Network Layer

Graphs

Definition 2.1 (Graph). A graph G is a pair (V, E), where V is a set of nodes and $E \subseteq V \times V$ is a set of edges between the nodes. The number of nodes is denoted by n and the number of edges by m.

- Directed graph: each edge has a direction.
- Undirected graph: all the edges have no direction.
- Weighted graph: each edge has a weight w(e).
 - The weight of the graph G is $w(G) = \sum w(e)$.

In the internet computers, smartphones, routers etc. are nodes and the wired and wireless connections are edges.

Graphs Representation

• Adjacency matrix:

- n x n matrix with 1 in location (i,j) iff nodes i and j are connected and 0 otherwise.
- If the graph is weighted, the 1s are replaced with the weights.

• Adjacency list:

- Every element corresponds to an edge of the graph identified by its endpoints.
- Better representation for sparse graphs.

Paths and trees

Definition 2.4 (Path). Let G = (V, E) be a graph. A path between nodes v_1 and v_k is a sequence of nodes (v_1, v_2, \ldots, v_k) , where $\{v_i, v_{i+1}\} \in E$ for all $1 \leq i < k$. The path has k - 1 hops.

- Connected graph: exists a path between any two nodes.
- Cycle: a sequence of connected nodes such that the first and last node of the sequence are the same and no other node appears twice.
- Tree: a connected graph that contains no cycles. Has *n*-1 edges.
- **Spanning tree:** a tree that connects all nodes in a graph.
- **Rooted tree:** tree with a special root node *r*. Every other node *v* has a parent, i.e., the node adjacent to *v* and closer to *r*.

Spanning trees

Subgraph:

Definition 2.8 (Subgraph). Let G = (V, E) be a graph. A subgraph G' = (V', E') of G is a graph such that $V' \subseteq V$ and $E' \subseteq E$.

Spanning tree:

Definition 2.9 (Spanning tree). Given a graph G = (V, E), a spanning tree T = (V, E') is a subgraph of G that is a tree.

Minimum spanning tree:

Definition 2.10 (MST). Given a weighted graph $G = (V, E, \omega)$, a minimum spanning tree (MST) T is a spanning tree that minimizes the total weight $\omega(T)$.

Minimum spanning tree algorithm

Algorithm 2.11 MST Algorithm

- 1: Given a weighted graph $G = (V, E, \omega)$
- 2: Let $S = \{u\}$ be a set of visited nodes, initialized with any node $u \in V$
- 3: Let T be a tree just consisting of the single node $u \in S$, no edges
- 4: while $S \neq V$ do
- 5: Find minimum weight edge $e = \{v, w\}$ with $v \in S$ and $w \in V \setminus S$
- 6: Add node w to S
- 7: Add edge e to T
- 8: end while
- Greedily adds edges with the lowest weight at each iteration.
- Outputs a mínimum spanning tree.
- The time complexity is O(m log n).

Shortest path

- **Shortest path** between two nodes: path with the minimum total weight.
- **Distance** between two nodes *d(u,v):* total weight of the mínimum path.
- Shortest path tree (SPT): a spanning tree T, rooted at r, of graph G, where the distance from any node to r in T equals the distance d(r,v) in G.

Shortest path algorithm

Algorithm 2.16 SPT Algorithm

1: Given a weighted graph $G = (V, E, \omega)$ and a node $r \in V$

- 2: Set a parent node $p_v =$ null for every node $v \in V$
- 3: Set $d_r = 0$ and $d_v = \infty$ for every node $r \neq v \in V$
- 4: Let $S = \{r\}$ be the set of visited nodes

5: while
$$S \neq V$$
 do

- 6: Find edge $e = \{v, w\}$ with $v \in S$ and $w \in V \setminus S$ with minimum $d_v + \omega(e)$
- 7: Set $p_w = v$

8: Set
$$d_w = d_v + \omega(e)$$

9: $S = S \cup \{w\}$

10: end while

- Greedily adds the node with the minimum distance to the root at each iteration.
- The time complexity is O(m log n)

Addressing

Every node in a graph has an **address**. In the internet, an IP address.

- IPv4: 32-bit address written in 4 chunks of 8 bits separated by dots.
- IPv6: 128-bit address written in 8 chunks of 16 bits separated by colons. Each chunk is written as 4 hexadecimal digits.

Prefix: A prefix of *k* bits corresponds to the first *k* bits of the address. An address block or **subnet** is a set of addresses that share the same prefix.

Addressing: IPv6

IPv6 is conceived to enlarge the address space given the fast increase of devices connected to the internet.

IPv6 address notation can be compressed:

- Leave out leading zeros in every chunk.
- Consecutive section of zeros replaced with doublé colon (only once).

IPv4 addresses are included in the IPv6 domain. Usually written in hexadecimal as: ::ffff + IPv4

• e.g: IPv4-> 8.8.4.4 | IPv6 -> ::ffff:8:8:4:4

Packets

Definition 2.22 (Packet). Every network packet contains a header and a payload. The payload of a packet corresponds to the actual data of the packet. The header contains information for delivering the payload.

- Size in IPv4 limited to 65,535 bits -> many packets needed
- Header: source and destination addresses and oder options.
 - IPv4: 160 to 480 bits
 - IPv6: 320 bits
- **Time-To-Live (TTL):** number of hops a packet is allowed to travel before it is dropped.

Routing

A routing protocol decides along which path a packet travels from its source to its destination.

- Routing table of node v: maps every destination address to a neighbour of v.
- Forwarding: process of an intermidiate node receiving a packet and sending it to the next node.
- Hierarchical addressing: match a destination address to longest prefix in the routing table.
- **Default route:** where to forward packets when no specific entry is available in the routing table.

Routing table example

Routing ta	able of v_1
Destination	Next node
v_1	deliver
v_2	v_2
v_3	v_3
v_4	v_3

Table 2.24: A simplified routing table.

Link state (LS) routing

Algorithm 2.25 Link-State (LS) Routing Algorithm.

- 1: Given a weighted graph $G = (V, E, \omega)$
- 2: Learn $\omega(e)$ for every edge $e \in E$
- 3: Compute shortest paths to all nodes, e.g., by using Algorithm 2.16

LS routing allows:

- Nodes can discover changes in the network and update their routing tables.
- Other advanced features like multiple path routing.

Drawback: The nodes need to know the whole network. LS routing is feasible only at small scale within Autonomous Systems (AS)

• Autonomous system: a collection of nodes owned by a company.

Distance Vector (DV)

Algorithm 2.27 Distance-Vector (DV) Routing Algorithm.

- 1: Given a weighted graph $G = (V, E, \omega)$ and a node $u \in V$
- 2: Initialize a distance estimate $D(u \to v) = \omega(\{u, v\})$ for all neighbors N(u)and $D(u \to w) = \infty$ for all other nodes
- 3: Send distance vector $\mathcal{D}(u) = \{D(u \to v) \mid v \in N(u)\}$ to all neighbors N(u)
- 4: while true do
- 5: Upon receiving a distance vector $\mathcal{D}(v)$ from a neighbor v, update the distance estimate to all destinations accordingly
- 6: **if** $D(u \to w)$ changed for any w then
- 7: Send the updated distance vector $\mathcal{D}(u)$ to all neighbors
- 8: end if
- 9: end while

Keeps and updates the distance between all nodes

- Dsitributed: nodes do not need the knowledge of the whole network.
- Count to infinity problem.

Intra-domain vs inter-domain

- Intra-domain routing: routing within an autonomous system.
 - E.g: RIP routing protocol
- Inter-domain routing: routing between different autonomous systems -> Border Gateway Protocol (BGP):
 - BGP solves count-to-infinity problem.
 - Allows **outbound policies:** a node can decide which traffic to attract
 - Allows **inbound policies:** a node can decide thorugh which neighbour to route.

BGP algorithm

Algorithm 2.29 Border Gateway Protocol (BGP)

- 1: Basically, BGP is a DV Routing Protocol, see Algorithm 2.27
- 2: BGP nodes send out annoucements about every 30 seconds
- 3: BGP nodes send reachability information: every node announces which address blocks (prefixes) it can reach
- 4: Instead of just distance, nodes announce the whole AS path to each prefix
- 5: The network is not weighted, an edge between two AS nodes costs 1.

Tunnels

Definition 2.30 (Tunnel). The payload of a packet is a complete packet, with header and payload. In other words, we have two headers.

- A tunnel embeds a packet inside another packet. Use cases:
 - Virtual Private Network (VPN).
 - Cross Firewalls.
 - Translate between IPv4 and IPv6.
 - Virtual circuit routing.