Link Layer & Wireless

Link Layer

- Bottom layer
 - Can be split into MAC and Physical layers.
- Payload data comes from the upper layer, typically the IP layer.
- Packet Format
 - Wired internet uses Ethernet V2 packet format.
 - Bluetooth, WLAN, etc. define their own custom formats.
 - Syncword to distinguish packet boundaries. Escape sequences to handle syncword in data.
 - Checksums to handle errors.
- MTU: Maximum Transmission Unit
 - Typically 1500 bytes.

Link Layer Addressing

- MAC addresses: Media Access Control
 - 6 byte address space.
 - Every networked device has a unique MAC address, unless overridden by software.
- Switch: Central node that routes traffic between connected nodes
 - Operates at the Link Layer: unaware of IP addresses.
- Broadcast MAC address: "ff:ff:ff:ff:ff:ff:ff:ff
 - Every connected device can receive packets sent to this address.
- Address Resolution Protocol (ARP)
 - Flood all nodes in your network to find the IP⇒MAC mapping.
- Broadcast IP address: 255.255.255.255
 - Every node on the network can receive packets sent to this address.
- Dynamic Host Configuration Protocol (DHCP)
 - Every connecting node gets a unique IP address from the DHCP server.

Physical Layer

- Line coding:
 - Hold +1 when data bit is 1 ("Level triggered")
 - Problems occur when transferring continuous data bits of 1. How to separate them?
- Manchester Coding:
 - 0-1 for 1, 1-0 for 0 ("Edge triggered")
- Modulation:
 - Amplitude
 - Frequency
 - Phase

Wireless

- Radio waves
 - Broadcast by default
- SINR: Signal to Interference plus Noise Ratio
 - Signal strength diminishes quadratically with distance travelled.
- Multipath
 - Total signal = Sum of several components with delay.
 - Multiple Input, Multiple Output (MIMO)
- Half Duplex vs. Full Duplex:
 - Wireless devices are typically half duplex.

Wireless contd.

- Multiple Access possible
 - Made more efficient with Time Division using Carrier Sensing or Scheduling
- Carrier Sensing problems
 - Hidden Terminal Problem
 - Exposed Terminal Problem
 - Request to Send/Clear to Send (RTS/CTS) protocol to mitigate the above problems.
- Collision detection
 - Sender waits for Ack, and resends if no Ack.
 - Backoff time calculation is non-trivial

Wireless Contd.

- Backoff strategies
 - Fixed backoff not advisable
 - Slotted Aloha protocol
 - In every time slot, every node transmits with probability 1/n.
 - Random Exponential Backoff
 - Duty Cycling
- Time Division
- Frequency Division
- Space Division
- Code Division
 - Walsh-Hadamard Code