Security

recap

Perfect secrecy:

cyphertext reveals no information (except max length)

Man-in-the-middle:

Pretend to Alice that you're Bob, and to Bob that you're Alice

Forward secrecy:

If Eve gets the key, she still can't decrypt the past cyphertexts

(t,n)-threshold secret sharing: require t out of n keys to recover a secret

(n,n)-threshold scheme –

distribute n bitstrings that xor to the plaintext

(t,n)-threshold scheme –

distribute n values of a (t-1)-degree polynomial. f(0) = secret

One-time pad

Bulk encryption

Discrete logarithm

prime p primitive root g

It's hard to find x:
$$g^x = a \mod p$$

One-time pad

Malleability: Eve can change the cyphertext and the recipient will not notice

HMAC

With a cyphertext **C**, Alice will send **h(k, h(k,c))** as well, to prove that **C** was sent by somebody who knows **k** (her)

Alice has a secret key k_s , and a public key k_p .

Bob can encrypt a message using $k_{\rm p}$, and only Alice will be able to read it using $k_{\rm s}$.

Alice can send her signature generated from k_s with message m. Using k_p Bob can check that Alice wrote m.

Systems come with some trusted public keys preinstalled. They can be used to check the signatures of corresponding secret keys that can vouch for other public keys, etc.