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What   should   a   good   presentation   include?   
1. Motivate   the   topic   -   why   are   people   even   doing   research   in   this   area?   
2. Make   sure   everybody   gets   the   basics   -   there   is   no   point   in   explaining   the   details   of   an   

algorithm   to   someone   who   did   not   get   the   idea   
3. Draw   novel,   thought   provoking   connections   -   Does   the   topic   you   are   presenting   relate   to   

something   that   the   author   did   not   think   about?   In   which   way?   What   do   you   see   as   
outcome   of   this   connection?   

4. Teach   something   new   -   the   lecture   is   a   success   if   everybody   learned   something   
interesting.   Given   the   huge   amount   of   papers   in   Deep   Learning   no   one   in   the   room   will   
be   aware   of   all   papers   in   your   topic   -   find   something   interesting   and   present   it.   Make   
sure   however   to   not   miss   point   2.     



23.2.   -   Introduction   
In   the   first   seminar   we   will   have   a   broad   overview   over   the   topics   we   will   discuss   during   the   
seminar:   
We   will   discuss   the   background   of   Natural   Language   Processing   (NLP)   and    have   a   short   
introduction   into   what   deep   reinforcement   learning   (DRL)   is.   
We   will   talk   about   the   message   passing   framework   used   in   graph   neural   networks   (GNNs)   as   
well   as   their   application   area.   We   further   will   highlight   the   topics   on   algorithm   learning   which   we   
will   discuss   in   the   seminar.   

   



2.3.   -   Deep   Learning   and   Neural   Architecture   
This   lecture   should   give   an   introduction   into   function   approximation   using    deep   learning .   It   
should   cover   basic   motivations   for   using   deep   learning   such   as   the    universal   function   
approximation   theorem    and   newer   insights   such   as   the    deep   double   descent   phenomena .   The   
lecture   should   also   give   an   overview   over   basic   neural   network   architectures,   including   

● Convolutional   Neural   Networks   
● Recurrent   Neural   Networks    (LSTMs)   

The   lecture   might   also   provide   an   overview   of   deep   learning   frameworks,   there   Pro   and   Cons   
( Tensorflow    vs.    PyTorch    vs.    JAX ).   
  

The   second   part   of   the   lecture   should   focus   a   bit   on   the   limitations   of   deep   learning.   Specifically,   
the    no-free-lunch   theorem ,   the    extrapolation   problem    as   well   as   more   practical   considerations   
like   exploding   and   vanishing   gradients   and   the   memory   requirements   of   backpropagation.   The   
latter   topic   can   be   discussed   alongside   proposed   solutions:   

● Residual   Networks   
● Implicit   Layers   

   

https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Universal_approximation_theorem
https://en.wikipedia.org/wiki/Universal_approximation_theorem
https://openai.com/blog/deep-double-descent/
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://www.tensorflow.org/?version=stable
https://pytorch.org/
https://jax.readthedocs.io/en/latest/notebooks/quickstart.html
https://en.wikipedia.org/wiki/No_free_lunch_theorem
http://www.statistics4u.info/fundstat_eng/cc_ann_extrapolation.html
https://en.wikipedia.org/wiki/Residual_neural_network
http://implicit-layers-tutorial.org/


9.3.   -   NLP:   Benchmarks/Tasks/Metrics   
This   lecture   should   introduce   the   area   Natural   Language   Processing   (NLP),   benchmarks   (see   
GLUE    and    SuperGLUE )   with   the   tasks   therein,   common   metrics   ( BLEU    and    ROUGE    scores)   as   
well   as   some   examples   of   what   can   be   done   with   todays   state-of-the-art   models   as   well   as   
examples   of   things   that   cannot   be   done   yet.   

9.3.   -   NLP:   Embeddings   
This   lecture   should   cover   different   strategies   to   encode   text.   First,   word   embeddings   like   
word2vec   and   Glove,   then   embeddings   of   groups   of   words   (skip-gram)   and   finally   sentence   
embeddings,   e.g.   Universal   Sentence   Encoder.   

● Word2vec:    https://arxiv.org/abs/1301.3781   
● GloVE:    https://www.aclweb.org/anthology/D14-1162/   
● Skip-gram:   

https://papers.nips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract. 
html   

● USE:    https://arxiv.org/abs/1803.11175   
● etc.     

https://gluebenchmark.com/
https://super.gluebenchmark.com/
https://en.wikipedia.org/wiki/BLEU
https://en.wikipedia.org/wiki/ROUGE_(metric)
https://arxiv.org/abs/1301.3781
https://www.aclweb.org/anthology/D14-1162/
https://papers.nips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://papers.nips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://arxiv.org/abs/1803.11175


16.3.   -   NLP:   Attention/BERT/GPT   
This   lecture   is   centered   around   the   Transformer   architecture.   It   should   start   by   introducing   the   
first   paper   using   attention   for   NLP,   and   then   the   original   Transformer   paper   (Attention   is   all   you   
need).     

● Original   attention   paper:    https://arxiv.org/abs/1409.0473   
● Attention   is   all   you   need   (Transformer):   

https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract. 
html   

This   talk   should   continue   with   the   bi-directional   encoding   scheme   and   pretraining   objectives   in   
BERT   and   derived   models   as   well   as   decoder-only   transformer   (GPT-2),   the   language   modeling   
objective   and   the   derived   model   GPT-3   

● BERT:    https://arxiv.org/abs/1810.04805   
● BART:    https://arxiv.org/abs/1910.13461   
● T5:    https://arxiv.org/abs/1910.10683   
● GPT-2:    http://www.persagen.com/files/misc/radford2019language.pdf   
● GPT-3:    https://arxiv.org/pdf/2005.14165.pdf   

  
  

 

https://arxiv.org/abs/1409.0473
https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.10683
http://www.persagen.com/files/misc/radford2019language.pdf
https://arxiv.org/pdf/2005.14165.pdf


23.3.   -   RL:   Stochastic   planning   in   games   
This   lecture   should   cover   two   areas:   Planning   given   a   perfect   model,   foremost    Monte   Carlo   Tree   
Search ,   and   Self-Play,   where   agents   learn   by   playing   against   themselves   -   often   approximated   
by    fictitious   play .   Papers   for   these   subjects   are:   

● A   general   reinforcement   learning   algorithm   that   masters   chess,   shogi,   and   Go   through   
self-play   

● Deep   Reinforcement   Learning   from   Self-Play   in   Imperfect-Information   Games   
● A   Unified   Game-Theoretic   Approach   to   Multiagent   Reinforcement   Learning   
● Emergent   Tool   Use   from   Multi-Agent   Interaction   

An   interesting   case   study   might   also   be   the    AlphaStar    algorithm.     

https://en.wikipedia.org/wiki/Monte_Carlo_tree_search
https://en.wikipedia.org/wiki/Monte_Carlo_tree_search
https://en.wikipedia.org/wiki/Fictitious_play
https://science.sciencemag.org/content/362/6419/1140.full?ijkey=XGd77kI6W4rSc&keytype=ref&siteid=sci
https://science.sciencemag.org/content/362/6419/1140.full?ijkey=XGd77kI6W4rSc&keytype=ref&siteid=sci
https://arxiv.org/abs/1603.01121
https://arxiv.org/abs/1711.00832
https://openai.com/blog/emergent-tool-use/
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii


30.3.   -   RL:   Model   based   vs.   model   free   DRL   
While   most   original   DRL   algorithms   (DQN,   A3C,   PPO)   are   model   free,   this   lecture   should   
introduce   the   idea   of   explicitly   learning   a    model    of   the   environment   for   planning   (either    Model   
Predictive   Control    or    Monte   Carlo   Tree   Search ,   see   e.g.,    Mastering   Atari,   Go,   Chess   and   Shogi   1

by   Planning   with   a   Learned   Model )   or   learning   in   a   “dream”   ( World   Models ,    Model   Based   
Reinforcement   Learning   for   Atari ).   The   lecture   should   also   introduce    successor   features ,   a   
middle   ground   between   model   based   and   model   free   DRL.   A   paper   that   might   also   be   
interesting   is    Algorithmic   Framework   for   Model-based   Deep   Reinforcement   Learning   with   
Theoretical   Guarantees .   

   

1  MCTS   should   be   introduced   in   the   lecture   on   games   the   week   before   

https://medium.com/@jonathan_hui/rl-model-based-reinforcement-learning-3c2b6f0aa323
https://en.wikipedia.org/wiki/Model_predictive_control
https://en.wikipedia.org/wiki/Model_predictive_control
https://en.wikipedia.org/wiki/Monte_Carlo_tree_search
https://arxiv.org/abs/1911.08265
https://arxiv.org/abs/1911.08265
https://worldmodels.github.io/
https://arxiv.org/pdf/1903.00374.pdf
https://arxiv.org/pdf/1903.00374.pdf
https://arxiv.org/abs/1606.05312
https://arxiv.org/abs/1807.03858
https://arxiv.org/abs/1807.03858


13.4.   -   RL:   Hierarchical   DRL   
This   lecture   should   cover   the   idea   of   abstraction   over   time.   That   is,   as   humans   we   have   
skills/options   -   a   prolonged   set   of   atomic   actions   -   that   we   use   over   and   over   again.   Can   a   
learning   algorithm   find/use   such   a   temporal   hierarchy?   Papers   in   this   direction   include:   

● The   option-critic   architecture   
● Data-Efficient   Hierarchical   Reinforcement   Learning   
● FeUdal   Networks   for   Hierarchical   Reinforcement   Learning   
● Hierarchical   Reinforcement   Learning   with   Advantage-Based   Auxiliary   Rewards   
● DAC:   The   Double   Actor-Critic   Architecture   for   Learning   Options   

   

https://arxiv.org/abs/1609.05140
https://arxiv.org/abs/1805.08296
https://arxiv.org/abs/1703.01161
https://arxiv.org/abs/1910.04450
https://arxiv.org/abs/1904.12691


20.4.   -   RL:   Meta-Learning   
The   lecture   on    Meta-Learning    should   cover   the   learning   to   learn   paradigm   -   learn   on   many   tasks   
in   order   to   learn   faster   on   a   new   task.   Papers   include:   

● RL2:   Fast   Reinforcement   Learning   via   Slow   Reinforcement   Learning   
● Model-Agnostic   Meta-Learning   for   Fast   Adaptation   of   Deep   Networks   
● Learning   to   learn   by   gradient   descent   by   gradient   descent   
● Meta-Gradient   Reinforcement   Learning   with   an   Objective   Discovered   Online   

A   good   reference   is   also   the    ICML   tutorial    on   meta   learning.   
  

   

https://en.wikipedia.org/wiki/Meta_learning_(computer_science)
https://arxiv.org/abs/1611.02779
https://arxiv.org/abs/1703.03400
https://arxiv.org/abs/1606.04474
https://proceedings.neurips.cc/paper/2020/file/ae3d525daf92cee0003a7f2d92c34ea3-Paper.pdf
https://sites.google.com/view/icml19metalearning


27.4.   -   GNN:   Architectures   
This   lecture   introduces   the   general   message   passing   framework   of   GNNs   and   several   variants.   
You   should   give   a   good   overview   by   clustering   the   main   approaches.   You   should   also   relate   this   
to   the   tasks   at   hand.   

● Useful   overview   of   GNNs   in   this   paper:    https://arxiv.org/pdf/1810.00826.pdf    (bottom   of   
page   2)   

● Comprehensive   Survey   (don’t   introduce   all   of   this!):    https://arxiv.org/pdf/1901.00596.pdf   
● Lecture   Notes:    https://cs.mcgill.ca/~wlh/comp766/files/chapter4_draft_mar29.pdf     
● Methods   and   Applications:    https://arxiv.org/pdf/1812.08434.pdf     
● Pointer   network   &   Deepsets   are   a   nice   starting   point   
● GCN   (vs   CNN),   GIN,   Gated   GNNs   etc.   

  

27.4.   -   GNN:   Algorithmic   Alignment   /   Necessity   
This   lecture   looks   at   when   to   use   GNNs   and   when   not   to   use   then.   

● Neural   Execution   of   GNNs:    https://openreview.net/forum?id=SkgKO0EtvS   
● Algorithmic   Alignment:    https://arxiv.org/abs/1905.13211   
● Extrapolation:    https://arxiv.org/pdf/2009.11848.pdf   
● Pointer   Graph   Networks:    https://arxiv.org/pdf/2006.06380.pdf   
● GNN   and   termination:    https://arxiv.org/abs/2010.13547       

https://arxiv.org/pdf/1810.00826.pdf
https://arxiv.org/pdf/1901.00596.pdf
https://cs.mcgill.ca/~wlh/comp766/files/chapter4_draft_mar29.pdf
https://arxiv.org/pdf/1812.08434.pdf
https://openreview.net/forum?id=SkgKO0EtvS
https://arxiv.org/abs/1905.13211
https://arxiv.org/pdf/2009.11848.pdf
https://arxiv.org/pdf/2006.06380.pdf
https://arxiv.org/abs/2010.13547


4.5.   -   GNN:   Theoretical   Limitations   
This   lecture   focuses   on   the   theoretical   limitations   of   GNNs.   

● Relation   to   WL   tests   (GIN):    https://arxiv.org/pdf/1810.00826.pdf   
● Relation   to   distributed   computing   models   (Loukas):  

https://openreview.net/forum?id=B1l2bp4YwS   
● Distinguishing   graph   (Loukas):    https://arxiv.org/pdf/2005.06649.pdf   
● Approximation   ratios   of   GNN:    https://arxiv.org/pdf/1905.10261.pdf   

  

4.5.   -   GNN:   Oversmoothing   
This   lecture   should   talk   about   one   of   the   major   problems   with   current   GNN   Architectures   -   
oversmoothing   -   and   how   it   might   be   countered.   Many   of   these   approaches   are   based   on   
sparsifying   the   number   of   messages   in   each   round.   

● https://openreview.net/forum?id=S1ldO2EFPr   
● measuring   and   relieving   the   over-smoothing   problem   
● DropEdge   
● Simple   and   Deep   Graph   Convolutional   Network   
● Robust   Graph   Representation   Learning   via   Neural   Sparsification   
● Bayesian   Graph   Neural   Networks   with   Adaptive   Connection   Sampling  

   

https://arxiv.org/pdf/1810.00826.pdf
https://openreview.net/forum?id=B1l2bp4YwS
https://arxiv.org/pdf/2005.06649.pdf
https://arxiv.org/pdf/1905.10261.pdf
https://openreview.net/forum?id=S1ldO2EFPr
https://arxiv.org/abs/1909.03211
https://openreview.net/forum?id=Hkx1qkrKPr
https://arxiv.org/abs/2007.02133
https://openreview.net/forum?id=S1emOTNKvS
https://arxiv.org/abs/2006.04064


11.5.   -   GNN:   Graph   Generation   
This   lecture   should   cover   how   graphs   can   be   generated   using   Neural   Networks.   Traditional   
graph   generators   are   quite   limited,   as   they   can   only   capture   some   graph   metrics   and   do   not   
model   graphs   coming   from   realistic   distributions   well.   NNs   are   great   at   capturing   intricate   
patterns   in   the   data,   so   they   can   be   much   more   successful   in   generating   graphs   from   complex   
distributions.   One   very   promising   application   of   such   methods   is   molecule   generation.   
Some   relevant   references:   

- GraphVAE:   Towards   Generation   of   Small   Graphs   Using   Variational   Autoencoders   
- GraphRNN:   Generating   Realistic   Graphs   with   Deep   Auto-regressive   Models   
- Efficient   Graph   Generation   with   Graph   Recurrent   Attention   Networks   
- MolGAN:   An   implicit   generative   model   for   small   molecular   graphs   

11.5.   -   GNN:   Simulation   using   GNNs   
This   lecture   should   cover   how   Neural   Networks,   in   particular   Graph   Neural   Networks,   can   be   
used   to   learn   and   predict   physical   processes.   Graph   Neural   Networks   are   particularly   good   at   
this,   because   they   align   well   with   the   structure   of   physical   interactions.   What   are   the   limitations   
of   such   neural   simulators   and   what   are   the   different   problems   they   can   be   applied   on?   
Some   relevant   references:   

- Learning   Mesh-Based   Simulation   with   Graph   Networks   
- Discovering   Symbolic   Models   from   Deep   Learning   with   Inductive   Biases   
- Learning   to   Simulate   Complex   Physics   with   Graph   Networks   
- Scalable   Graph   Networks   for   Particle   Simulations  
- Hamiltonian   Neural   Networks   

   

https://arxiv.org/pdf/1802.03480.pdf
https://arxiv.org/pdf/1802.08773.pdf
https://arxiv.org/pdf/1910.00760.pdf
https://arxiv.org/pdf/1805.11973.pdf
https://arxiv.org/pdf/2010.03409.pdf
https://arxiv.org/pdf/2006.11287.pdf
https://arxiv.org/pdf/2002.09405.pdf
https://arxiv.org/pdf/2010.06948.pdf
https://arxiv.org/pdf/1906.01563.pdf


18.5.   -   ALG:   Combining   Algorithms   and   NNs   
This   lecture   should   talk   about   how   NNs   can   be   implanted   into   algorithms   to   improve   accuracy   or   
efficiency,   as   well   as   how   algorithms   can   be   implanted   into   NNs   to   help   with   the   inherent   
deficiencies   of   NNs.   

● Black   Box   Combinatorial   Solver:    https://arxiv.org/abs/1912.02175   
● Can   we   do   better   than   binary   search?    https://arxiv.org/pdf/1712.01208.pdf   
● NN   branching   for   MILP:    https://arxiv.org/abs/1906.01629   

  

18.5.   -   ALG:   Math   
This   lecture   should   talk   about   how   we   can   design   NNs   to   do   simple   arithmetic.   It   should   address   
why   it   is   so   difficult   for   NNs   to   do   this,   in   particular   the   challenging   issue   of   extrapolation,   and   
how   proposed   architectures   deal   with   the   challenges.   

● Neural   Arithmetic   Logic   Unit   
● Neural   Arithmetic   Unit   
● Neural   Power   Unit   
● Neural   GPUs   
● Neural   Status   Register   
● Logical   Neural   Networks   

   

https://arxiv.org/abs/1912.02175
https://arxiv.org/pdf/1712.01208.pdf
https://arxiv.org/abs/1906.01629
https://arxiv.org/abs/1808.00508
https://arxiv.org/abs/2001.05016
https://arxiv.org/abs/2006.01681
https://arxiv.org/abs/1511.08228
https://arxiv.org/abs/2004.07085
https://arxiv.org/abs/2006.13155


25.5.   -   ALG:   NN   architectures   for   Algorithm   Learning   
(Memory)   
This   lecture   is   about   implementing   equivalent   forms   of   computer   memory   in   Neural   Networks.   
LSTMs   offer   a   kind   of   “implicit”   memory,   but   here   we   look   at   more   explicit   and   exact   memory   
that   can   be   used   for   computations.   

● Memory   Networks     
● Longformer    is   an   example   if   the   use   of   memory   in   NLP   
● Learning   to   transduce   with   unbounded   memory    (the   NN   equivalent   of   Data   structures)   
● End-to-end   memory   networks    (the   NN   equivalent   of   RAM)   
● Neural   turing   machine     
● Neural   Stored-program   Memory    (~Self-modifying   RAM)   

25.5.   -   ALG:   Non-differentiable   optimization   
A   neat   feature   of   RL   is   that   the   algorithms   are   designed   to   optimize   a   score   (maximize   the   
reward),   which   leaves   a   lot   of   room   for   the   engineer   to   set   the   reward.   More   specifically,   if   one   
wishes   to   minimize   a   non-differentiable   function   f(x),   one   can   train   a   DRL   algorithm   to   alter   x   
with   a   reward   of   -f(x).   As   such,   RL   opens   the   possibility   to   use   deep   learning   in   many   new   
applications,   including:   

● Generation   of   Discrete   Token   Sequences   -   see    SeqGAN   
● Neural   Architecture   Search   
● Graph   Problems   -   see    Attention,   Learn   to   Solve   Routing   Problems!   

The   lecture   should   also   contrast   RL   to   the   other   big   family   for   non-differentiable   optimization   -   
evolutionary   algorithms .   
  

   

https://arxiv.org/abs/1410.3916
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/1506.02516
https://arxiv.org/abs/1503.08895
https://arxiv.org/abs/1410.5401
https://arxiv.org/abs/1906.08862
https://arxiv.org/abs/1609.05473
https://en.wikipedia.org/wiki/Neural_architecture_search
https://arxiv.org/abs/1803.08475
https://en.wikipedia.org/wiki/Evolutionary_algorithm


1.6.   -   Review   Seminar   
In   the   last   seminar,   we   will   summarize   the   different   insights   we   have   seen,   connecting   them   
back   to   the   overview   of   the   research   field   from   the   first   seminar.   We   will   discuss   unsolved   
problems   and   potential   future   work.   
Also,   we   will   discuss   your   results   on   the   coding   challenge.   
  
  


