
Principles of Distributed Computing 05/13, 2020

Solution 12

Lecturer: Mohsen Ghaffari

While it is possible to solve the exercises without the following theorem, the calculations
required get significantly longer. So for simplicity, we will use the following:

Theorem 1 (Chernoff Bound, upper tail) Let X be the sum of independent random indi-
cator variables X1, . . . , Xn, and let µ = E[X]. Then for any δ ≥ 0,

Pr[X ≥ (1 + δ)µ] ≤ e−
δ2µ
2+δ .

1 Vertex Coloring using All-to-All Communication

Our goal will be to partition the graph into different parts, such that we can (1) solve the
coloring problem on each part separately, and (2) each part has size (i.e. number of edges) at
most O(n/ log n). We can then use the routing result seen in the lecture, which allows us to
send all information about one part to some vertex, which can then perform the coloring locally,
and inform all vertices about their color. Note, that the problem is not about vertices having
enough capacity to send the necessary information, they can always send most of their incident
edges, but about one vertex having enough capacity to receive all information required to make
a decision.

To be precise, we randomly divide the graph into k = ∆/ log n parts, by each vertex choosing
one part at random. This will result in graphs G1, . . . , G`, where each Gi contains all vertices
of part i, as well as all edges between them. First, let us analyze the number of vertices in Gi.
Letting X denote the number of vertices in Gi, we can see that E[X] = n/`, and that X can
be written as the sum of independent random indicator variables, where each indicator is one
if a vertex is in part i, and zero otherwise. Further, note that by our choice of `, we have that
E[X] ≥ log n. Thus, we can use a Chernoff Bound to get:

Pr[X ≥ 10n/`] ≤ e−
100n/`

12 ≤ e−8 logn = n−8.

By a union bound over all graphs Gi, we can conclude that each graph contains at most 10n/`
vertices with probability at least 1− n−7.

Next, we will analyze the degree of a vertex in Gi. Letting Y denote said degree, we observe
that E[Y ] ≤ ∆/` = log n. Again, we can also observe that Y can be written as a sum of
independent random variables, one for each neighbor. Therefore, by a Chernoff bound we have:

Pr[Y ≥ 10 log n] ≤ e−8 logn = n−8.

In the same way as for the number of vertices, by a union bound over all vertices, the probability
that there is some vertex which has degree more than 10 log n, is at most 1− n−7.

Combining these results, we get that each graph Gi contains at most 100n log2 n
∆ edges. As

∆ = Ω(log3 n), this is at most O(n/ log n).
Thus, we can use the routing result from the lecture to conclude that for each part Gi there is

a node that can learn the topology of Gi. By using different palettes (i.e. colors 1, . . . , 10 log n
for i = 1, 10 log n + 1, . . . , 20 log n for i = 2, etc.) for each part, each part can be colored
independently, using at most 10 log n ·∆/ log n = O(∆) colors.

1



2 Edge Coloring

(2a) Let us set q = 40∆ log n. We create a set C(e) for each edge e by randomly sampling
r = 10 log n colors from {1, . . . , q} with replacement1. We can also think of this as C(e)
having r slots, and for each slot we pick a color at random.

In the following, we will show that with high probability, for each edge e, the set C(e)
contains a color that is contained by none of the edges adjacent to e. Let us look at one
particular edge e, and let us assume that all other edges e′ have already chosen their set
C(e′). First, notice that there are at most 2∆ − 2 ≤ 2∆ adjacent edges. Each of these
edges e′ has a set C(e′) of cardinality at most r = 10 log n. Thus, there are at least

40∆ log n− 2∆ · 10 log n = 20∆ log n

colors that are not used by edge adjacent to e, i.e. they are good for e. Picking one such
color in one sampling step has probability at least 20∆ logn

40∆ logn = 1
2 . Thus, the probability

that within r = 10 log n sampling steps, we never pick a good color is at most 2−r = n−10.
Finally, we can union bound over all at most n2 many edges, to get that each edge has a
color that is good with probability at least n−8. Note, that by multiplying both q and r
by some constant c, this probability can be made smaller than n−c (in fact n2−10c).

(2b) For this exercise, the main idea is the following: In a first step, we choose colors such
that the probability of one edge finding a good color is only 1− 1/poly(log n). While this
probability is smaller than we would like, it does allow us to argue that the number of
adjacent edges drops by a factor of roughly log n for each edge. And for this event we
can get the guarantee that it holds with high probability, which also allows us to union
bound over all edges. Finally we observe that this reduction in the number of adjacent
edges (which can also be thought of as a reduction in the degree of each node) leaves us in
a setting where the relationship between ∆ and the number of allowed colors is the same
as in part (a).

To be precise, we will perform two steps of sampling, where we use different colors in
each step. For the first step, we will use q1 = 40∆ log logn colors, and create each set
C(e) by sampling r1 = 10 log log n of them, with replacement. Using the same analysis
as before, it can be shown that the probability that one edge finds a good color is now at
least 1− log−10 n. All these edges that found a good color are now ignored in the second
round. Thus, for a given edge e, we expect its number of adjacent edges to drop by at least
a factor of log10 n. While the events that two edges are removed are not independent2,
we can observe that the events that we analyzed are independent, as we calculated the
probability that an edge finds a good color independently of what color its adjacent edges
choose. Thus, the number of remaining adjacent edges is stochastically dominated by a
sum of at most 2∆ independent random variables that are 1 with probability at most
log−10 n, and 0 otherwise. Using a Chernoff bound, this allows us to conclude that the
number of adjacent edges being larger than ∆/ log n is at most n−10 (for larger enough
n).

For the second step of sampling, we will sample in the same way as in the first step, just
using a different palette of colors. We can notice that this setup is similar to part (a), in
fact even a bit stronger, as we have a factor of log log n colors more, since effectively the
value of ∆ has changed.

Overall, we used 80∆ log log n = O(∆ log log n) colors, and by a union bound over both
steps, we succeed with high probability.

1While this might not seem like a smart thing to do, as we potentially waste some sampling steps by picking a
previously chosen color, it helps with the analysis, as it means that the color choices in each step are independent

2For part (a), this was not an issue, as we were using a union bound for different edges.

2



(2c) From the lecture notes, we know that there is a bipartite graph H, such that an edge
coloring ofH implies a routing scheme. Thus, we only need to argue that we can implement
the color checker on H. Recall that H is bipartite with nodes {a1, . . . , an} on one, and
{b1, . . . , bn} on the other side. For every message from i to j, we have an edge from ai to
bj .

We will let all nodes i be responsible for the incident edges of ai, so they will perform
both the sampling of colors and the following checking. Let e be one edge incident to
node i, and suppose we have chosen the colors C(e) for e. A node i will find a good color
for all edges incident to ai as follows: if there are two edges that chose the same color we
know that this color is not good. For a color in C(e), for which we do not that it is not
good yet, we will spend O(1) rounds to find out whether it is good or not. In the first 2
rounds, we will check the colors 1, . . . , n, by sending the endpoints of every edge of color
c to the node with ID c. Now every node c can check if there are two edges e and e′ that
share an endpoint and chose the same color. This works, as there is at most one edge of
a given color c that needs to be sent from any node i. For the next two rounds, we check
the colors n+ 1, . . . , 2n, and so on.

This works inO(1) rounds, as every node needs to send ∆ = O(n/ log n) (resp. O(n/ log logn))
messages, and we use O(∆ log n) = O(n) (resp. O(∆ log log n) = O(n)) colors. Having
this color checker, we can now color the graph H and use the coloring to route the messages
as discussed in the lecture.

3


	Vertex Coloring using All-to-All Communication
	Edge Coloring

