
Distributed
 Computing

FS 2019 Prof. R. Wattenhofer

Computer Engineering II
Solution to Exercise Sheet Chapter 3

1 Quiz Questions

a) Yes, it can if F uses the edge e twice because of a cycle in the flow. But if we require F to
be cycle-free, then we have F (e) ≤ F for all edges e.

b) No, e.g., you could have two flows on an edge e where one flow has a small rate because
it has to get through a low-capacity edge somewhere else and the other one can get all
the remaining bandwidth of e. So you can have an arbitrary factor between the allocated
bandwidths on an edge (if you design the network appropriately).

c) There are arguments you could make for TCP, e.g., the correct ordering of the packets, but
for realtime applications, the latency is more important in most cases. Thus, you rather
should choose UDP.

d) When the ACK for a packet arrives, the increase of the congestion window size by one packet
(according to slow-start) can be seen as doubling the “packet slot” (of the acknowledged
packet) in the congestion window. Since this is the case for any sent packet and since the
ACK arrives roughly one RTT after sending a packet, doubling the size of the congestion
window roughly takes one RTT.

2 Flows and Allocations

a) Yes.

s2

s3

s4

s1

t2

t1

t3

t4

6

6

6

5

6

5

3

4

5

6

3

9

6

6

6

6

6

6

b) F1 = 2, F2 = 2, F3 = 3, F4 = 4. The throughput is 11.

c) F1 = 1, F2 = 3, F3 = 3, F4 = 5. The throughput is 12.

3 UDP and TCP

a) On the one hand, the UDP application might not adjust its rate, meaning that the congestion
will persist if TCP is not dropped. On the other hand, dropping TCP will incur a hefty
multiplicative decrease, while the UDP application might be able to handle some lost packets
(e.g., video streaming). There are more factors to this, but the real life answer is: It depends
(and also: it’s complicated).

b) A sender finds out if a router dropped one of its packets due to the missing ACK from the
receiver after a timeout. If a router informs the sender directly when it drops its packet
then the sender would not have to wait for the timeout. This is not done in practice because
routers need to be fast, so we try to keep them simple. Also there might be a problem if the
direct message of the router got lost, so we need a timeout no matter what!

c) The first thing to notice is that every 12 ms (take, for instance, the time from t = 0 to
t = 11) 13 packets arrive at the router while only 12 are forwarded. After 12 ms the whole
process repeats, but now the buffers are filled with one packet. Thus, the buffer utilization
grows by one packet every 12 ms, resulting in a buffer utilization of x at time t = 12x− 1.

Now, let’s have a look at the change in the buffer utilization during a time period of 12 ms,
let’s say from t = 0 to t = 11. At t = 0 the utilization increases by 2 packets, at t = 1 it
decreases by 1, and so on. The buffer utilization is never larger than 2 packets until and
including t = 11, and similarly, the buffer utilization is never larger than x + 2 during the
time period from t = 12x to t = 12x + 11 (recall the buffer utilization at t = 12x − 1).
Moreover, the buffer utilization is x + 2 for the first time at t = 12x.

The router will drop the first packet when it reaches a buffer utilization of 11 packets,
exceeding its capacity of 10 packets. Following our considerations above, this is the case for
the first time at t = 12 · 9 = 108. Thus, the first packet is dropped after 108 ms.

At t = 108, packets from all three clients arrive at the router. According to its dropping
preferences, it will drop the packet from client C1.

d) As the amount of packets arriving at R per time unit is only slightly larger than the amount
of packets leaving R, the router only has to drop a packet every 12 ms. Since the congestion
occurs always at a time which is a multiple of 12 ms, the router will always drop a packet
from C1, due to his dropping preferences. Thus, even if C1 never notices that he loses
packets, C2 anad C3 will never lose any packets.

e) Again, depending on the precise scenario, you could perhaps find arguments for both sides.
We go with the following: Dropping packets from a close-by client is preferable since such
a client will realize faster that it lost packets and therefore the congestion will be remedied
faster. Dropping packets from a client sending with a large rate has the advantage that the
probability that the congestion is actually removed is larger since halving the rate of a larger
flow “removes more congestion”. Also, you do not want to utilize routers at their buffers’
limit since that would induce undesired latencies.

4 LPs

a) The vertices are (0, 0), (0, 2), (1, 2), (2, 0) and (2, 1). The vertex with the largest objective
function value and thus the solution to the LP is (1, 2). Depending on if you go clockwise or
counterclockwise, the simplex algorithm takes 2 or 3 steps, respectively. Figure 1 illustrates
how the algorithm can procede.

b) Let the multi-commodity flow be denoted by F = (F1, . . . , Fk) where Fi has source si and
destination ti.

2

−1 1 2 3 4

−1

1

2

3

4

x1

x2

Figure 1: The five-sided polygon (and its interior) is the feasible region, i.e. set of points that
satisfy the constraints of the LP. The objective function has a higher value at both (0, 2) and (2, 0)
than at (0, 0), so we can choose either one as the first step to take. Depending on that, it takes
us two or three steps to find the optimum at (1, 2).

Maximize f(x) =
∑k

i=1

∑
e∈out(si) xei

subject to

(a) xei ≥ 0 for all e ∈ E and all 1 ≤ i ≤ k

(b)
∑k

i=1 xei ≤ c(e) for all e ∈ E

(c) (
∑

e∈in(v) xei =
∑

e∈out(v) xei for all v ∈ V \ {si, ti}) for all 1 ≤ i ≤ k

(d)
∑

e∈in(si) xei = 0 for all 1 ≤ i ≤ k

c) Take the solution for a) and add constraints that ensure that the flow rates are bounded by
the di:

Maximize f(x) =
∑k

i=1

∑
e∈out(si) xei

subject to

(a) xei ≥ 0 for all e ∈ E and all 1 ≤ i ≤ k

(b)
∑k

i=1 xei ≤ c(e) for all e ∈ E

(c) (
∑

e∈in(v) xei =
∑

e∈out(v) xei for all v ∈ V \ {si, ti}) for all 1 ≤ i ≤ k

(d)
∑

e∈in(si) xei = 0 for all 1 ≤ i ≤ k

(e)
∑

e∈out(si) xei ≥ di for all 1 ≤ i ≤ k

A multi-commodity flow F as desired exists if and only if there is a solution to the LP.
Thus, you infer a YES answer from the existence of a solution and a NO answer from the
non-existence, i.e., if there exists no solution to the LP. Note that it is irrelevant which
linear function you choose to be maximized in the above LP as the existence of a solution
to the LP only depends on if there is a point in the vector space that satisfies all of the
inequalities. In other words, if the polytope is non-empty, then there exists a solution for
any linear objective function and the answer is YES.

3

5 Fairness and Congestion Control

a) In the max-min allocation we increase the value of all the flows until one edge saturates.
The edges B-C and C-D saturate at the same time. We freeze the flows F1, F3 and F4 and
continue increasing the flow F2 until the edge A-B saturates. This gives as the max-main-fair
allocation: F1 = F3 = F4 = 8, F2 = 16.

b) As indicated in the hint, we can formulate the proportional fairness problem as an LP
problem where xi represents the value of the flow Fi. We want to maximize f(x) = log(x1)+
log(x2) + log(x3) + log(x4). Given that F3 and F4 are symmetric and due to the concavity
of the log function, log(x3) + log(x4) is maximized for x3 = x4. Now, we can write the LP
problem as:

Maximize f(x) = log(x1) + log(x2) + 2log(x3)
subject to

(a) x1 + x2 ≤ 24

(b) x1 + 2x3 ≤ 24

(c) 0 ≤ x1 ≤ 8

(d) 0 ≤ x2 ≤ 20

(e) 0 ≤ x3 ≤ 10

To maximize f(x), we need the constrains (a) and (b) to become equalities while respecting
constrains (c), (d) and (e). This greately reduces the number of corners to consider. We can
build a table with all of these possible solutions:

x1 x2 x3 f(x)
4 20 10 8.99
6 18 9 9.07
8 16 8 9.01

In the light of these results, the proportionally fair allocation is given by F1 = 6, F2 = 18,
F3 = F4 = 9, which is different to the max-min allocation.

c) In t = 1 both flows are increased by one unit, reaching the values F1 = 4 and F2 = 20. At
this point, the total flow in the edge A-B reaches the maximum, 24. No packets are dropped
and so, in the next time step, t = 2, both flows are increased by one unit. Now, the sum of
both flows in the edge A-B should be 26, so two packets are dropped, one from each flow.
In time t = 3 the source nodes notice that a packet was dropped and perform multiplicative
decrease, halving the flow values, i.e., F1 = 3 and F2 = 11.

From t = 4 to t = 9, additive increase is performed and in t = 9 the flow values are F1 = 9
and F2 = 17. At this point the capacities of edges A-B and C-D are exceeded and in t = 10
multiplicative decrease is performed again, giving the values of F1 = 5 and F2 = 9.

4

Figure 2: Flow 1.

Figure 3: Flow 2.

5

Figure 4: Edge A-B.

d) Using multiplicative increase will not provide fairness. The pros and cons are:

Pros: if I am the only one doing this, I am more aggressive and will gain higher throughput,
at the expense of others.

Cons: if everyone does this, the network will not distribute rates according to any form of
fairness. Connections that have a high share (because the network was lightly loaded when
they started) will continue to have a higher share than others during periods of congestion.

Mastery

6 Fairness vs. Efficiency

Consider the following graph:

v1 v2 v3 ... vn−2 vn−1 vn
1 1 1 1 1 1

Now, let there be n− 1 flows F1, . . . , Fn−1, with source v1 and destination vn each. Additionally,
let there be n− 1 flows F ′1, . . . , F

′
n−1 where each flow F ′i has source vi and destination vi+1.

In the max-min-fair allocation, each flow has a rate of 1/n since each edge divides its bandwidth
equally between the n flows using the edge. Thereby, a throughput of (2n − 2)/n is achieved.
However, the maximal throughput is achieved by allocating a bandwidth of 1 to each F ′i and a
bandwidth of 0 to each Fi. The resulting throughput is n− 1. We obtain an efficiency of 2/n for
the max-min-fair allocation, which tends to 0 for n→∞. Thus, we showed that the efficiency of
a max-min-fair allocation can be arbitrarily small.

6

