
Distributed
    Computing 

FS 2019 Prof. R. Wattenhofer

Computer Engineering II
Solution to Exercise Sheet Chapter 12

1 Quiz Questions

a) No: The (supposed) security depends on not knowing the shift x. If CAESAR is applied
twice, you just chose another shift (and in the worst case, cancel out the encryption).

b) No. E.g., 2 ∗ 3 ∗ 5 − 1 = 29, which is prime. But 30 ∗ 29 − 1 = 869 = 11 ∗ 79. Even the first
part is not correct, e.g.: 2 ∗ 3 ∗ 5 ∗ 7 = 210 and 210 − 1 = 11 ∗ 19.

c) Yes. An attacker could just flip the bit of the message.

d) No. The attacker could just hash the modified message as well.

2 Secret Sharing

a) example execution: Let a1 = 3 and s = 2, with 2 neighbors. Thus, f(x) = 2 + 3x. We
distribute, e.g., (2, 8) and (3, 11). With both pairs, s = 2 can be recovered.

b) Without obtaining t pairs, k can take any value, i.e., t− 1 pairs reveal no information on k.

3 The One Time Pad

a) If you apply the same one time pad twice, it cancels out, leaving you with the original
message.

b) Essentially, you created a new one time pad. If both are truly random, then this method is
not more secure, but also not less, it is the same.

c) The beauty of the one time pad is that it transforms the message into a random message.
As thus, any string of length k could be the original message - you still know nothing except
for the length of the message.

d) Let k be the OTP. c1 ⊕ c2 = m1 ⊕ k⊕m2 ⊕ k = m1 ⊕m2, i.e., the one time pad cancels out.
You don’t have it decrypted yet, but it is a lot more information than just a random string.

e) You can get, e.g., m3 ⊕ m4, using similar techniques as above. I.e., c3 ⊕ c2 = m3 ⊕ k and
c4 ⊕ c3 = m4 ⊕ k, leading to c4 ⊕ c2 = m4 ⊕m3.



4 Diffie-Hellman Key Exchange

a) The primitive roots are 3 and 5.

b) Alice sends 34 = 81 = 4 mod 7 and Bob sends 32 = 9 = 2 mod 7. As thus, they agree on
(34)2 = 42 = 16 = 2 mod 7 (or (32)4 = 24 = 16 = 2 mod 7).

c) (individual solutions)

d) Alice picked kA = 3, Bob picks kB = 2. Alice sends 33 = 27 = 2 mod 5 to Bob and
Bob sends 32 = 9 = 4 mod 5 to Alice. As thus, they agree on (33)2 = 22 = 4 mod 5 (or
(32)3 = 43 = 64 = 4 mod 5).

5 Message Authentification

a) E.g., use sequence numbers.

b) The answer is no to both: Take any m and m′ = m+p, then h(m) = h(m′). Similarly, given
any 1 ≤ m ≤ p− 1, h(m) = m.

c) Use a large prime p with a primitive root g. With m being the message, let the hash be
h(m) = gm mod p. Now, finding an x s.t. h(x) = h(m) is the desired hash is equivalent to
solving the discrete logarithm problem.

6 Protocol Design

a) If Alice is supposed to send the same message every time, the signature is the same as well.
If Eve intercepts this message once, she can resend with the same signature any time she
wants in the future and Bob will respond.

Anybody can use Alice’s public key to encrypt any message and send it to her, so she has
no way of telling whether the responses she receives are from Bob or Eve.

Essentially, Alice and Bob’s plan doesn’t achieve anything, except after Bob receives the
first ”read”, he can be sure that Alice at some point in the past has actually sent it.

b) When Alice wants Bob to respond, she will send a message with a timestamp, signed with her
private key. The timestamp will prevent replay attacks, and the signature will authenticate
Alice to Bob. For secrecy, the message can be encrypted with Bob’s public key.

To reply to Alice, Bob will timestamp and sign his message with his private key before
encrypting with her public key, to similarly authenticate himself and prevent replay attacks
on Alice.

c) The first time Alice sends a message to Bob, she will send a key k0 for a symmetric encryption
scheme, signed by her secret key and encrypted with Bob’s public key. From now on, they
can stop using asymmetric encryption and signatures. Bob can accompany his response by
an HMAC using k0, and encrypt the whole message with k0.

Messages from Alice in subsequent communication rounds i will include a key ki, authen-
ticated by an HMAC using ki−1 and encrypted with ki−1. Again, Bob can respond with a
message, an HMAC using ki, and encrypt the whole message with ki.

Changing the key every round ensures forward secrecy. Messages are authenticated by an
HMAC using the key corresponding to the round, so replay attacks are prevented.

2


