
Principles of Distributed Computing 03/04, 2020

Exercise 3

Lecturer: Mohsen Ghaffari

1 Color Reduction in Vertex-Coloring

Exercise

(1a) Design a single-round algorithm that transforms any given k-coloring of a graph with
maximum degree ∆ into a k′-coloring for k′ = k − b k

(∆+2)c, assuming k′ ≥ ∆ + 1.

We assume k ≥ ∆ + 2 (as otherwise we cannot in general reduce the number of colors). We
put the colors of the given k-coloring into b k

∆+2c buckets, each of size ∆ + 2 except for the
last one which may have size between ∆ + 2 to 2∆ + 3. Within each bucket we can in one
round reduce the number of colors by 1, using the method of Lemma 1.23. Since this can be
done for all buckets in parallel, in total the number of colors can be reduced by b k

∆+2c in 1
round.

(1b) Use repetitions of this single-round algorithm, in combination with the O(log∗ n)-round
O(∆2 log ∆)-vertex-coloring that we saw in class, to obtain an O(∆ log ∆ + log∗ n)-round
(∆ + 1)-coloring algorithm.

First, we run the O(log∗ n) algorithm that gives us a (C∆2 log ∆)-coloring for some constant
C. Then we repeat the algorithm from (a) until k ≤ ∆+1. To bound the number of necessary
rounds we need until the number of used colors drops to ∆+1, we first bound how the number
of used colors drops in each iteration. We have

b k

∆ + 2
c ≥ 1

2

k

(∆ + 2)
≥ k

6∆
,

where the first inequality holds for any k ≥ ∆+2 and for the second inequality we used ∆ ≥ 1.
Hence, the number of used colors drops in each iteration by factor of at least 1− 1

6∆ , unless
it is already ∆ + 1. But this means that after 18∆ log(C∆) iterations the number of colors
either drops to ∆ + 1 or to

C∆2 log ∆ ·
(

1− 1

6∆

)18∆ log(C∆)

≤

≤ C∆2 log ∆ · e−18∆ log(C∆)/(6∆) = C∆2 log ∆(C∆)−3 < ∆ + 1

where we used that for any x we have 1 + x ≤ ex. Hence, we achieve a coloring with ∆ + 1
colors in O(∆ log ∆) steps, as needed.

2 SuperImposed Codes

Here, we use the concept of cover free families to obtain an encoding that allows us to recover
information after superimposition. That is, we will be able to decode even if k of the codewords
are superimposed and we only have the resulting bit-wise OR.

1

Exercise

(2a) Concretely, we want a function Enc : {0, 1}logn → {0, 1}logm — that encodes n possibil-
ities using logm-bit strings — such that the following property is satisfied: ∀S 6= S′ ⊆
{1, ..., n} such that |S| ≤ k and |S′| ≤ k, we have that ∨i∈SEnc(i) 6= ∨i∈S′Enc(i). Here ∨
denotes the bit-wise OR operation. Present such an encoding function, with a small m,
that depends on n and k.

The solution to this exercise is obtained by bending the description of the task into the terms of
Lemma 1.19 from the lecture notes. We use a k-cover-free family for the encryption, where the
bitstring of length logm is interpreted as being a set where the ith bit is 1 if element i is in the
set. Note that the bitwise OR is the same as the union of the corresponding sets. Since S 6= S′,
there is an element j that is contained in exactly one of S and S′ . W.l.o.g., assume that
j ∈ S (and therefore j /∈ S′). Due to using a k-cover-free family in our construction, and since
|S′| ≤ k, we know that Enc(j) 6⊆

⋃
i∈S′ Enc(i), which implies

⋃
i∈S Enc(i) 6=

⋃
i∈S′ Enc(i)

(or, in terms of bit strings, ∨i∈SEnc(i) 6= ∨i∈S′Enc(i)). Applying Lemma 1.19, we get that
there exists such a k-cover-free family with ground set of size logm = O(k2 log n), hence
m = 2O(k2 logn).

3 Yet Another Coloring

Here, we see yet another deterministic method for computing a (∆ + 1)-coloring in O(∆ log ∆ +
log∗ n) rounds. First, using what we saw in the class, we compute an O(∆2 log ∆)-coloring φold
in O(log∗ n) rounds. What remains is to transform this into a (∆ + 1)-coloring, in O(∆ log ∆)
additional rounds.

Exercise The current O(∆2 log ∆)-coloring φold can be written using C log ∆ bits, assuming
a sufficiently large constant C. This bit complexity will be the parameter of our recursion.
Partition G into two vertex-disjoint subgraphs G0 and G1, based on the most significant bit in
the color φold. Notice that each of G0 and G1 inherits a coloring with C log ∆ − 1 bits. Solve
the ∆ + 1 coloring problem in each of these independently and recursively. Then, we need to
merge these colors into a ∆ + 1 coloring for the whole graph.

(A) Explain an O(∆)-round algorithm, as well its correctness proof, that once the independent
(∆+1)-colorings of G0 and G1 are finished, updates only the colors of G1 vertices to ensure
that the overall coloring is a proper (∆ + 1)-coloring of G = G0 ∪G1.

In each of ∆ + 1 = O(∆) rounds, we choose a distinct one of the ∆ + 1 colors used to
color G1, and let each vertex in G1 with this color pick a new color from the color set used
for G0 such that no neighbor in G has the same color. Since there are ∆ + 1 colors to pick
from and at most ∆ neighbors per node, such a new color always exists. Note that no two
neighboring nodes pick a new color in the same round. Since the above algorithm ensures
that we always have a proper coloring in the subgraph induced by the nodes from G0 and the
already recolored nodes from G1, we have a proper (∆ + 1)-coloring after recoloring all nodes
from G1, i.e., after ∆ + 1 rounds.

(B) Provide a recursive time-complexity analysis that proves that overall, the recursive method
takes O(∆ log ∆) rounds.

After C log ∆− 1 iterations of splitting each of the vertex-disjoint subgraphs obtained in the
previous iteration into two smaller subgraphs, we are left with subgraphs of size 1 (or 0). Note
that this splitting process does not require any communication rounds; so far, each node v
only has to know its own subgraph, which is simply v itself. After trivially finding a proper
(∆+1)-coloring in each size-1 subgraph, we recursively glue the split subgraphs back together

2

and transform the (∆ + 1)-colorings of any two joined subgraphs into a (∆ + 1)-coloring of
the obtained combined subgraph, using the process described in (A). Since the depth of our
recursion is C log ∆ − 1 and the process from (A) runs in O(∆) rounds, we obtain a total
round complexity of (C log ∆− 1) ·O(∆) = O(∆ log ∆).

3

