
Principles of Distributed Computing

Lecture 03
Lecturer: Mohsen Ghaffari Scribe:

1 Deterministic Coloring of General Graphs

In this section, we start the study of LOCAL coloring algorithms for general graphs. Throughout, the
ultimate goal would be to obtain (∆ + 1)-coloring of the graphs — that is, an assignment of colors
{1, 2, . . . ,∆+1} to vertices such that no two adjacent vertices receive the same color — where ∆ denotes
the maximum degree. Notice that by a simple greedy argument, each graph with maximum degree at
most ∆ has a (∆ + 1)-coloring: color vertices one by one, each time picking a color which is not chosen
by the already-colored neighbors. However, this greedy argument does not lead to an efficient LOCAL
procedure for finding such a coloring. The straightforward transformation of this greedy approach to the
LOCAL model would be an algorithm that may need Ω(n) rounds.

We start with presenting an O(log∗ n)-round algorithm that computes a O(∆2) coloring. This algo-
rithm is known as Linial’s coloring algorithm [Lin87, Lin92]. Afterward, we discuss how to transform
this coloring into a (∆ + 1)-coloring.

1.1 Take 1: Linial’s Coloring Algorithm

Theorem 1. There is a deterministic distributed algorithm in the LOCAL model that colors any n-node
graph G with maximum degree ∆ using O(∆2) colors, in O(log∗ n) rounds.

Outline of the Approach for Theorem 1. The core ingredient of the algorithm is a single-round
color reduction method, as we will describe in Section 1.1.1. That will allows us to transform any given
coloring with some k colors to some other coloring with a much smaller number k′ � k of colors. Then,
as we discuss in Section 1.1.2, by repeated applications of this single-round color reduction, we obtain
the coloring algorithm as claimed in Theorem 1.

1.1.1 Single-Round Color Reduction

Lemma 2. Given a k-coloring φold of a graph with maximum degree ∆, in a single round, we can
compute a k′-coloring φnew, for k′ = O(∆2 log k). Furthermore, if k ≤ ∆3, then the bound can be
improved to k′ = O(∆2).

The key concept in our single-round color reduction is a combinatorial notion called cover free families,
as we will define next.

Definition 3. (Cover free families) Given a ground set {1, 2, . . . , k′}, a family of sets S1, S2, . . . ,
Sk ⊆ {1, 2, . . . , k′} is called a ∆-cover free family if for each set of indices i0, i1, i2, . . . , i∆ ∈ {1, 2, . . . , k},
we have Si0 \

(
∪∆
j=1 Sij

)
6= ∅. That is, if no set in the family is a subset of the union of ∆ other sets.

Using cover free families for color reduction. We use cover free families for color reduction in the
obvious way: consider an old coloring φold with k colors and suppose we want a new coloring φnew with
k′ colors. Each node v of old color φold(v) = q for q ∈ {1, . . . , k} will use the set Sq ⊆ {1, . . . , k′} in the
cover free family as its color-set, i.e., its list of possible colors. Then, it sets its new color φnew(v) = q′

where q′ ∈ Sq is such that q′ is not in the color-set of any of the neighbors. Such a color q′ is promised
to exist, by the definition of cover free families.

As clear from the above outline, we would like to have k′ as small as possible, as a function of
k and ∆. This would allow us to reduce the number of colors faster. In the following, we prove the
existence of ∆-cover free families with a small enough ground set size k′. In particular, Lemma 4 achieves
k′ = O(∆2 log k) and Lemma 5 shows that this bound can be improved to k′ = O(∆2), if k ≤ ∆3. Toward
the end of this subsection, we provide the formal proof that these imply Lemma 2.

Lemma 4. (Existence of cover free families) For any k and ∆, there exists a ∆-cover free family
of size k on a ground set of size k′ = O(∆2 log k).

1

Proof. We use the probabilistic method [AS04] to argue that there exists a ∆-cover free family of size k on
a ground set of size k′ = O(∆2 log k). Let k′ = C∆2 log k for a sufficiently large constant C ≥ 2. For each
i ∈ {1, 2, . . . , k}, define each set Si ⊂ {1, 2, . . . , k′} randomly by including each element q ∈ {1, 2, . . . , k′}
in Si with probability p = 1/∆. We argue that this random construction is indeed a ∆-cover free family,
with probability close to 1. Therefore, such a cover free family exists.

First, consider an arbitrary set of indices i0, i1, i2, . . . , i∆ ∈ {1, 2, . . . , k}. We would like to argue that
Si0 \

(
∪∆
j=1 Sij

)
6= ∅. For each element q ∈ {1, 2, . . . , k′}, the probability that q ∈ Si0 \

(
∪∆
j=1 Sij

)
is at

exactly 1
∆ (1− 1

∆)∆ ≥ 1
4∆ . Hence, the probability that there is no such element q that is in Si0 \

(
∪∆
j=1Sij

)
is at most (1 − 1

4∆)k
′ ≤ exp(−C∆ log k/4). This is an upper bound on the probability that for a given

set of indices i0, i1, i2, . . . , i∆ ∈ {1, 2, . . . , k}, the respective sets violate the cover-freeness property that
Si0 \

(
∪∆
j=1 Sij

)
6= ∅.

There are k
(
k−1
∆

)
way to choose such a set of indices i0, i1, i2, . . . , i∆ ∈ {1, 2, . . . , k}, k ways for

choosing the central index i0 and at most (k − 1)∆ ways for choosing the indices i1, i2, . . . , i∆. Hence,
by a union bound over all these choices, the probability that the construction fails is at most

k(k − 1)∆ · exp(−C∆ log k/4) = exp
(

log k + ∆(log(k − 1))− C∆ log k/4
)

≤ exp(−C∆ log k/8)� 1,

for a sufficiently large constant C. That is, the random construction succeeds to provide us with a valid
∆-cover free family with a positive probability, and in fact with a probability close to 1. Hence, such a
∆-cover free family exists.

Lemma 5. For any k and ∆ ≥ k1/3, there exists a ∆-cover free family of size k on a ground set of size
k′ = O(∆2).

Proof. Here, we use an algebraic proof based on low-degree polynomials. Let q be a prime number
that is in [3∆, 6∆]. Notice that such a prime number exists by Bertrand’s postulate (also known as
Bertrand-Chebyshev Theorem). Let Fq denote the prime field1 of order q (i.e., integers modulo q). For
each i ∈ {1, 2, . . . , k}, associate with set Si — to be constructed — a distinct degree d = 2 polynomial
gi : Fq → Fq over Fq. Notice that there are qd+1 > ∆3 ≥ k such polynomials and hence such an
association is possible. Let Si be the set of all evaluation points of gi, that is, let Si = {(a, gi(a)) | a ∈ Fq}.
These are subsets of the k′ = q2 cardinality set Fq × Fq. Notice two key properties:

(A) for each i ∈ {1, 2, . . . , k}, we have |Si| = q.

(B) for each i, i′ ∈ {1, 2, . . . , k} such that i 6= i′, we have |Si ∩ Si′ | ≤ d.

The latter property holds because, in every intersection point, the degree d polynomial gi− gi′ evaluates
to zero, and each degree d polynomial has at most d zeros. Now, the ∆ cover-freeness property follows
trivially from (A) and (B), because for any set of indices i0, i1, i2, . . . , i∆ ∈ {1, 2, . . . , k}, we have

|Si0 \
(
∪∆
j=1 Sij

)
| ≥ |Si0 | −

∆∑
j=1

|Si0 ∩ Sij |

≥ q − ∆ · d = q − 2∆ ≥ ∆ ≥ 1.

Remark One can easily generalize the construction of Lemma 5, by taking higher-degree polynomials,
to a ground set of size k′ = O(∆2 log2

∆ k), where no assumption on the relation between k and ∆ would
be needed.

Proof Sketch of Lemma 2. Follows from the existence of cover free families as proven in Lemma 4 and
Lemma 5. Namely, each node v of old color φold(v) = q for q ∈ {1, . . . , k} will use the set Sq ⊆ {1, . . . , k′}
in the cover free family as its color-set. Then, it sets its new color φnew(v) = q′ for a q′ ∈ Sq such that
q′ is not in the color-set of any of the neighbors. By the definition of the cover free families, and given
that φold was a proper coloring, we are guaranteed that such a color q′ exists. By the choice of q′, the
coloring φnew is also a proper coloring.

1See https://en.wikipedia.org/wiki/Finite_field

2

https://en.wikipedia.org/wiki/Finite_field

1.1.2 Proving Theorem 1

We now discuss how we obtain Theorem 1 via repeated invocations of Lemma 2.

Proof of Theorem 1. The proof is via iterative applications of Lemma 2. We start with the initial num-
bering of the vertices as a straightforward n-coloring. With one application of Lemma 2, we transform this
into a O(∆2 log n) coloring. With another application, we get a coloring with O(∆2(log ∆+log log n)) col-
ors. With another application, we get a coloring with O(∆2(log ∆+log log log n)) colors. After O(log∗ n)
applications, we get a coloring with O(∆2 log ∆) colors2. At this point, we use one extra iteration, based
on the second part of Lemma 2, which gets us to an O(∆2)-coloring.

1.2 Take 2: Kuhn-Wattenhofer Color Reduction Algorithm

In the previous section, we saw an O(log∗ n)-round algorithm for computing a O(∆2)-coloring. In this
section, we explain how to transform this into a (∆ + 1)-coloring. We will first see in Section 1.2.1
a basic algorithm that performs this transformation in O(∆2) rounds. Then, in Section 1.2.2, we see
how with the addition of a small but clever idea of [KW06], this transformation can be performed in
O(∆ log ∆) rounds. As the end result, we get an O(∆ log ∆ + log∗ n)-round algorithm for computing a
(∆ + 1)-coloring.

1.2.1 Warm up: One-By-One Color Reduction

Lemma 6. Given a k-coloring φold of a graph with maximum degree ∆ where k ≥ ∆ + 2, in a single
round, we can compute a (k − 1)-coloring φnew.

Proof. For each node v such that φold(v) 6= k, set φnew(v) = φold(v). For each node v such that
φold(v) = k, let node v set its new color φnew(v) to be a color q ∈ {1, 2, . . . ,∆ + 1} such that q is not
taken by any of the neighbors of u. Such a color q exists, because v has at most ∆ neighbors. The
resulting new coloring φnew is a proper coloring.

Theorem 7. There is a deterministic distributed algorithm in the LOCAL model that colors any n-node
graph G with maximum degree ∆ using ∆ + 1 colors, in O(∆2 + log∗ n) rounds.

Proof. First, compute an O(∆2)-coloring in O(log∗ n) rounds using the algorithm of Theorem 1. Then,
apply the one-by-one color reduction of Lemma 6 for O(∆2) rounds, until getting to a (∆+1)-coloring.

1.2.2 Parallelized Color Reduction

Lemma 8. Given a k-coloring φold of a graph with maximum degree ∆ where k ≥ ∆+2, in O(∆ log(k
∆+1))

rounds, we can compute a (∆ + 1)-coloring φnew.

Proof. If k ≤ 2∆ + 1, the lemma follows immediately from applying the one-by-one color reduction of
Lemma 6 for k − (∆ + 1) iterations. Suppose that k ≥ 2∆ + 2. Bucketize the colors {1, 2, . . . , k} into
b k

2∆+2c buckets, each of size exactly 2∆ + 2, except for one last bucket which may have size between
2∆ + 2 to 4∆ + 3. We can perform color reductions in all buckets in parallel (why?). In particular,
using at most 3∆ + 2 iterations of one-by-one color reduction of Lemma 6, we can recolor nodes of each
bucket using at most ∆ + 1 colors. Considering all buckets, we now have at most (∆ + 1)b k

2∆+2c ≤ k/2
colors. Hence, we managed to reduce the number of colors by a 2 factor, in just O(∆) rounds. Repeating
this procedure for dlog(k

∆+1)e iterations gets us to a coloring with ∆ + 1 colors. The round complexity

of this method is O(∆ log(k
∆+1)), because we have dlog(k

∆+1)e iterations and each iteration takes O(∆)
rounds.

Theorem 9. There is a deterministic distributed algorithm in the LOCAL model that colors any n-node
graph G with maximum degree ∆ using ∆ + 1 colors, in O(∆ log ∆ + log∗ n) rounds.

Proof. First, compute an O(∆2)-coloring in O(log∗ n) rounds using the algorithm of Theorem 1. Then,
apply the parallelized color reduction of Lemma 8 to transform this into a (∆+1)-coloring, in O(∆ log ∆)
additional rounds.

2If the related calculations are not clear, please ask during the exercise sessions.

3

References

[AS04] Noga Alon and Joel H Spencer. The probabilistic method. John Wiley & Sons, 2004.

[KW06] Fabian Kuhn and Rogert Wattenhofer. On the complexity of distributed graph coloring. In
Proceedings of the twenty-fifth annual ACM symposium on Principles of distributed computing,
pages 7–15. ACM, 2006.

[Lin87] Nathan Linial. Distributive graph algorithms global solutions from local data. In Proc. of the
Symp. on Found. of Comp. Sci. (FOCS), pages 331–335. IEEE, 1987.

[Lin92] Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Computing,
21(1):193–201, 1992.

4

	Deterministic Coloring of General Graphs
	Take 1: Linial's Coloring Algorithm
	Single-Round Color Reduction
	Proving thm:LinialsColoringAlgo

	Take 2: Kuhn-Wattenhofer Color Reduction Algorithm
	Warm up: One-By-One Color Reduction
	Parallelized Color Reduction

