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1 Multiple Choice (24 points)

Evaluate each of the following statements in terms of correctness. Indicate whether a statement is
true or false by ticking the corresponding box. Each correct answer gives one point. Each wrong
answer and each unanswered question gives 0 points.

A) [3] Consider the asynchronous model and the synchronous model.

true false

Any problem that can be solved in the synchronous model can be solved
in the asynchronous model.

2 2

Any problem that can be solved in the asynchronous model can be solved
in the synchronous model.

2 2

If a problem can be solved in both models, the time complexity of the
optimal solution in the synchronous model is not worse than the time
complexity of the optimal solution in the asynchronous model.

2 2

B) [3] Given an unoriented tree with constant degree, in the LOCAL model we can deterministically
color it with a constant number of colors in. . .

true false

. . .O(log n) rounds. 2 2

. . .O(log∗ n) rounds. 2 2

. . .O(1) rounds. 2 2

C) [3] Given a cycle of n nodes, for the problem of deterministically computing a set of marked
nodes, such that each two marked nodes have distance at least 10, and each unmarked node has
a marked node within distance 100, the following bounds hold for the round complexity in the
LOCAL model:

true false

O(log n). 2 2

Ω(log n). 2 2

Ω(log∗ n). 2 2
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D) [3] Given a synchronous network with n nodes and diameter D, and messages consist of 1 bit (can
communicate with every neighbor in every round). Each node has a log n bit string. Detecting if
all strings are equal takes . . .

true false

(at least) Ω(n) time. 2 2

Ω(D) time. 2 2

Ω(D + log n) time. 2 2

E) [3] The slotted aloha algorithm (Algorithm 13.1) . . .

true false

elects a leader in O(1) time with high probability. 2 2

also works in a uniform setting (i.e. if the nodes do not know n). 2 2

does not require collision detection. 2 2

F) [3] Consider the technique of introducing collision detection into a network through a specific
leader node (Table 13.7).

true false

The method enables every node to have collision detection, except for
the leader.

2 2

When at least 2 nodes submit in the same time slot, the listening nodes
can decide whether the leader was one of the nodes that transmitted.

2 2

The method also works if there are two different nodes that execute the
role of the leader simultaneously.

2 2

G) [3] Consider the Maximal Independent Set (MIS) problem and Luby’s algorithm for solving it.

true false

In Luby’s MIS algorithm, the probability of each node being removed in
the first round is at least a positive constant.

2 2

A graph on n vertices with maximum degree ∆ contains an independent
set of size at least n

∆+1 .
2 2

When running Luby’s algorithm on a graph with constant degree, every
node is in the resulting MIS with constant probability.

2 2
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H) [3] Consider the following statements.

true false

There is a randomized distributed algorithm that computes the minimum
cut in any graph in at most n7/8 rounds, with high probability.

2 2

In any n-node weighted graph, we can compute a 2-approximation of
the weight of the minimum spanning tree in poly(log n) rounds of the
LOCAL model, with high probability.

2 2

For any n-node graph, there exists a network decomposition into clus-
ters of strong-diameter O(log n), colored with O(log n) colors, so that
neighboring clusters have different colors.

2 2
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Solutions

A) [3] Consider the asynchronous model and the synchronous model.

true false
Any problem that can be solved in the synchronous model can be solved
in the asynchronous model.

X

Reason: Assume that every node has a number; find the largest number
among all nodes if the number of nodes is unknown.
Any problem that can be solved in the asynchronous model can be solved
in the synchronous model.

X

Reason: The synchronous model can be considered as a special case of
the asynchronous model.
If a problem can be solved in both models, the time complexity of the
optimal solution in the synchronous model is not worse than the time
complexity of the optimal solution in the asynchronous model.

X

Reason: The synchronous model can be considered as a special case of
the asynchronous model.

B) [3] Given an unoriented tree with constant degree, in the LOCAL model we can deterministically
color it with a constant number of colors in. . .

true false
. . .O(log n) rounds. X
Reason: See the next point.
. . .O(log∗ n) rounds. X
Reason: ∆ + 1 coloring of any constant degree graph can be done in
O(log∗ n) rounds.
. . .O(1) rounds. X
Reason: 3-coloring a directed path, for which we know a Ω(log∗ n) lower
bound, reduces to the problem with only a constant overhead.

C) [3] Given a cycle of n nodes, for the problem of deterministically computing a set of marked
nodes, such that each two marked nodes have distance at least 10, and each unmarked node has
a marked node within distance 100, the following bounds hold for the round complexity in the
LOCAL model:

true false
O(log n). X
Reason: Compute an MIS of G10, which can even be done in O(log∗ n)
rounds (e.g. via coloring, note that both G and G10 have constant degree)
Ω(log n). X
Reason: As mentioned, the problem can be solved in O(log∗ n) rounds.
Ω(log∗ n). X
Reason: 3-coloring a directed path, for which we know a Ω(log∗ n) lower
bound, reduces to the problem with only a constant overhead.
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D) [3] Given a synchronous network with n nodes and diameter D, and messages consist of 1 bit (can
communicate with every neighbor in every round). Each node has a log n bit string. Detecting if
all strings are equal takes . . .

true false
(at least) Ω(n) time. X
Reason: O(log n) is possible in a clique.
Ω(D) time. X
Reason: In case two nodes have different strings, the propagation of this
information takes Ω(D).
Ω(D + log n) time. X
Reason: If all nodes have the same string except one node, then detecting
the difference takes Ω(log n) and only after that nodes can be informed
about this, which takes Ω(D).

E) [3] The slotted aloha algorithm (Algorithm 13.1) . . .

true false
elects a leader in O(1) time with high probability. X
Reason: It only works in O(1) expected time, but not in O(1) time with
high probability.
also works in a uniform setting (i.e. if the nodes do not know n). X
Reason: Each node transmits with probability 1

n , so the algorithm requires
a knowledge of n.
does not require collision detection. X
Reason: The algorithm does not use CD.

F) [3] Consider the technique of introducing collision detection into a network through a specific
leader node (Table 13.7).

true false
The method enables every node to have collision detection, except for
the leader.

X

Reason: The table shows that the follow-up round indeed lets the listening
nodes distinguish between silence and a collision. However, the leader has
to transmit in the follow-up round, so it cannot listen; as such, it cannot
distinguish between these two cases.
When at least 2 nodes submit in the same time slot, the listening nodes
can decide whether the leader was one of the nodes that transmitted.

X

Reason: If at least 2 nodes transmit, then the listening nodes only hear
a collision in both time slots. This allows them to deduce that at least 2
nodes have transmitted, but they have no way to know whether the leader
was among these nodes.
The method also works if there are two different nodes that execute the
role of the leader simultaneously.

X

Reason: In this case, nodes will always only hear a collision in the follow-
up round, so this does not introduce CD into the network.
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G) [3] Consider the Maximal Independent Set (MIS) problem and Luby’s algorithm for solving it.

true false
In Luby’s MIS algorithm, the probability of each node being removed in
the first round is at least a positive constant.

X

Reason: Consider a tree, where we have a node v of degree log n sur-
rounded by nodes of degree n1/2. The probability of v joining the MIS is
≈ 1/ log n, whereas v is removed by any of its neighbors with probability
only ≈ log n/n1/2.
A graph on n vertices with maximum degree ∆ contains an independent
set of size at least n

∆+1 .
X

Reason: As seen in the second graded homework, even the first round of
Luby’s algorithm yields an independent set of this size.
When running Luby’s algorithm on a graph with constant degree, every
node is in the resulting MIS with constant probability.

X

Reason: Every node is even included in the independent set after the first
round, with constant probability.

H) [3] Consider the following statements.

true false
There is a randomized distributed algorithm that computes the minimum
cut in any graph in at most n7/8 rounds, with high probability.

X

Reason: Computing even an approximation of the minimum cut requires
Ω(D) rounds, which can be Ω(n).
In any n-node weighted graph, we can compute a 2-approximation of
the weight of the minimum spanning tree in poly(log n) rounds of the
LOCAL model, with high probability.

X

Reason: This task requires Ω(D) rounds.
For any n-node graph, there exists a network decomposition into clus-
ters of strong-diameter O(log n), colored with O(log n) colors, so that
neighboring clusters have different colors.

X

Reason: See exercises.
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2 Partial Coloring (25 points)

For this problem, we use the LOCAL model of distributed algorithms, where the network is
abstracted as an n-node undirected graph G = (V,E), where nodes have unique O(log n)-bit
identifiers, and per round each node can send an unbounded-size message to each neighbor.

Suppose that the network graph G is an unoriented tree (i.e., G is connected and has no cycle,
but there is no notion of parents known to the nodes). Devise a deterministic algorithm that
colors at least 90% of the nodes using at most 100 colors, where each node knows its own color.
Your algorithm should have the best possible complexity, and any complexity Ω(log n) or higher
receives zero points.
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Solutions
We will show an algorithm that needs O(log∗ n) rounds. The algorithm has 10 phases. In the i-th
phase, we first set aside all vertices that are already colored and define Gi as the subgraph formed
by the remaining vertices. Moreover, let Hi ⊆ Gi be the set of vertices with degree at most 2 in
Gi. The algorithm colors the graph Hi in the i-th phase with three colors 3i, 3i + 1, 3i + 2. Note
that Hi is disjoint union of paths, so it can be done in O(log∗ n) rounds by Linial’s algorithm.

After this algorithm finishes, we have colored the graphs H1∪H2∪. . . H10 with 30 ≤ 100 colors,
in O(log∗ n) rounds of the LOCAL model. We need to upper bound the number of uncolored nodes.
This is done as follows: Each Gi is a forest, so it has at most |Gi| − 1 ≤ |Gi| edges. In other
words, the sum of degrees of vertices in Gi is bounded by 2|Gi|. On the other hand, each vertex
of Gi \Hi = Gi+1 has degree at least 3 in Gi. Hence, we have

3|Gi+1| ≤ 2|Gi|

This implies that |G11| ≤
(

2
3

)10 |G1| ≤ 0.1|G1|, as needed.
Finally, let us sketch why the achieved round complexity O(log∗ n) is best possible (this was

not needed to get points). For contradiction suppose there is an algorithm A that, in o(log∗ n)
rounds, outputs coloring with at most 100 colors for 90% of the nodes for any cycle on n nodes.
We first construct n such cycles on n nodes, such that identifiers of one cycle are disjoint from
identifiers of all the other cycles. On each cycle, there exists a configuration of identifiers such
that the algorithm A does not color consecutive path of Ω(log∗ n) nodes; otherwise, we could color
all nodes of that cycle with constant number of colors in o(log∗ n) rounds which would contradict
Linial’s lower bound. Finally, we can take the path of length Ω(log∗ n) that A cannot color from
each cycle and glue all of these paths in a new cycle. If we run A on this new instance, it will not
color 1− o(1) fraction of vertices, which finishes the lower bound.
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3 Labeling Elections (29 points)

Let us study labeling schemes for elections. There are k candidates in the election. The voters
are organized as a tree of n nodes, with n ≥ k. Each voter/node u in the tree is voting for one
candidate, i.e., the vote of each node u is in {1, . . . , k}. Given two nodes u and v, we are interested
in recovering the winning candidate on the path between u and v. The winning candidate is a
candidate receiving most votes from the nodes in the path between u and v (included). If the
winning candidate is not unique, but multiple candidates have most votes in the path, the decoder
can return any of those candidates.

1

2

4 5

3

Figure 1: Example of an election on a tree with k = 2 candidates. The votes are
shown as the colors of the nodes: Gray nodes vote for candidate 1, while white nodes
vote for candidate 2. On the path between nodes 4 and 5, candidate 1 receives 2
votes (from 4 and 5) while candidate 2 only receives 1 vote (from 2). Thus, the
decoder should return candidate 1 for this request. For a request between 4 and 3,
the decoder can return candidate 1 or 2 as they both receive 2 votes.

A) [8] If the tree is a path, give a labeling scheme using at most O(k log n) bits for each label.

B) [8] For any tree, give a labeling scheme using at most O(k log2 n) bits for each label.

If k is small we are happy with our solution of A). But if k is large (k → n), the labels of A) are
too long. We want to improve this.

C) [13] If the tree is a path, give a labeling scheme using at most O(
√
n log n) bits for each

label.
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Solutions

A) Let us fix an arbitrary endpoint of the path and call it the starting node. For each node
u, we store in its label the candidate xu it is voting for. Also, we store the number of
times every candidate c appears between u and the starting node (both nodes included). We
need log n bits for each candidate and log k bits for u’s candidate, so the labels will have
k log n + log k ∈ O(k log n) bits in total. Given the labels of two nodes, we can recover the
number of time each candidate appears on the path between them and deduce the answer
from it.

B) We can adapt the Heavy-Light decomposition algorithm seen in the lecture notes (Chapter
14, page 78). We define the candidate of an edge as the candidate voted by the parent of
the edge. Each node has the heavy-light labeling, with the following modifications. For each
light edge, nodes also store the candidate of the edge, using log k additional bits. For each
heavy path, instead of storing the length of the path, nodes store the number of time each
candidates appear on the path using k log n bits. As there are at most log n light edges in
every path to the root, the label of each node contains at most k log n bits. Finally, we add
to this label the candidate that the node is voting for. Given two labels, we can find the
node in the tree where the heavy-light path diverges and recover the sets of colors in between
the two nodes. Again, we can deduce the answer out of it.

C) For each candidate having more than
√
n votes (let us call them heavy candidates), we create

a counter as in the first question. This takes O(
√
n log n) bits, as there could be as many as√

n such candidates.

To deal with the other candidates (let us call them light candidates), we will design another
labelling scheme. Again, let us fix an arbitrary endpoint of the path as the starting node
of the path. For each node u, we define Iu(x) as the index of the first node after u such
that some light candidate receives at least x votes between those two nodes. We define
this (unique) candidate Cu(x). If there is no such candidate receiving x votes, then we set
these two values to -1. We can now create u’s label by concatenating Iu(x) and Cu(x) for
x = 1, . . . ,

√
n. As no candidate appears more than

√
n times, we only need to store at most√

n pairs. We also store in the label the position of the node in the path, using log n bits.
In total, the labelling of these light candidates also takes O(

√
n log n) bits.

From these two labels, you can recover the heavy and light candidates receiving most of
the votes (among their category), and compare them to finally select the one receiving most
votes.
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4 Disjoint Walks (25 points)

For this problem, we use both the LOCAL and CONGEST model of distributed algorithms,
where the network is abstracted as an n-node undirected graph G = (V,E,w), where nodes have
unique O(log n)-bit identifiers. In the LOCAL model, per round each node can send an unbounded-
size message to each neighbor, whereas in the CONGEST model, per round each node can send
one O(log n)-bit message to each neighbor.

Each node v ∈ V is associated with a walk of length three: v is given three nodes v1, v2, v3 ∈ V ,
such that (v, v1, v2, v3) is a walk in G, i.e. {v, v1}, {v1, v2}, {v2, v3} ∈ E. Note, that the nodes
v, v1, v2, v3 are not necessarily distinct.

The task is to design an algorithm that computes a maximal set S of walks, such that there
are no two walks (v0, v1, v2, v3) and (u0, u1, u2, u3) in S that share an edge, i.e. there are no i, j
such that {vi, vi+1} = {uj , uj+1}. Such a set S is maximal if we cannot add a walk, without it
sharing an edge with a walk already in S. For the output, each node v should know whether or
not its walk has been added to S.

A) [13] Devise a deterministic algorithm that solves this problem in poly(log n) rounds in the
LOCAL model.

B) [12] Devise a randomized algorithm that solves this problem with high probability in O(log n)
rounds in the CONGEST model.
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Solutions

A) Think of a graph G′ on the same vertex set where two vertices u and v share an edge if and
only if the respective paths pu and pv from the problem statement share an edge. The nodes
of G can simulate any algorithm in the LOCAL model on G′, with constant slowdown.

We are asked to output a maximal independent set in G′. We have seen in the lecture that
this can be done with a deterministic algorithm in poly(log n) rounds of the LOCAL model.

B) As in the previous subtask, we will simulate an algorithm that finds a maximal independent
set in the graph G′. This time it will be Luby’s algorithm. In each round of Luby’s algorithm,
each node u chooses a random number ru from [0, 1], and it is put in the independent set if
ru is maximal in the neighborhood of u. We need to show how, in the CONGEST model,
each node u can get to know whether ru is maximal in the neighbourhood of u in the graph
G′, as this is the independent set S the Luby’s algorithm takes away in this round. We will
now show how to find a certain independent set S′ such that S ⊆ S′. Taking away S′ instead
of S does not hurt the analysis of Luby’s algorithm.

The set S′ is found by the following algorithm: Each node u sends the number ru along the
path pu. This means it is sent from u = u0 to u1, then to u2 in the next round, and finally to
u3. Whenever some node v wants to send values ru1

, ru2
, . . . along the same edge, it sends

only the largest value. Also, each node v for each edge vw remembers the largest value ru
that was sent through vw in either direction.

After the messages were sent, the surviving ones are sent back along the same path. On
the way back, each such message collects the largest number ru′ that was sent through the
edges of pu. If this number is not larger than ru, we put u in S′. This algorithm can be
implemented in constant number of CONGEST rounds.

We need to prove 1) that each u, such that ru is maximal among neighbors of u in G′, is
in S′ and 2) S′ is an independent set. To see item 1), note that the message sent from u
through pu and back does not survive only if there is some pu′ with larger ru′ intersecting
pu. Similarly, if the message survives but is not put to S′ in the end, it is for the same
reason. To see item 2), consider two vertices u and v with paths pu and pv overlapping in
edge e; say, ru > rv. If both messages sent from u and v survive and return back, the vertex
v is not put in S′, since the maximum number rw that was sent through some edge of pv is
at least ru > rv. This finishes the proof.
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5 Fault-Tolerant Sorting Networks (24 points)

A) [6] Show that: Given an odd/even sorting network, adding another comparator anywhere
does not destroy the sorting property. (Note that this question only gives 6 points, so feel
free to re-use arguments from the lecture.)

You can use the statement of question A) to answer the following questions.

B) [12] Given the sorting network of width 4 and 10 comparators in Figure 2. Assume we delete
one comparator and consider the remaining network with 9 comparators. For which of the
10 comparators is the remaining sorting network still correct after deletion?

Figure 2: A Sorting Network

C) [6] Design a sorting network with at most 10 comparators, such that no matter which
comparator is deleted, the remaining sorting network is still correct.
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Solutions

A) Let us assume two sorting networks N and N ′ have the same input 0-1 sequence, S = S′.
Before the adding comparator, S = S′. We show that that the kth rightmost 1 in S′ is more
right than or equal to the kth rightmost 1 in S after each comparator. By 0-1 Lemma, N ′ is
also a correct sorting network. We prove this by induction. It is always correct when k = 1.
Assume it is correct of the k − 1th rightmost 1. The kth rightmost 1 in S′ cannot move
at comparator j only if the k − 1th rightmost 1 in S′ is exactly its neighbor. Because the
k− 1th rightmost 1 in S′ is more right than or equal to the k− 1th rightmost 1 in S, the kth

rightmost 1 in S cannot exceed the one in S′. Therefore, the statement is always correct.

B) The network is correct if any of comparators 1, 2, 3, 7 is removed. Adding any comparator
at the front does not destroy the sorting property (Exercise 8.1.c). Comparators 4, 5, 6, 8,
9, 10 constitue a select sort network.

The network is correct if any of comparators 4, 5, 9, 10 is removed. Comparators 1, 2, 3, 6,
7, 8 constitute an entire odd/even sorting network.

The network is correct if comparator 8 is removed. After comparators 4, 5, 6, the minimum
number will be located on the first wire and the maximum number will be located on the
last wire after comparators 9 and 10. Therefore, we only argue that the output cannot be
O = (0, 1, 0, 1). The sequence must be either (0, 1, 0, 1) or (0, 1, 1, 0) after comparator 3,
which is impossible.

If comparator 6 is removed, it does not sort I = (1, 1, 1, 0), because O = (1, 0, 1, 1).

C) The example of the sorting network with 6 layers, 9 comparators is shown in Figure 3. Based
on A), no matter which comparator is removed, there is a valid odd/even sorting network
for four wires.

Figure 3: A Sorting Network

15



6 Shared Graph (28 points)

Alice and Bob share the knowledge of a graph G = (V,E) with n vertices. Alice and Bob both
know all the vertices of G, and the unique vertex IDs from 1 to n. Alice knows a subset of the
edges A ⊆ E and Bob knows a subset of the edges B ⊆ E, such that A ∪ B = E. A and B need
not be disjoint, so there might be edges that are known to both Alice and Bob. Alice and Bob
want to communicate as little as possible. Help Alice and Bob to:

A) [4] Check whether G is complete (a clique G = Kn) using O(n2) bits of communication.

B) [8] Give a lower bound for the number of bits of communication required for deciding whether
G is complete. (Note that the result of A) is tight; only a lower bound proof of Ω(n2) receives
all points, but weaker lower bound arguments may get some partial points.)

C) [4] Can Alice and Bob improve upon the O(n2) communication if they know that A and B
are disjoint in advance?

D) [12] Give a lower bound for the number of bits of communication required for deciding
whether G is triangle-free (no cliques of 3 nodes exist). (Only a lower bound of Ω(n2) will
receive all points, but weaker lower bound arguments may get some partial points.)

16



Solutions

A) Note that Bob can send all of his edges to Alice by encoding them in an array of length
n(n− 1)/2, where each element is a bit denoting whether Bob knows the edge or not (given
some common ordering on the potential edges). Alice can then solve the problem, for example

by calculating OR. The array contains n(n−1)
2 bits, so communication is O(n2).

B) For full marks we give a reduction from DISJ. Let X,Y ⊆ {0, 1, ...,m − 1} be an instance
of DISJ. We construct an instance of shared graph completeness as follows.

• Let n = d
√

2me + 1. We have n nodes {0, 1, ..., n − 1} and n(n − 1)/2 ≥ m potential
edges

• Let the potential edges be labeled in lexicographic order, {(0, 1), (0, 2), ..., (0, n−1), (1, 2), ...},
such that edge ei = (b inc, i mod n)

• Alice knows all edges ei, where X[i] = 0

• Bob knows all edges ei, where Y [i] = 0

• Alice and Bob both know all edges ei for i ≥ m

X and Y are not disjoint if and only if the graph is not complete. If for some i, X[i] =
Y [i] = 1, then edge ei is missing so G is not complete. On the other hand if X and Y are
disjoint, i.e. there is no such i, then for all i at least one of Alice and Bob has the edge
ei. The communication complexity of DISJ is Ω(m). So at least Ω(m) = Ω(n2) bits of
communication are required.

C) With A and B disjoint, Alice and Bob can simply count the number of edges in A and B
respectively. Alice sends her total to Bob. Bob now checks whether the total number of

edges equals n(n−1)
2 . If yes, then complete, else not complete. Communication complexity

is O(log(n2)) = O(log(n)).

D) For full marks we give a reduction from DISJ. Let X,Y ⊆ {0, 2, ...,m − 1} be an instance
of DISJ. We construct an instance of shared graph triangle-freeness as follows.

• Let n = d
√
me. We have n nodes {a0, a1, ..., an−1} and n nodes {b0, b1, ..., bn−1} with

edges Eab = {(ai, bi) | i = 0, ..., n− 1}
• We also add n nodes {c0, c1, ..., cn−1}
• We add edges Ea = {(ar, cq) | ∀i ∈ X}, where r = i mod n and q = b inc
• We add edges Eb = {(br, cq) | ∀i ∈ Y }, where r = i mod n and q = b inc
• Alice knows edges A = Ea ∪ Eab

• Bob knows edges B = Eb ∪ Eab

See Figure 4 for an illustration.

The graph is triangle-free if and only if Ea and Eb are ”correspondingly” disjoint. With
”correspondingly” disjoint we mean that there is no r and q such that both (ar, cq) ∈ Ea

and (br, cq) ∈ Eb. And Ea and Eb are ”correspondingly” disjoint if and only if X and
Y are disjoint. The graph has 3n nodes, but m = n2 potential edges in Ea and Eb. The
communication complexity of DISJ is Ω(m). So at least Ω(m) = Ω(n2) bits of communication
are required.
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Figure 4: Lower bound construction for communication complexity of shared graph
triangle freeness
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7 Heaviest Connections in MST (25 points)

For this problem, we use the CONGEST model of distributed algorithms, where the network
is abstracted as an n-node undirected graph G = (V,E,w), with diameter D, where nodes have
unique O(log n)-bit identifiers, and per round each node can send one O(log n)-bit message to each
neighbor. Moreover, assume that each edge e = {u, v} has a unique weight w(e) ∈ {1, . . . , n10},
which is known to its endpoint nodes u and v.

Let T be the minimum weight spanning tree of G. The task is to design an algorithm so that,
each two neighboring nodes w and w′ learn the heaviest weight edge on the unique path in the tree
T that connects w and w′. This should happen for all neighboring nodes w and w′ simultaneously.

A) [15] Devise a deterministic algorithm that solves this problem in O(dT ) rounds where dT
denotes the diameter of tree T , i.e., the maximum distance in the tree T between any two
nodes.

B) [10] Devise a randomized algorithm that solves this problem in O((D +
√
n) · poly(log n))

rounds with high probability.
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Solutions

A) We solve the problem as follows. First, we find the node of G with the smallest identifier
in O(D) = O(dT ) rounds as we have seen in the lecture. This enables us to root the tree
in additional O(dT ) rounds. Then, in the next O(dT ) rounds, each node broadcasts its
ID and the weight of an edge to its parent to all its children. Although all n nodes start
broadcasting this information at once, two broadcasts started by two different vertices u, u′

do not interfere, so in O(dT ) rounds each node u knows the weights of the edges on the path
from u to the root. Finally, in O(dT ) rounds, for each edge uv in G, u sends the information
about the path from u to the root to v and vice versa. The vertex v (and u, respectively)
has then enough information to compute the length of the heaviest edge on the path from u
to v, as needed.

B) We solve the problem as follows. First, we mark each edge of T with probability 1/
√
n. One

can see by Chernoff bound that the number of marked edges is Θ(
√
n), with high probability.

We condition on this event being true from now on. Hence, we splitted the tree in Θ(
√
n)

subtrees. Moreover, there are
(
n
2

)
= O(n2) paths in the tree. For each such path, it is the

case by Chernoff bound that if its length is at least a sufficiently high constant multiple of√
n, at least one of its edges was taken with high probability. We condition on all these

events being true from now on. In other words, with high probability, we split T in Θ(
√
n)

connected components, each one with diameter O(
√
n). We call these components fragments

from now on.

We first compute the answer for each e such that both endpoints are in the same fragment.
This is done by rooting each fragment and simulating the algorithm from the previous
subsection for each fragment in parallel.

For edges with endpoints in different fragments, the algorithm is somewhat more involved.
First, for each fragment Fi we define its skeleton Si ⊆ Fi as its subtree that we get as union
of all paths in Fi that connect two vertices u, v ∈ Fi such that both u and v are incident with
some marked edge. In other words, the skeleton Si contains only the edges of Fi that are
important to compute the answer for edges, whose both endpoints do not lie in Fi. Moreover,
we do not need to know the weight of all edges of Fi: for each two vertices u, v ∈ Fi with
degree strictly bigger than 2 that are connected by a path such that all vertices on that path
between u and v have degree 2, we compress this path into a single edge of weight equal to
the maximum weight on the previous path. With that, we get a new graph S′i whose size
is proportional to the number of marked edges incident to Fi. The total size of all these
graphs S′i is hence O(

√
n); they can be computed and made public in Õ(

√
n+D) rounds by

routing from the lecture.

Going back to the original problem, to compute the answer for each edge e = uv with
endpoints u, v in different fragments, similarly to the previous subtask, the vertices u and
v exchange the information about the path from u (or v, respectively) to the root of the
fragment of u (or v, respectively). This information is computed for each node in O(

√
n)

rounds in parallel and exchanged in O(
√
n) rounds. Together with the public information

about the compressed skeletons of all fragments, this is enough information for each endpoint
of e to deduce the maximum weight on the path between u and v on T , as needed.
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