.

Algorithm 6.26 Parties A and B create a 2-of-2 multisig output o

1: B sends a list IB of inputs with cB coins to A
2: A selects its own inputs IA with cA coins
3: A creates transaction ts{[IA, IB], [o = cA + cB → (A,B)]}
4: A creates timelocked transaction tr{[o], [cA → A, cB → B]} and signs it
5: A sends ts and tr to B
6: B signs both ts and tr and sends them to A
7: A signs ts and broadcasts it to the Bitcoin network

Remarks:

• ts is called a setup transaction and is used to lock in funds into a shared
account. If ts is signed and broadcast immediately, one of the parties
could not collaborate to spend the multisig output, and the funds
become unspendable. To avoid a situation where the funds cannot
be spent, the protocol also creates a timelocked refund transaction
tr which guarantees that, should the funds not be spent before the
timelock expires, the funds are returned to the respective party. At no
point in time one of the parties holds a fully signed setup transaction
without the other party holding a fully signed refund transaction,
guaranteeing that funds are eventually returned.

• Both transactions require the signature of both parties. In the case of
the setup transaction because it has two inputs from A and B respec-
tively which require individual signatures. In the case of the refund
transaction the single input spending the multisig output requires both
signatures being a 2-of-2 multisig output.

70 CHAPTER 6. EVENTUAL CONSISTENCY & BITCOIN

Algorithm 6.27 Simple Micropayment Channel from S to R with capacity c

1: cS = c, cR = 0
2: S and R use Algorithm 6.26 to set up output o with value c from S
3: Create settlement transaction tf{[o], [cS → S, cR → R]}
4: while channel open and cR < c do
5: In exchange for good with value δ
6: cR = cR + δ
7: cS = cS − δ
8: Update tf with outputs [cR → R, cS → S]
9: S signs and sends tf to R

10: end while
11: R signs last tf and broadcasts it

Remarks:

• Algorithm 6.27 implements a Simple Micropayment Channel, a smart
contract that is used for rapidly adjusting micropayments from a
spender to a recipient. Only two transactions are ever broadcast and
inserted into the blockchain: the setup transaction ts and the last set-
tlement transaction tf . There may have been any number of updates
to the settlement transaction, transferring ever more of the shared
output to the recipient.

• The number of bitcoins c used to fund the channel is also the maximum
total that may be transferred over the simple micropayment channel.

• At any time the recipient R is guaranteed to eventually receive the
bitcoins, since she holds a fully signed settlement transaction, while
the spender only has partially signed ones.

• The simple micropayment channel is intrinsically unidirectional. Since
the recipient may choose any of the settlement transactions in the
protocol, she will use the one with maximum payout for her. If we
were to transfer bitcoins back, we would be reducing the amount paid
out to the recipient, hence she would choose not to broadcast that
transaction.

6.4 Weak Consistency

Eventual consistency is only one form of weak consistency. A number of different
tradeoffs between partition tolerance and consistency exist in literature.

Definition 6.28 (Monotonic Read Consistency). If a node u has seen a partic-
ular value of an object, any subsequent accesses of u will never return any older
values.

6.4. WEAK CONSISTENCY 71

Remarks:

• Users are annoyed if they receive a notification about a comment on
an online social network, but are unable to reply because the web
interface does not show the same notification yet. In this case the
notification acts as the first read operation, while looking up the com-
ment on the web interface is the second read operation.

Definition 6.29 (Monotonic Write Consistency). A write operation by a node
on a data item is completed before any successive write operation by the same
node (i.e., system guarantees to serialize writes by the same node).

Remarks:

• The ATM must replay all operations in order, otherwise it might hap-
pen that an earlier operation overwrites the result of a later operation,
resulting in an inconsistent final state.

Definition 6.30 (Read-Your-Write Consistency). After a node u has updated
a data item, any later reads from node u will never see an older value.

Definition 6.31 (Causal Relation). The following pairs of operations are said
to be causally related:

• Two writes by the same node to different variables.

• A read followed by a write of the same node.

• A read that returns the value of a write from any node.

• Two operations that are transitively related according to the above condi-
tions.

Remarks:

• The first rule ensures that writes by a single node are seen in the same
order. For example if a node writes a value in one variable and then
signals that it has written the value by writing in another variable.
Another node could then read the signalling variable but still read the
old value from the first variable, if the two writes were not causally
related.

Definition 6.32 (Causal Consistency). A system provides causal consistency
if operations that potentially are causally related are seen by every node of the
system in the same order. Concurrent writes are not causally related, and may
be seen in different orders by different nodes.

Chapter Notes

The CAP theorem was first introduced by Fox and Brewer [FB99], although it
is commonly attributed to a talk by Eric Brewer [Bre00]. It was later proven
by Gilbert and Lynch [GL02] for the asynchronous model. Gilbert and Lynch
also showed how to relax the consistency requirement in a partially synchronous
system to achieve availability and partition tolerance.

72 CHAPTER 6. EVENTUAL CONSISTENCY & BITCOIN

Bitcoin was introduced in 2008 by Satoshi Nakamoto [Nak08]. Nakamoto is
thought to be a pseudonym used by either a single person or a group of people;
it is still unknown who invented Bitcoin, giving rise to speculation and con-
spiracy theories. Among the plausible theories are noted cryptographers Nick
Szabo [Big13] and Hal Finney [Gre14]. The first Bitcoin client was published
shortly after the paper and the first block was mined on January 3, 2009. The
genesis block contained the headline of the release date’s The Times issue “The
Times 03/Jan/2009 Chancellor on brink of second bailout for banks”, which
serves as proof that the genesis block has been indeed mined on that date, and
that no one had mined before that date. The quote in the genesis block is also
thought to be an ideological hint: Bitcoin was created in a climate of finan-
cial crisis, induced by rampant manipulation by the banking sector, and Bitcoin
quickly grew in popularity in anarchic and libertarian circles. The original client
is nowadays maintained by a group of independent core developers and remains
the most used client in the Bitcoin network.

Central to Bitcoin is the resolution of conflicts due to doublespends, which
is solved by waiting for transactions to be included in the blockchain. This
however introduces large delays for the confirmation of payments which are
undesirable in some scenarios in which an immediate confirmation is required.
Karame et al. [KAC12] show that accepting unconfirmed transactions leads to
a non-negligible probability of being defrauded as a result of a doublespending
attack. This is facilitated by information eclipsing [DW13], i.e., that nodes
do not forward conflicting transactions, hence the victim does not see both
transactions of the doublespend. Bamert et al. [BDE+13] showed that the odds
of detecting a doublespending attack in real-time can be improved by connecting
to a large sample of nodes and tracing the propagation of transactions in the
network.

Bitcoin does not scale very well due to its reliance on confirmations in the
blockchain. A copy of the entire transaction history is stored on every node
in order to bootstrap joining nodes, which have to reconstruct the transaction
history from the genesis block. Simple micropayment channels were introduced
by Hearn and Spilman [HS12] and may be used to bundle multiple transfers be-
tween two parties but they are limited to transferring the funds locked into the
channel once. Recently Duplex Micropayment Channels [DW15] and the Light-
ning Network [PD15] have been proposed to build bidirectional micropayment
channels in which the funds can be transferred back and forth an arbitrary num-
ber of times, greatly increasing the flexibility of Bitcoin transfers and enabling a
number of features, such as micropayments and routing payments between any
two endpoints.

This chapter was written in collaboration with Christian Decker.

Bibliography

[BDE+13] Tobias Bamert, Christian Decker, Lennart Elsen, Samuel Welten,
and Roger Wattenhofer. Have a snack, pay with bitcoin. In IEEE
Internation Conference on Peer-to-Peer Computing (P2P), Trento,
Italy, 2013.

BIBLIOGRAPHY 73

[Big13] John Biggs. Who is the real satoshi nakamoto? one researcher may
have found the answer. http://on.tcrn.ch/l/R0vA, 2013.

[Bre00] Eric A. Brewer. Towards robust distributed systems. In Symposium
on Principles of Distributed Computing (PODC). ACM, 2000.

[DW13] Christian Decker and Roger Wattenhofer. Information propagation
in the bitcoin network. In IEEE International Conference on Peer-
to-Peer Computing (P2P), Trento, Italy, September 2013.

[DW15] Christian Decker and Roger Wattenhofer. A Fast and Scalable Pay-
ment Network with Bitcoin Duplex Micropayment Channels. In Sym-
posium on Stabilization, Safety, and Security of Distributed Systems
(SSS), 2015.

[FB99] Armando Fox and Eric Brewer. Harvest, yield, and scalable tolerant
systems. In Hot Topics in Operating Systems. IEEE, 1999.

[GL02] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibil-
ity of consistent, available, partition-tolerant web services. SIGACT
News, 2002.

[Gre14] Andy Greenberg. Nakamoto’s neighbor: My hunt for bitcoin’s cre-
ator led to a paralyzed crypto genius. http://onforb.es/1rvyecq,
2014.

[HS12] Mike Hearn and Jeremy Spilman. Contract: Rapidly adjusting
micro-payments. https://en.bitcoin.it/wiki/Contract, 2012. Last ac-
cessed on November 11, 2015.

[KAC12] G.O. Karame, E. Androulaki, and S. Capkun. Two Bitcoins at
the Price of One? Double-Spending Attacks on Fast Payments in
Bitcoin. In Conference on Computer and Communication Security
(CCS), 2012.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
https://bitcoin.org/bitcoin.pdf, 2008.

[PD15] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network.
2015.

Chapter 7

Advanced Blockchain

In this chapter we study various advanced blockchain concepts, which are pop-
ular in research.

7.1 Selfish Mining

Satoshi Nakamoto suggested that it is rational to be altruistic, e.g., by always
attaching newly found block to the longest chain. But is it true?

Definition 7.1 (Selfish Mining). A selfish miner hopes to earn the reward of a
larger share of blocks than its hardware would allow. The selfish miner achieves
this by temporarily keeping newly found blocks secret.

Algorithm 7.2 Selfish Mining

1: Idea: Mine secretly, without immediately publishing newly found blocks
2: Let dp be the depth of the public blockchain
3: Let ds be the depth of the secretly mined blockchain
4: if a new block bp is published, i.e., dp has increased by 1 then
5: if dp > ds then
6: Start mining on that newly published block bp
7: else if dp = ds then
8: Publish secretly mined block bs
9: Mine on bs and publish newly found block immediately

10: else if dp = ds − 1 then
11: Publish both secretly mined blocks
12: end if
13: end if

Remarks:

• If the selfish miner is more than two blocks ahead, the original research
suggested to always answer a newly published block by releasing the
oldest unpublished block. The idea is that honest miners will then
split their mining power between these two blocks. However, what
matters is how long it takes the honest miners to find the next block,

74

7.1. SELFISH MINING 75

to extend the public blockchain. This time does not change whether
the honest miners split their efforts or not. Hence the case dp < ds−1
is not needed in Algorithm 7.2.

Theorem 7.3 (Selfish Mining). It may be rational to mine selfishly, depending
on two parameters α and γ, where α is the ratio of the mining power of the
selfish miner, and γ is the share of the altruistic mining power the selfish miner
can reach in the network if the selfish miner publishes a block right after seeing
a newly published block. Precisely, the selfish miner share is

α(1− α)2(4α+ γ(1− 2α))− α3

1− α(1 + (2− α)α)
.

0 1 2 3 ...β

α α α α

β β
β

β

Figure 7.4: Each state of the Markov chain represents how many blocks the
selfish miner is ahead, i.e., ds − dp. In each state, the selfish miner finds a
block with probability α, and the honest miners find a block with probability
β = 1 − α. The interesting cases are the “irregular” β arrow from state 2 to
state 0, and the β arrow from state 1 to state 0 as it will include three subcases.

Proof. We model the current state of the system with a Markov chain, see
Figure 7.4.

We can solve the following Markov chain equations to figure out the proba-
bility of each state in the stationary distribution:

p1 = αp0

βpi+1 = αpi, for all i > 1

and 1 =
∑
i

pi.

Using ρ = α/β, we express all terms of above sum with p1:

1 =
p1
α

+ p1
∑
i≥0

ρi =
p1
α

+
p1

1− ρ
, hence p1 =

2α2 − α
α2 + α− 1

.

Each state has an outgoing arrow with probability β. If this arrow is taken,
one or two blocks (depending on the state) are attached that will eventually
end up in the main chain of the blockchain. In state 0 (if arrow β is taken),
the honest miners attach a block. In all states i with i > 2, the selfish miner
eventually attaches a block. In state 2, the selfish miner directly attaches 2
blocks because of Line 11 in Algorithm 7.2.

State 1 in Line 8 is interesting. The selfish miner secretly was 1 block ahead,
but now (after taking the β arrow) the honest miners are attaching a competing
block. We have a race who attaches the next block, and where. There are three
possibilities:

76 CHAPTER 7. ADVANCED BLOCKCHAIN

• Either the selfish miner manages to attach another block to its own block,
giving 2 blocks to the selfish miner. This happens with probability α.

• Or the honest miners attach a block (with probability β) to their previous
honest block (with probability 1 − γ). This gives 2 blocks to the honest
miners, with total probability β(1− γ).

• Or the honest miners attach a block to the selfish block, giving 1 block to
each side, with probability βγ.

The blockchain process is just a biased random walk through these states.
Since blocks are attached whenever we have an outgoing β arrow, the total
number of blocks being attached per state is simply 1+p1 +p2 (all states attach
a single block, except states 1 and 2 which attach 2 blocks each).

As argued above, of these blocks, 1− p0 + p2 + αp1 − β(1− γ)p1 are blocks
by the selfish miner, i.e., the ratio of selfish blocks in the blockchain is

1− p0 + p2 + αp1 − β(1− γ)p1
1 + p1 + p2

.

Remarks:

• If the miner is honest (altruistic), then a miner with computational
share α should expect to find an α fraction of the blocks. For some
values of α and γ the ratio of Theorem 7.3 is higher than α.

• In particular, if γ = 0 (the selfish miner only wins a race in Line 8 if it
manages to mine 2 blocks in a row), the break even of selfish mining
happens at α = 1/3.

• If γ = 1/2 (the selfish miner learns about honest blocks very quickly
and manages to convince half of the honest miners to mine on the
selfish block instead of the slightly earlier published honest block),
already α = 1/4 is enough to have a higher share in expectation.

• And if γ = 1 (the selfish miner controls the network, and can hide any
honest block until the selfish block is published) any α > 0 justifies
selfish mining.

7.2 DAG-Blockchain

Traditional Bitcoin-like blockchains require mining blocks sequentially. Some-
times effort is wasted if two blocks happen to be mined at roughly the same time,
as one of these two blocks is going to become obsolete. DAG-blockchains (where
DAG stands for directed acyclic graph) try to prevent such wasted blocks. They
allow for faster block production, as forks are less of a problem.

Definition 7.5 (DAG-blockchain). In a DAG-blockchain the genesis block does
not reference other blocks. Every other block has at least one (and possibly
multiple references) to previous blocks.

7.2. DAG-BLOCKCHAIN 77

Definition 7.6 (DAG Relations). Block p is a dag-parent of block b if block
b references (includes a hash) to p. Likewise b is a dag-child of p. Block a is
a dag-ancestor of block b, if a is b’s dag-parent, dag-grandparent (dag-parent of
dag-parent), dag-grandgrandparent, and so on. Likewise b is a’s dag-descendant.

Theorem 7.7. There are no cycles in a DAG-blockchain.

Proof. A block b includes its dag-parents’ hashes. These dag-parents themselves
include the hashes of their dag-parents, etc. To get a cycle of references, some
of b’s dag-ancestors must include b’s hash, which is cryptographically infeasible.

Definition 7.8 (Tree Relations). We are going to implicitly mark some of the
references in the DAG of blocks, such that these marked references form a tree,
directed towards the genesis block. For every non-genesis block one edge to one
of its dag-parents is marked. We use the prefix “tree” to denote these special
relations. The marked edge is between tree-parent and tree-child. The tree also
defines tree-ancestors and tree-descendants.

Remarks:

• In other words, every tree-something is also a dag-something, but not
necessarily vice versa.

• Blocks do not specify who is their tree-parent, or the order of their
dag-parents. Instead, tree-parents are implicitly defined as follows.

Definition 7.9 (DAG Weight). The weight of a dag-ancestor block a with re-
spect to a block b is defined as the number of tree-descendants of a in the set
of dag-ancestors of b. If two blocks a and a′ have the same weight, we use the
hashes of a and a′ to break ties.

Definition 7.10 (Parent Order). Let x and y be any pair of dag-parents of b,
and z be the lowest common tree-ancestor of x and y. x′ and y′ are the tree-
children of z that are tree-ancestors of x and y respectively. If x′ has a higher
weight than y′, then block b orders dag-parent x before y.

Definition 7.11 (Tree-Parent). The tree-parent of b is the first dag-parent in
b’s parent order.

Remarks:

• Now we can totally order all the blocks in the DAG-Blockchain.

Theorem 7.13. Let p be the tree-parent of b. The order of blocks <b computed
by Algorithm 7.12 extends the order <p by appending some blocks.

Proof. Block p is the first dag-parent of b, so in the first iteration of the loop,
we have <b = <p. Further modifications of <b consist only of appending more
blocks to <b, ending with block b itself.

78 CHAPTER 7. ADVANCED BLOCKCHAIN

Algorithm 7.12 DAG-Blockchain Ordering

1: We totally order all dag-ancestors of block b as <b as follows:
2: Initialize <b as empty
3: for all dag-parents p of b, in their parent order do
4: Compute <p (recursively)
5: Remove from <p any blocks already included in <b
6: Append <p at the end of <b
7: end for
8: Append block b at the end of <b

Remarks:

• Note that b is appended to the order only after ordering all its dag-
ancestors. The genesis block is the only block where the recursion will
stop, so the genesis block is always first in the total order.

• By Theorem 7.13 tree-children extend the order of their tree-parent,
so appending blocks to the DAG preserves the previous order and new
blocks are appended at the end.

Definition 7.14 (Transaction Order). Transactions in each block are ordered
by the miner of the block. Since blocks themselves are ordered, all transactions
are ordered. If two transactions contradict each other (e.g. they try to spend
the same money twice), the first transaction in the total order is considered
executed, while the second transaction is simply ignored (or possibly punished).

7.3 Smart Contracts

Definition 7.15 (Ethereum). Ethereum is a distributed state machine. Unlike
Bitcoin, Ethereum promises to run arbitrary computer programs in a blockchain.

Remarks:

• Like the Bitcoin network, Ethereum consists of nodes that are con-
nected by a random virtual network. These nodes can join or leave
the network arbitrarily. There is no central coordinator.

• Like in Bitcoin, users broadcast cryptographically signed transactions
in the network. Nodes collate these transactions and decide on the
ordering of transactions by putting them in a block on the Ethereum
blockchain.

Definition 7.16 (Smart Contract). Smart contracts are programs deployed on
the Ethereum blockchain that have associated storage and can execute arbitrarily
complex logic.

7.3. SMART CONTRACTS 79

Remarks:

• Smart Contracts are written in higher level programming languages
like Solidity, Vyper, etc. and are compiled down to EVM (Ethereum
Virtual Machine) bytecode, which is a Turing complete low level pro-
gramming language.

• Smart contracts cannot be changed after deployment. But most smart
contracts contain mutable storage, and this storage can be used to
adapt the behavior of the smart contract. With this, many smart
contracts can update to a new version.

Definition 7.17 (Account). Ethereum knows two kinds of accounts. Exter-
nally Owned Accounts (EOAs) are controlled by individuals, with a secret key.
Contract Accounts (CAs) are for smart contracts. CAs are not controlled by a
user.

Definition 7.18 (Ethereum Transaction). An Ethereum transaction is sent by
a user who controls an EOA to the Ethereum network. A transaction contains:

• Nonce: This “number only used once” is simply a counter that counts how
many transactions the account of the sender of the transaction has already
sent.

• 160-bit address of the recipient.

• The transaction is signed by the user controlling the EOA.

• Value: The amount of Wei (the native currency of Ethereum) to transfer
from the sender to the recipient.

• Data: Optional data field, which can be accessed by smart contracts.

• StartGas: A value representing the maximum amount of computation this
transaction is allowed to use.

• GasPrice: How many Wei per unit of Gas the sender is paying. Miners
will probably select transactions with a higher GasPrice, so a high GasPrice
will make sure that the transaction is executed more quickly.

Remarks:

• There are three types of transactions.

Definition 7.19 (Simple Transaction). A simple transaction in Ethereum trans-
fers some of the native currency, called Wei, from one EOA to another. Higher
units of curency are called Szabo, Finney, and Ether, with 1018 Wei = 106 Szabo
= 103 Finney = 1 Ether. The data field in a simple transaction is empty.

Definition 7.20 (Smart Contract Creation Transaction). A transaction whose
recipient address field is set to 0 and whose data field is set to compiled EVM
code is used to deploy that code as a smart contract on the Ethereum blockchain.
The contract is considered deployed after it has been mined in a block and is
included in the blockchain at a sufficient depth.

80 CHAPTER 7. ADVANCED BLOCKCHAIN

Definition 7.21 (Smart Contract Execution Transaction). A transaction that
has a smart contract address in its recipient field and code to execute a specific
function of that contract in its data field.

Remarks:

• Smart Contracts can execute computations, store data, send Ether to
other accounts or smart contracts, and invoke other smart contracts.

• Smart contracts can be programmed to self destruct. This is the only
way to remove them again from the Ethereum blockchain.

• Each contract stores data in 3 separate entities: storage, memory, and
stack. Of these, only the storage area is persistent between transac-
tions. Storage is a key-value store of 256 bit words to 256 bit words.
The storage data is persisted in the Ethereum blockchain, like the
hard disk of a traditional computer. Memory and stack are for in-
termediate storage required while running a specific function, similar
to RAM and registers of a traditional computer. The read/write gas
costs of persistent storage is significantly higher than those of memory
and stack.

Definition 7.22 (Gas). Gas is the unit of an atomic computation, like swapping
two variables. Complex operations use more than 1 Gas, e.g., ADDing two
numbers costs 3 Gas.

Remarks:

• As Ethereum contracts are programs (with loops, function calls, and
recursions), end users need to pay more gas for more computations.
In particular, smart contracts might call another smart contract as a
subroutine, and StartGas must include enough gas to pay for all these
function calls invoked by the transaction.

• The product of StartGas and GasPrice is the maximum cost of the
entire transaction.

• Transactions are an all or nothing affair. If the entire transaction could
not be finished within the StartGas limit, an Out-of-Gas exception is
raised. The state of the blockchain is reverted back to its values before
the transaction. The amount of gas consumed is not returned back to
the sender.

Definition 7.23 (Block). In Ethereum, like in Bitcoin, a block is a collection
of transactions that is considered a part of the canonical history of transactions.
Among other things, a block contains: pointers to parent and up to two uncles,
the hash of the root node of a trie structure populated with each transaction of
the block, the hash of the root node of the state trie (after transactions have been
executed)

7.4. PAYMENT HUBS 81

Remarks:

• Ethereum allows blocks to not only have a parent, but also up to two
“uncles” (childless blocks). In contrast to above description, blocks
must specify the main parent.

• In Ethereum, new blocks are mined approximately every 15 seconds
(as opposed to 10 minutes in Bitcoin). New blocks being generated
in such rapid succession leads to a lot of childless blocks. Uncles have
been introduced to not “waste” those blocks.

• In Ethereum, the original uncle-miners get 7/8 of the block reward.
The miner who references these uncle blocks also gets a small reward.
This reward depends on the height-difference of the uncle and the
included parent. Also, to be included, the uncle and the current block
should have a common ancestor not too far in the past.

7.4 Payment Hubs

How to we enable many parties to send payments to each other efficiently?

Definition 7.24 (Payment Hub). Multiple parties can send payments to each
other by means of a payment hub.

Remarks:

• While we could always call the smart contract to transfer money be-
tween users that joined the hub, every smart contract call costs as it
involves the blockchain. Rather, we want a frugal system with just
few blockchain transactions.

Definition 7.25 (Smart Contract Hub). A smart contract hub is a payment
hub that is realized by a smart contract on a blockchain and an off-chain server.
The smart contract and the server together enable off-chain payments between
users that joined the hub.

Remarks:

• The smart contract lives forever, but the server can disappear anytime.
If it does, nodes can show their recent balance proofs to the smart
contract and withdraw their balances.

• The server can be scaled to in terms of latency and number of users.
The smart contract does not need to scale as it only needs to just
accept one commitment per epoch.

• In case the server disappears, the smart contract will be flooded with
withdrawal requests, and could be subject to delays based on the
delays of the underlying blockchain.

82 CHAPTER 7. ADVANCED BLOCKCHAIN

Algorithm 7.26 Smart Contract Hub

1: Users join the hub by depositing some native currency of the blockchain into
the smart contract

2: Funds of all participants are maintained together as a fungible pool in the
smart contract

3: Time is divided into epochs: in each epoch users can send each other pay-
ment transactions through the server

4: The server does the bookkeeping of who has paid how much to whom during
the epoch

5: At the end of the epoch, the server aggregates all balances into a commit-
ment, which is sent to the smart contract

6: Also at the end of the epoch, the server sends a proof to each user, informing
about the current account balance

7: Each user can verify that its balance is correct; if not the user can call the
smart contract with its proof to get its money back

7.5 Proof-of-Stake

Almost all of the energy consumption of permissionless (everybody can par-
ticipate) blockchains is wasted because of proof-of-work. Proof-of-stake avoids
these wasteful computations, without going all the way to permissioned (the
participating nodes are known a priori) systems such as Paxos or PBFT.

Definition 7.27 (Proof-of-stake). Proof-of-work awards block rewards to the
lucky miner that solved a cryptopuzzle. In contrast, proof-of-stake awards block
rewards proportionally to the economic stake in the system.

Remarks:

• Literally, “the rich get richer”.

• Ethereum is expected to move to proof-of-stake eventually.

• There are multiple flavors of proof-of-stake algorithms.

Definition 7.28 (Chain based proof-of-stake). Accounts hold lottery tickets
according to their stake. The lottery is pseudo-random, in the sense that hash
functions computed on the state of the blockchain will select which account is
winning. The winning account can extend the longest chain by a block, and earn
the block reward.

Remarks:

• It gets tricky if the actual winner of the lottery does not produce a
block in time, or some nodes do not see this block in time. This is
why some suggested proof-of-stake systems add a voting phase (a la
byzantine fault tolerance, see Chapter 4).

Definition 7.29 (BFT based proof-of-stake). The lottery winner only gets to
propose a block to be added to the blockchain. A committee then votes (yes,
byzantine fault tolerance) whether to accept that block into the blockchain. If no
agreement is reached, this process is repeated.

7.5. PROOF-OF-STAKE 83

Remarks:

• Proof-of-stake can be attacked in various ways. Let us discuss the two
most prominent attacks.

• Most importantly, there is the “nothing at stake” attack: In blockchains,
forks occur naturally. In proof-of-work, a fork is resolved because ev-
ery miner has to choose which blockchain fork to extend, as it does
not pay off to mine on a hopeless fork. Eventually, some chain will
end up with more miners, and that chain is considered to be the
real blockchain, whereas other (childless) blocks are just not being
extended. In a proof-of-stake system, a user can trivially extend all
prongs of a fork. As generating a block costs nothing, the miner has
no incentive to not extend all the prongs of the fork. This results
in a situation with more and more forks, and no canonical order of
transactions. If there is a double-spend attack, there is no way to tell
which blockchain is valid, as all blockchains are the same length (all
miners are extending all forks). It can be argued that honest miners,
who want to preserve the value of the network, will extend the first
prong of the fork that they see. But that leaves room for a dishon-
est miner to double spend by moving their mining opportunity to the
appropriate fork at the appropriate time.

• Long range attack: As there are no physical resources being used to
produce blocks in a proof-of-stake system, nothing prevents a bad
player from creating an alternate blockchain starting at the genesis
block, and make it longer than the canonical blockchain. New nodes
may have difficulties to determine which blockchain is the real estab-
lished blockchain. In proof-of-work, long range attacks takes an enor-
mous amount of computing power. In proof-of-stake systems, a new
node has to check with trusted sources to know what the canonical
blockchain is.

Chapter Notes

Selfish mining has already been discussed shortly after the introduction of Bit-
coin [RHo10]. A few years later, Eyal and Sirer formally analyzed selfish min-
ing [ES14]. Similarly, Courtois and Bahack [CB14] study subversive mining
strategies. Nayak et al. [NKMS15] combine selfish mining and eclipse attacks.
Algorithm 7.2 is not optimal for all parameters, e.g., sometimes it may be ben-
eficial to risk even a two-block advantage. Sapirshtein et al. [SSZ15] describe
and analyze the optimal algorithm.

Vitalik Buterin introduced Ethereum in the 2013 whitepaper [But13]. In
2014, Ethereum Foundation was founded to create Ethereum’s first implementa-
tion. An online crowd-sale was conducted to raise around 31,000 BTC (around
USD 18 million at the time) for this. In this sense, Ethereum was the first
ICO (Initial Coin Offering). Ethereum has also attempted to write a formal
specification of its protocol in their yellow paper [Gav18]. This is in contrast
to Bitcoin, which doesn’t have a formal specification.

Bitcoin’s blockchain forms as a chain, i.e., each block (except the genesis
block) has a parent block. The longest chain with the highest difficulty is

84 CHAPTER 7. ADVANCED BLOCKCHAIN

considered the main chain. GHOST [SZ15] is an alternative to the longest chain
rule for establishing consensus in PoW based blockchains and aims to alleviate
adverse impacts of stale blocks. Ethereum’s blockchain structure is a variant
of GHOST. Other systems based on DAGs have been proposed in [SLZ16],
[SZ18], [LLX+18], and [LSZ15].

Khalil and Gervais [KG18] introduced the notion of a payment hub that is a
combination of a smart contract and an online server. Plasma [JP17] is another
family of systems that uses a smart contract on the Ethereum blockchain and
one or more off-chain operators to enable off-chain transactions.

Proof of Stake was first introduced in PPCoin [KN12]. The most well known
Proof of Stake system is the one being implemented for Ethereum, which involves
a transition phase from PoW to PoS [BG17], and finally, on to a more formally
constructed PoS [VZ18]. More details are available in this article [Cho18] by
Jon Choi.

Bibliography

[BG17] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gad-
get. CoRR, abs/1710.09437, 2017.

[But13] Vitalik Buterin. A Next-Generation Smart Contract and Decentral-
ized Application Platform, 2013. Available from: https://github.
com/ethereum/wiki/wiki/White-Paper.

[CB14] Nicolas T. Courtois and Lear Bahack. On subversive miner strategies
and block withholding attack in bitcoin digital currency. CoRR,
abs/1402.1718, 2014.

[Cho18] Jon Choi. Ethereum casper 101. 2018. Available from: https:

//medium.com/@jonchoi/ethereum-casper-101-7a851a4f1eb0.

[ES14] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin
mining is vulnerable. In Financial Cryptography and Data Security,
pages 436–454. Springer, 2014.

[Gav18] Gavin Wood. Ethereum: A Secure Decentralised Generalised Trans-
action Ledger, Byzantium Version, 2018. Available from: https:

//ethereum.github.io/yellowpaper/paper.pdf.

[JP17] Vitalik Buterin Joseph Poon. Plasma: Scalable autonomous smart
contracts, 2017.

[KG18] Rami Khalil and Arthur Gervais. Nocust - a non-custodial 2nd-layer
financial intermediary. Cryptology ePrint Archive, Report 2018/642,
2018. https://eprint.iacr.org/2018/642.

[KN12] Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency
with proof-of-stake. self-published paper, August, 19, 2012.

[LLX+18] Chenxing Li, Peilun Li, Wei Xu, Fan Long, and Andrew Chi-Chih
Yao. Scaling nakamoto consensus to thousands of transactions per
second. CoRR, abs/1805.03870, 2018.

BIBLIOGRAPHY 85

[LSZ15] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. Inclusive
block chain protocols. In Financial Cryptography and Data Security,
pages 528–547. Springer, 2015.

[NKMS15] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. Stub-
born mining: Generalizing selfish mining and combining with an
eclipse attack. Technical report, IACR Cryptology ePrint Archive
2015, 2015.

[RHo10] RHorning. Mining cartel attack, 2010.

[SLZ16] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. Spec-
tre: A fast and scalable cryptocurrency protocol. Cryptology ePrint
Archive, Report 2016/1159, 2016. https://eprint.iacr.org/

2016/1159.

[SSZ15] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal
selfish mining strategies in bitcoin. arXiv preprint arXiv:1507.06183,
2015.

[SZ15] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction
processing in bitcoin. In Financial Cryptography and Data Security,
pages 507–527. Springer, 2015.

[SZ18] Yonatan Sompolinsky and Aviv Zohar. Phantom: A scalable
blockdag protocol. Cryptology ePrint Archive, Report 2018/104,
2018. https://eprint.iacr.org/2018/104.

[VZ18] Aditya Asgaonkar Georgios Piliouras Vlad Zamfir, Nate Rush. Intro-
ducing the “minimal cbc casper” family of consensus protocols. 2018.
Available from: https://github.com/cbc-casper/cbc-casper-

paper/blob/master/cbc-casper-paper-draft.pdf.

Chapter 8

Authenticated Agreement

Notes:

• I start out with the 3-node example of chapter 3, and motivate signa-
tures by showing that 3 nodes can probably solve byzantine agreement,
if the byzantine node cannot lie about its input. Then we try to solve
binary synchronous authenticated byzantine consensus, using a primary
just sending 1p to all. Long and good discussion what can go wrong.
Some suggest to also do 0p instead of nothing, some want to do it in two
rounds. I always ask what can go wrong, until somebody suggests to use
f + 1 rounds. From there we develop the protocol with the set S, and
formally prove it. 10’ before break, I start with Zyzzyva, the good cases
(well-motivated).

• after the break, I continue Zyzzyva, with arrows. We discuss what com-
plete really means (and show the proof that complete commands must be
ordered correctly), and then we discuss what a byzantine primary can do
to us. From then we go into view changes, and I explain the way to find
the new view (by picture). At the very end I discuss safety and liveness,
and quickly mention a few other protocols. This year I have no time to
do strong consistency (4.3).

• This chapter still needs a few final brushes, in particular that part hnew ≥
“3f + 1′′. I would suggest to really not include 4.3 in the chapter in the
future, but I am not sure (have to try again to be sure). also still needed:
chapter notes and stuff.

• ATTENTION: I (Roger) do have some notes about this, i.e. what should
be changed. It sits in the red DistSys folder, very first page.

• Currently, liveness argument is missing from the chapter as claimed in
the original paper [CL+99]. If the delay is finite but not bounded, then
it can happen that a request is never satisfied as follows. Basically, the
timer value can be too small and it fires even when the primary is correct.
The liveness section in the paper suggests to increase the timer value
exponentially to avoid triggering the view changes too soon. Even under
that assumption it might happen that by the time pre-prepare, prepare,
commit messages for a given view are received, the views have changed.

86

8.1. AGREEMENT WITH AUTHENTICATION 87

Then, one can schedule the delivery of the delayed pre-prepare, prepare,
commit messages. However, these will be discarded since the view has
changed. Although the delay of the messages increases exponentially, its
still finite as they are delivered. So, the delays must be bounded for
liveness after all, as also claimed in Castro’s thesis [Cas01].

In Section 5.6 we have already had a glimpse into the power of cryptography.
In this Chapter we want to build a practical byzantine fault-tolerant system
using cryptography. With cryptography, Byzantine lies may be detected easily.

8.1 Agreement with Authentication

Definition 8.1 (Signature). Every node can sign its messages in a way that
no other node can forge, thus nodes can reliably determine which node a signed
message originated from. We denote a message msg(x) signed by node u with
msg(x)u.

Remarks:

• Algorithm 8.2 shows a synchronous agreement protocol for binary in-
puts relying on signatures. We assume there is a designated “primary”
node p that all other nodes know. The goal is to decide on p’s value.

Algorithm 8.2 Byzantine Agreement with Authentication

Code for primary p:

1: if input is 1 then
2: broadcast value(1)p
3: decide 1 and terminate
4: else
5: decide 0 and terminate
6: end if

Code for all other nodes v:

7: for all rounds i ∈ {1, . . . , f + 1} do
8: S is the set of accepted messages value(1)u.
9: if |S| ≥ i and value(1)p ∈ S then

10: broadcast S ∪ {value(1)v}
11: decide 1 and terminate
12: end if
13: end for
14: decide 0 and terminate

Theorem 8.3. Algorithm 8.2 can tolerate f < n byzantine failures while ter-
minating in f + 1 rounds.

Proof. Assuming that the primary p is not byzantine and its input is 1, then p
broadcasts value(1)p in the first round, which will trigger all correct nodes to
decide on 1. If p’s input is 0, there is no signed message value(1)p, and no node

88 CHAPTER 8. AUTHENTICATED AGREEMENT

can decide on 1.

If primary p is byzantine, we need all correct nodes to decide on the same
value for the algorithm to be correct.

Assume i < f + 1 is minimal among all rounds in which any correct node u
decides on 1. In this case, u has a set S of at least i messages from other nodes
for value 1 in round i, including one of p. Therefore, in round i+ 1 ≤ f + 1, all
other correct nodes will receive S and u’s message for value 1 and thus decide
on 1 too.

Now assume that i = f + 1 is minimal among all rounds in which a correct
node u decides for 1. Thus u must have received f + 1 messages for value 1, one
of which must be from a correct node since there are only f byzantine nodes.
In this case some other correct node u′ must have decided on 1 in some round
j < i, which contradicts i’s minimality; hence this case cannot happen.

Finally, if no correct node decides on 1 by the end of round f + 1, then all
correct nodes will decide on 0.

Remarks:

• The algorithm only takes f + 1 rounds, which is optimal as described
in Theorem 4.20.

• Using signatures, Algorithm 8.2 solves consensus for any number of
failures! Does this contradict Theorem 4.12? Recall that in the proof
of Theorem 4.12 we assumed that a byzantine node can distribute con-
tradictory information about its own input. If messages are signed,
correct nodes can detect such behavior – a node u signing two contra-
dicting messages proves to all nodes that node u is byzantine.

• Does Algorithm 8.2 satisfy any of the validity conditions introduced
in Section 4.1? No! A byzantine primary can dictate the decision
value. Can we modify the algorithm such that the correct-input va-
lidity condition is satisfied? Yes! We can run the algorithm in parallel
for 2f + 1 primary nodes. Either 0 or 1 will occur at least f + 1 times,
which means that one correct process had to have this value in the
first place. In this case, we can only handle f < n

2 byzantine nodes.

• If the primary is a correct node, Algorithm 8.2 only needs two rounds!
Can we make it work with arbitrary inputs? Also, relying on syn-
chrony limits the practicality of the protocol. What if messages can
be lost or the system is asynchronous?

8.2 Practical Byzantine Fault Tolerance

Practical Byzantine Fault Tolerance (PBFT) is one of the first and perhaps
the most instructive protocol for achieving state replication among nodes as in
Definition 2.10 with byzantine nodes in an asynchronous network. We present
a very simple version of it without any optimizations.

Definition 8.4 (System Model). There are n = 3f+1 nodes and an unbounded
number of clients. There are at most f byzantine nodes, and clients can be

8.2. PRACTICAL BYZANTINE FAULT TOLERANCE 89

byzantine as well. The network is asynchronous, and messages have variable
delay and can get lost. Clients send requests that correct nodes have to order to
achieve state replication.

The ideas behind PBFT can roughly be summarized as follows:

• Signatures guarantee that every node can determine which node/client
generated any given message.

• At any given time, every node will consider one designated node to be the
primary and the other nodes to be backups. Since we are in the variable
delay model, requests can arrive at the nodes in different orders. While a
primary remains in charge (this timespan corresponds to what is called a
view), it thus has the function of a serializer (cf. Algorithm 2.11).

• If backups detect faulty behavior in the primary, they start a new view
and the next node in round-robin order becomes primary. This is called
a view change.

• After a view change, a correct new primary makes sure that no two correct
nodes execute requests in different orders. Exchanging information will
enable backups to determine if the new primary acts in a byzantine fashion.

Definition 8.5 (View). A view is represented locally at each node i by a non-
negative integer v (we say i is in view v) that is incremented by one whenever
the node changes to a different view.

Definition 8.6 (Primary; Backups). A node that is in view v considers node
v mod n to be the primary and all other nodes to be backups.

Definition 8.7 (Sequence Number). During a view, a node relies on the pri-
mary to pick consecutive integers as sequence numbers that function as indices
in the global order (cf. Definition 2.10) for the requests that clients send.

Remarks:

• All nodes start out in view 0 and can potentially be in different views
(i.e. have different local values for v) at any given time.

• The protocol will guarantee that once a correct node has executed a
request r with sequence number s, then no correct node will execute
any r′ 6= r with sequence number s, not unlike Lemma 2.16.

• Correct primaries choose sequence numbers such that they are dense,
i.e. if a correct primary proposed s as the sequence number for the
last request, then it will use s+1 for the next request that it proposes.

• Before a node can safely execute a request r with a sequence number
s, it will wait until it knows that the decision to execute r with s has
been reached and is widely known.

• Informally, nodes will collect confirmation messages by sets of at least
2f + 1 nodes to guarantee that that information is sufficiently widely
distributed.

90 CHAPTER 8. AUTHENTICATED AGREEMENT

Definition 8.8 (Accepted Messages). A correct node that is in view v will only
accept messages that it can authenticate, that follow the specification of the
protocol, whose components can be validated in the same way, and that also
belong to view v.

Lemma 8.9 (2f+1 Quorum Intersection). Let S1 with |S1| ≥ 2f + 1 and S2

with |S2| ≥ 2f + 1 each be sets of nodes. Then there exists a correct node in
S1 ∩ S2.

Proof. Let S1, S2 each be sets of at least 2f + 1 nodes. There are 3f + 1 nodes
in total, thus due to the pigeonhole principle the intersection S1 ∩ S2 contains
at least f + 1 nodes. Since there are at most f faulty nodes, S1 ∩ S2 contains
at least 1 correct node.

8.3 PBFT: Agreement Protocol

First we describe how PBFT achieves agreement on a unique order of requests
within a view.

request
(r, c)c

pre-prepare
(v, s, r, n0)n0

prepare
(v, s, r, ni)ni

commit
(v, s, ni)ni

reply
(r, ni)ni

client c

primary p

backup n1

backup n2

backup n3

Figure 8.10: The agreement protocol used in PBFT for processing a client
request, exemplified for a system with 4 nodes. Node n0 is the primary in
current view v. Time runs from left to right. Messages sent at the same time
need not arrive at the same time.
indexrequest

Remarks:

• Figure 8.10 shows how the nodes come to an agreement on a sequence
number for a client request. Informally, the protocal has these three
steps:

1. The primary sends a pre-prepare-message to all backups, in-
forming them that he wants to execute that request with the
sequence number specified in the message.

2. Backups send prepare-messages to all nodes, informing them
that they agree with that suggestion.

3. All nodes send commit-messages to all nodes, informing everyone
that they have committed to execute the request with that se-
quence number. They execute the request and inform the client.

8.3. PBFT: AGREEMENT PROTOCOL 91

• Figure 8.10 shows that all nodes can start each phase at different
times.

• To make sure byzantine nodes cannot force the execution of a re-
quest, every node waits for a certain number of prepare- and commit-
messages with the correct content before executing the request.

• Definitions 8.11, 8.14, 8.16 specify the agreement protocol formally.
Backups run Phases 1 and 2 concurrently.

Definition 8.11 (PBFT Agreement Protocol Phase 1; Pre-Prepared Primary).
In phase 1 of the agreement protocol, the nodes execute Algorithm 8.12.

Algorithm 8.12 PBFT Agreement Protocol: Phase 1

Code for primary p in view v:

1: accept request(r, c)c that originated from client c
2: pick next sequence number s
3: send pre-prepare(v, s, r, p)p to all backups

Code for backup b:

4: accept request(r, c)c from client c
5: relay request(r, c)c to primary p

Definition 8.13 (Faulty-Timer). When backup b accepts request r in Algo-
rithm 8.12 Line 4, b starts a local faulty-timer (if the timer is not already
running) that will only stop once b executes r.

Remarks:

• If the faulty-timer expires, the backup considers the primary faulty
and triggers a view change. We explain the view change protocol in
Section 8.4.

• We leave out the details regarding for what timespan to set the faulty-
timer as they are an optimization with several trade-offs to consider;
the interested reader is advised to consult [CL+99].

Definition 8.14 (PBFT Agreement Protocol Phase 2; Pre-prepared Backups).
In phase 2 of the agreement protocol, every backup b executes Algorithm 8.15.
Once it has sent the prepare-message, b has pre-prepared r for (v, s).

Definition 8.16 (PBFT Agreement Protocol Phase 3; Prepared-Certificate). A
node ni that has pre-prepared a request executes Algorithm 8.17. It waits until
it has collected 2f prepare-messages (including ni’s own, if it is a backup)
in Line 1. Together with the pre-prepare-message for (v, s, r), they form a
prepared-certificate.

92 CHAPTER 8. AUTHENTICATED AGREEMENT

Algorithm 8.15 PBFT Agreement Protocol: Phase 2

Code for backup b in view v:

1: accept pre-prepare(v, s, r, p)p
2: if p is primary of view v and b has not yet accepted a pre-prepare-message

for (v, s) and some r′ 6= r then
3: send prepare(v, s, r, b)b to all nodes
4: end if

Algorithm 8.17 PBFT Agreement Protocol: Phase 3

Code for node ni that has pre-prepared r for (v, s):

1: wait until 2f prepare-messages matching (v, s, r) have been accepted (in-
cluding ni’s own message, if it is a backup)

2: send commit(v, s, ni)ni
to all nodes

3: wait until 2f+1 commit-messages (including ni’s own) matching (v, s) have
been accepted

4: execute request r once all requests with lower sequence numbers have been
executed

5: send reply(r, ni)ni
to client

Remarks:

• Note that the agreement protocol can run for multiple requests in
parallel. Since we are in the variable delay model and messages can
arrive out of order, we thus have to wait in Algorithm 8.17 Line 4
until a request has been executed for all previous sequence numbers.

• The client only considers the request to have been processed once it
received f + 1 reply-messages sent by the nodes in Algorithm 8.17
Line 5. Since a correct node only sends a reply-message once it
executed the request, with f + 1 reply-messages the client can be
certain that the request was executed by a correct node.

• We will see in Section 8.4 that PBFT guarantees that once a single
correct node executed the request, then all correct nodes will never
execute a different request with the same sequence number. Thus,
knowing that a single correct node executed a request is enough for
the client.

• If the client does not receive at least f+1 reply-messages fast enough,
it can start over by resending the request to initiate Algorithm 8.12
again. To prevent correct nodes that already executed the request
from executing it a second time, clients can mark their requests with
some kind of unique identifiers like a local timestamp. Correct nodes
can then react to each request that is resent by a client as required
by PBFT, and they can decide if they still need to execute a given
request or have already done so before.

8.4. PBFT: VIEW CHANGE PROTOCOL 93

Lemma 8.18 (PBFT: Unique Sequence Numbers within View). If a node
gathers a prepared-certificate for (v, s, r), then no node can gather a prepared-
certificate for (v, s, r′) with r′ 6= r.

Proof. Assume two (not necessarily distinct) nodes gather prepared-certificates
for (v, s, r) and (v, s, r′). Since a prepared-certificate contains 2f + 1 messages,
a correct node sent a pre-prepare- or prepare-message for each of (v, s, r) and
(v, s, r′) due to Lemma 8.9. A correct primary only sends a single pre-prepare-
message for each (v, s), see Algorithm 8.12 Lines 2 and 3. A correct backup only
sends a single prepare-message for each (v, s), see Algorithm 8.15 Lines 2 and
3. Thus, r′ = r.

Remarks:

• Due to Lemma 8.18, once a node has a prepared-certificate for (v, s, r),
no correct node will execute some r′ 6= r with sequence number s
during view v because correct nodes wait for a prepared-certificate
before executing a request (cf. Algorithm 8.17).

• However, that is not yet enough to make sure that no r′ 6= r will be
executed by a correct node with sequence number s during some later
view v′ > v. How can we make sure that that does not happen?

8.4 PBFT: View Change Protocol

If the primary is faulty, the system has to perform a view change to move to
the next primary so the system can make progress. Nodes use their faulty-timer
(and only that!) to decide whether they consider the primary to be faulty (cf.
Definition 8.13).

Remarks:

• During a view change, the protocol has to guarantee that requests
that have already been executed by some correct nodes will not be
executed with the different sequence numbers by other correct nodes.

• How can we guarantee that this happens?

Definition 8.19 (PBFT: View Change Protocol). In the view change protocol,
a node whose faulty-timer has expired enters the view change phase by run-
ning Algorithm 8.22. During the new view phase (which all nodes continually
listen for), the primary of the next view runs Algorithm 8.23 while all other
nodes run Algorithm 8.24.

Remarks:

• The idea behind the view change protocol is this: during the view
change protocol, the new primary gathers prepared-certificates from
2f + 1 nodes, so for every request that some correct node executed,
the new primary will have at least one prepared-certificate.

• After gathering that information, the primary distributes it and tells
all backups which requests need to be to executed with which sequence
numbers.

94 CHAPTER 8. AUTHENTICATED AGREEMENT

view-change
(v + 1,Pni

, ni)ni

new-view
(v + 1,V,O, n1)n1

node n0 = primary of view v

node n1 = primary of view v + 1

node n2

node n3

Figure 8.20: The view change protocol used in PBFT. Node n0 is the primary of
current view v, node n1 the primary of view v+1. Once backups consider n0 to
be faulty, they start the view change protocol (cf. Algorithms 8.22, 8.23, 8.24).
The X signifies that n0 is faulty.

• Backups can check whether the new primary makes the decisions re-
quired by the protocol, and if it does not, then the new primary must
be byzantine and the backups can directly move to the next view
change.

Definition 8.21 (New-View-Certificate). 2f+1 view-change-messages for the
same view v form a new-view-certificate.

Algorithm 8.22 PBFT View Change Protocol: View Change Phase

Code for backup b in view v whose faulty-timer has expired:

1: stop accepting pre-prepare/prepare/commit-messages for v
2: let Pb be the set of all prepared-certificates that b has collected since the

system was started
3: send view-change(v + 1,Pb, b)b to all nodes

Algorithm 8.23 PBFT View Change Protocol: New View Phase - Primary

Code for primary p of view v + 1:

1: accept 2f + 1 view-change-messages (including possibly p’s own) in a set
V (this is the new-view-certificate)

2: let O be a set of pre-prepare(v + 1, s, r, p)p for all pairs (s, r) where at
least one prepared-certificate for (s, r) exists in V

3: let sVmax be the highest sequence number for which O contains a
pre-prepare-message

4: add to O a message pre-prepare(v + 1, s′, null, p)p for every sequence
number s′ < sVmax for which O does not contain a pre-prepare-message

5: send new-view(v + 1,V,O, p)p to all nodes
6: start processing requests for view v+1 according to Algorithm 8.12 starting

from sequence number sVmax + 1

8.4. PBFT: VIEW CHANGE PROTOCOL 95

Remarks:

• It is possible that V contains a prepared-certificate for a sequence
number s while it does not contain one for some sequence number s′ <
s. For each such sequence number s′, we fill up O in Algorithm 8.23
Line 4 with null-requests, i.e. requests that backups understand to
mean “do not do anything here”.

Algorithm 8.24 PBFT View Change Protocol: New View Phase - Backup

Code for backup b of view v + 1 if b’s local view is v′ < v + 1:

1: accept new-view(v + 1,V,O, p)p
2: stop accepting pre-prepare-/prepare-/commit-messages for v// in case

b has not run Algorithm 8.22 for v + 1 yet

3: set local view to v + 1
4: if p is primary of v + 1 then
5: if O was correctly constructed from V according to Algorithm 8.23 Lines 2

and 4 then
6: respond to all pre-prepare-messages inO as in the agreement protocol,

starting from Algorithm 8.15
7: start accepting messages for view v + 1
8: else
9: trigger view change to v + 2 using Algorithm 8.22

10: end if
11: end if

Theorem 8.25 (PBFT:Unique Sequence Numbers Across Views). Together,
the PBFT agreement protocol and the PBFT view change protocol guarantee
that if a correct node executes a request r in view v with sequence number s,
then no correct node will execute any r′ 6= r with sequence number s in any view
v′ ≥ v.

Proof. If no view change takes place, then Lemma 8.18 proves the statement.
Therefore, assume that a view change takes place, and consider view v′ > v.

We will show that if some correct node executed a request r with sequence
number s during v, then a correct primary will send a pre-prepare-message
matching (v′, s, r) in the O-component of the new-view(v′,V,O, p)-message.
This guarantees that no correct node will be able to collect a prepared-certificate
for s and a different r′ 6= r.

Consider the new-view-certificate V (see Algorithm 8.23 Line 1). If any
correct node executed request r with sequence number s, then due to Al-
gorithm 8.17 Line 3, there is a set R1 of at least 2f + 1 nodes that sent a
commit-message matching (s, r), and thus the correct nodes in R1 all collected
a prepared-certificate in Algorithm 8.17 Line 1.

The new-view-certificate contains view-change-messages from a set R2 of
2f + 1 nodes. Thus according to Lemma 8.9, there is at least one correct node
cr ∈ R1∩R2 that both collected a prepared-certificate matching (s, r) and whose
view-change-message is contained in V.

96 CHAPTER 8. AUTHENTICATED AGREEMENT

Therefore, if some correct node executed r with sequence number s, then V
contains a prepared-certificate matching (s, r) from cr. Thus, if some correct
node executed r with sequence number s, then due to Algorithm 8.23 Line 2,
a correct primary p sends a new-view(v′,V,O, p)-message where O contains a
pre-prepare(v′, s, r, p)-message.

Correct backups will enter view v′ only if the new-view-message for v′ con-
tains a valid new-view-certificate V and if O was constructed correctly from
V, see Algorithm 8.24 Line 5. They will then respond to the messages in O
before they start accepting other pre-prepare-messages for v′ due to the order
of Algorithm 8.24 Lines 6 and 7. Therefore, for the sequence numbers that ap-
pear in O, correct backups will only send prepare-messages responding to the
pre-prepare-messages found in O due to Algorithm 8.15 Lines 2 and 3. This
guarantees that in v′, for every sequence number s that appears in O, backups
can only collect prepared-certificates for the triple (v′, s, r) that appears in O.

Together with the above, this proves that if some correct node executed
request r with sequence number s in v, then no node will be able to collect a
prepared-certificate for some r′ 6= r with sequence number s in any view v′ ≥ v,
and thus no correct node will execute r′ with sequence number s.

Remarks:

• We have shown that PBFT protocol guarantees safety or nothing bad
ever happens, i.e., the correct nodes never disagree on requests that
were commited with the same sequence numbers. But, does PBFT
also guarantee liveness, i.e., a legitimate client request is eventually
committed and receives a reply.

• To prove liveness, we make an additional assumption that message
delays are finite and bounded. With infinite message delays in an
asynchronous system and even one faulty (byzantine) process, it is
impossible to solve consensus with guaranteed termination [FLP85].

• A faulty new primary could delay the system indefinitely by never
sending a new-view-message. To prevent this, as soon as a node sends
its view-change-message for v+ 1, it starts its faulty-timer and stops
it once it accepts a new-view-message for v+ 1. If the timer runs out
before being stopped, the node triggers another view change.

• However, the timer doubles to trigger the next view change because
the message delays might be larger. Eventually, the timer values are
larger than the message delays and the messages are received before
the timer expires.

• Since at most f consecutive primaries can be faulty, the system makes
progress after at most f + 1 view changes.

• We described a simplified version of PBFT; any practically relevant
variant makes adjustments to what we presented. The references
found in the chapter notes can be consulted for details that we did
not include.

BIBLIOGRAPHY 97

Chapter Notes

PBFT is perhaps the central protocol for asynchronous byzantine state replica-
tion. The seminal first publication about it, of which we presented a simplified
version, can be found in [CL+99]. The canonical work about most versions of
PBFT is Miguel Castro’s PhD dissertation [Cas01]. Barbara Liskov was Miguel
Castro’s advisor, and show won a Turing award, partially because of her work
on PBFT.

Notice that the sets Pb in Algorithm 8.22 grow with each view change as
the system keeps running since they contain all prepared-certificates that nodes
have collected so far. All variants of the protocol found in the literature in-
troduce regular checkpoints where nodes agree that enough nodes executed all
requests up to a certain sequence number so they can continuously garbage-
collect prepared-certificates. We left this out for conciseness.

Remember that all messages are signed. Generating signatures is some-
what pricy, and variants of PBFT exist that use the cheaper, but less powerful
Message Authentication Codes (MACs). These variants are more complicated
because MACs only provide authentication between the two endpoints of a mes-
sage and cannot prove to a third party who created a message. An extensive
treatment of a variant that uses MACs can be found in [CL02].

Before PBFT, byzantine fault-tolerance was generally considered imprac-
tical, just something academics would be interested in. PBFT changed that
as it showed that byzantine fault-tolerance can be practically feasible. As a
result, numerous asynchronous byzantine state replication protocols were de-
veloped. Other well-known protocols are Q/U [AEMGG+05], HQ [CML+06],
and Zyzzyva [KAD+07]. An overview over the relevant literature can be found
in [AGK+15].

This chapter was written in collaboration with Georg Bachmeier.

Bibliography

[AEMGG+05] Michael Abd-El-Malek, Gregory R Ganger, Garth R Goodson,
Michael K Reiter, and Jay J Wylie. Fault-scalable byzantine
fault-tolerant services. In ACM SIGOPS Operating Systems Re-
view, volume 39, pages 59–74. ACM, 2005.

[AGK+15] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knežević, Vivien
Quéma, and Marko Vukolić. The next 700 bft protocols. ACM
Transactions on Computer Systems (TOCS), 32(4):12, 2015.

[Cas01] Miguel Castro. Practical Byzantine Fault Tolerance. Ph.d., MIT,
January 2001. Also as Technical Report MIT-LCS-TR-817.

[CL+99] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault
tolerance. In OSDI, volume 99, pages 173–186, 1999.

[CL02] Miguel Castro and Barbara Liskov. Practical byzantine fault tol-
erance and proactive recovery. ACM Transactions on Computer
Systems (TOCS), 20(4):398–461, 2002.

98 CHAPTER 8. AUTHENTICATED AGREEMENT

[CML+06] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Ro-
drigues, and Liuba Shrira. Hq replication: A hybrid quorum
protocol for byzantine fault tolerance. In Proceedings of the
7th symposium on Operating systems design and implementa-
tion, pages 177–190. USENIX Association, 2006.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impos-
sibility of Distributed Consensus with One Faulty Process. J.
ACM, 32(2):374–382, 1985.

[KAD+07] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen
Clement, and Edmund Wong. Zyzzyva: speculative byzantine
fault tolerance. In ACM SIGOPS Operating Systems Review,
volume 41, pages 45–58. ACM, 2007.

