
Sidharth Ramesh 18.05.2021

Seminar in Deep Neural
Networks
ALG: Math

Mentor: Ard Kastrati

Overview

• Introduction

• NALU: Neural Arithmetic Logic Units

• Neural Arithmetic Units

• Neural Power Units

• Neural Status Registers

• LNN

• Discussion

NN fail at
Extrapolation
• Scalar identity function

• Autoencoder (same size)

of the data and generalize to numbers that are several orders of magnitude larger than those observed
during training. We also observe that our module exhibits a superior numeracy bias relative to linear
layers, even when no extrapolation is required. In one case our model exceeds a state-of-the-art
image counting network by an error margin of 54%. Notably, the only modification we made over
the previous state-of-the-art was the replacement of its last linear layer with our model.

1.1 Numerical Extrapolation Failures in Neural Networks

To illustrate the failure of systematicity in standard networks, we show the behavior of various MLPs
trained to learn the scalar identity function, which is the most straightforward systematic relationship
possible. The notion that neural networks struggle to learn identity relations is not new [14]. We show
this because, even though many of the architectures evaluated below could theoretically represent the
identity function, they typically fail to acquire it.

Figure 1: MLPs learn the identity function only for
the range of values they are trained on. The mean
error ramps up severely both below and above the
range of numbers seen during training.

In Figure 1, we show the nature of this failure
(experimental details and more detailed results
in Appendix A). We train an autoencoder to
take a scalar value as input (e.g., the number 3),
encode the value within its hidden layers (dis-
tributed representations), then reconstruct the
input value as a linear combination of the last
hidden layer (3 again). Each autoencoder we
train is identical in its parameterization (3 hid-
den layers of size 8), tuning (10,000 iterations,
learning rate of 0.01, squared error loss), and
initialization, differing only on the choice of
nonlinearity on hidden layers. For each point in
Figure 1, we train 100 models to encode num-
bers between �5 and 5 and average their ability
to encode numbers between �20 and 20.

We see that even over a basic task using a simple
architecture, all nonlinear functions fail to learn
to represent numbers outside of the range seen during training. The severity of this failure directly
corresponds to the degree of non-linearity within the chosen activation function. Some activations
learn to be highly linear (such as PReLU) which reduces error somewhat, but sharply non-linear
functions such as sigmoid and tanh fail consistently. Thus, despite the fact that neural networks are
capable of representing functions that extrapolate, in practice we find that they fail to learn to do so.

2 The Neural Accumulator & Neural Arithmetic Logic Unit

Here we propose two models that are able to learn to represent and manipulate numbers in a systematic
way. The first supports the ability to accumulate quantities additively, a desirable inductive bias for
linear extrapolation. This model forms the basis for a second model, which supports multiplicative
extrapolation. This model also illustrates how an inductive bias for arbitrary arithmetic functions can
be effectively incorporated into an end-to-end model.

Our first model is the neural accumulator (NAC), which is a special case of a linear (affine) layer
whose transformation matrix W consists just of �1’s, 0’s, and 1’s; that is, its outputs are additions
or subtractions (rather than arbitrary rescalings) of rows in the input vector. This prevents the layer
from changing the scale of the representations of the numbers when mapping the input to the output,
meaning that they are consistent throughout the model, no matter how many operations are chained
together. We improve the inductive bias of a simple linear layer by encouraging 0’s, 1’s, and �1’s
within W in the following way.

Since a hard constraint enforcing that every element of W be one of {�1, 0, 1} would make learning
hard, we propose a continuous and differentiable parameterization of W in terms of unconstrained
parameters: W = tanh(Ŵ) � �(M̂). This form is convenient for learning with gradient descent

2

NALU: Neural Arithmetic Logic Units
NAC: The Neural Accumulator, Authers: Andrew Trask et al.

• Introduce inductive bias for linear extrapolation

• Idea:

• (linear layer)

• Transformation matrix consists of values

• Introduce a form which is easy to learn with gradient descent

a = Wx

W {−1,0,1}

NAC

Elements in range with bias
towards

a = Wx

W = tanh(Ŵ) ⋅ σ(M̂)

[−1,1]
−1,0,1

(a) Neural Accumulator (NAC) (b) Neural Arithmetic Logic Unit (NALU)

Figure 2: The Neural Accumulator (NAC) is a linear transformation of its inputs. The transformation
matrix is the elementwise product of tanh(Ŵ) and �(M̂). The Neural Arithmetic Logic Unit
(NALU) uses two NACs with tied weights to enable addition/subtraction (smaller purple cell) and
multiplication/division (larger purple cell), controlled by a gate (orange cell).

and produces matrices whose elements are guaranteed to be in [�1, 1] and biased to be close to �1,
0, or 1.1 The model contains no bias vector, and no squashing nonlinearity is applied to the output.

While addition and subtraction enable many useful systematic generalizations, a similarly robust
ability to learn more complex mathematical functions, such as multiplication, may be be desirable.
Figure 2 describes such a cell, the neural arithmetic logic unit (NALU), which learns a weighted
sum between two subcells, one capable of addition and subtraction and the other capable of multi-
plication, division, and power functions such as

p
x. Importantly, the NALU demonstrates how the

NAC can be extended with gate-controlled sub-operations, facilitating end-to-end learning of new
classes of numerical functions. As with the NAC, there is the same bias against learning to rescale
during the mapping from input to output.

The NALU consists of two NAC cells (the purple cells) interpolated by a learned sigmoidal gate
g (the orange cell), such that if the add/subtract subcell’s output value is applied with a weight of
1 (on), the multiply/divide subcell’s is 0 (off) and vice versa. The first NAC (the smaller purple
subcell) computes the accumulation vector a, which stores results of the NALU’s addition/subtraction
operations; it is computed identically to the original NAC, (i.e., a = Wx). The second NAC (the
larger purple subcell) operates in log space and is therefore capable of learning to multiply and divide,
storing its results in m:

NAC: a = Wx W = tanh(Ŵ)� �(M̂)

NALU: y = g � a+ (1� g)�m m = expW(log(|x|+ ✏)), g = �(Gx)

where ✏ prevents log 0. Altogether, this cell can learn arithmetic functions consisting of multiplication,
addition, subtraction, division, and power functions in a way that extrapolates to numbers outside of
the range observed during training.

3 Related Work

Numerical reasoning is central to many problems in intelligence and by extension is an important
topic in deep learning [5]. A widely studied task is counting objects in images [2, 4? , 25, 31, 33].
These models generally take one of two approaches: 1) using a deep neural network to segment
individual instances of a particular object and explicitly counting them in a post-processing step or
2) learning end-to-end to predict object counts via a regression loss. Our work is more closely related
to the second strategy.

Other work more explicitly attempts to model numerical representations and arithmetic functions
within the context of learning to execute small snippets of code [32, 23]. Learning to count within a
bounded range has also been included in various question-answer tasks, notably the BaBI tasks [29],

1The stable points {�1, 0, 1} correspond to the saturation points of either � or tanh.

3

NALU
Idea: Gating between add/sub cell
and mul/div cell

y = g ⋅ a + (1 − g) ⋅ m

m = exp W(log(|x | + ϵ))

g = σ(Gx)(a) Neural Accumulator (NAC) (b) Neural Arithmetic Logic Unit (NALU)

Figure 2: The Neural Accumulator (NAC) is a linear transformation of its inputs. The transformation
matrix is the elementwise product of tanh(Ŵ) and �(M̂). The Neural Arithmetic Logic Unit
(NALU) uses two NACs with tied weights to enable addition/subtraction (smaller purple cell) and
multiplication/division (larger purple cell), controlled by a gate (orange cell).

and produces matrices whose elements are guaranteed to be in [�1, 1] and biased to be close to �1,
0, or 1.1 The model contains no bias vector, and no squashing nonlinearity is applied to the output.

While addition and subtraction enable many useful systematic generalizations, a similarly robust
ability to learn more complex mathematical functions, such as multiplication, may be be desirable.
Figure 2 describes such a cell, the neural arithmetic logic unit (NALU), which learns a weighted
sum between two subcells, one capable of addition and subtraction and the other capable of multi-
plication, division, and power functions such as

p
x. Importantly, the NALU demonstrates how the

NAC can be extended with gate-controlled sub-operations, facilitating end-to-end learning of new
classes of numerical functions. As with the NAC, there is the same bias against learning to rescale
during the mapping from input to output.

The NALU consists of two NAC cells (the purple cells) interpolated by a learned sigmoidal gate
g (the orange cell), such that if the add/subtract subcell’s output value is applied with a weight of
1 (on), the multiply/divide subcell’s is 0 (off) and vice versa. The first NAC (the smaller purple
subcell) computes the accumulation vector a, which stores results of the NALU’s addition/subtraction
operations; it is computed identically to the original NAC, (i.e., a = Wx). The second NAC (the
larger purple subcell) operates in log space and is therefore capable of learning to multiply and divide,
storing its results in m:

NAC: a = Wx W = tanh(Ŵ)� �(M̂)

NALU: y = g � a+ (1� g)�m m = expW(log(|x|+ ✏)), g = �(Gx)

where ✏ prevents log 0. Altogether, this cell can learn arithmetic functions consisting of multiplication,
addition, subtraction, division, and power functions in a way that extrapolates to numbers outside of
the range observed during training.

3 Related Work

Numerical reasoning is central to many problems in intelligence and by extension is an important
topic in deep learning [5]. A widely studied task is counting objects in images [2, 4? , 25, 31, 33].
These models generally take one of two approaches: 1) using a deep neural network to segment
individual instances of a particular object and explicitly counting them in a post-processing step or
2) learning end-to-end to predict object counts via a regression loss. Our work is more closely related
to the second strategy.

Other work more explicitly attempts to model numerical representations and arithmetic functions
within the context of learning to execute small snippets of code [32, 23]. Learning to count within a
bounded range has also been included in various question-answer tasks, notably the BaBI tasks [29],

1The stable points {�1, 0, 1} correspond to the saturation points of either � or tanh.

3

Static Task (test) Recurrent Task (test)
Relu6 None NAC NALU LSTM ReLU NAC NALU

In
te

rp
ol

at
io

n a+ b 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

a� b 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

a⇥ b 3.2 20.9 21.4 0.0 0.0 0.0 1.5 0.0

a/b 4.2 35.0 37.1 5.3 0.0 0.0 1.2 0.0

a2 0.7 4.3 22.4 0.0 0.0 0.0 2.3 0.0p
a 0.5 2.2 3.6 0.0 0.0 0.0 2.1 0.0

Ex
tra

po
la

tio
n a+ b 42.6 0.0 0.0 0.0 96.1 85.5 0.0 0.0

a� b 29.0 0.0 0.0 0.0 97.0 70.9 0.0 0.0

a⇥ b 10.1 29.5 33.3 0.0 98.2 97.9 88.4 0.0

a/b 37.2 52.3 61.3 0.7 95.6 863.5 >999 >999
a2 47.0 25.1 53.3 0.0 98.0 98.0 123.7 0.0p
a 10.3 20.0 16.4 0.0 95.8 34.1 >999 0.0

Table 1: Interpolation and extrapolation error rates for static and recurrent tasks. Scores are scaled
relative to a randomly initialized model for each task such that 100.0 is equivalent to random, 0.0 is
perfect accuracy, and >100 is worse than a randomly initialized model. Raw scores in Appendix B.

Table 1 summarizes results and shows that while several standard architectures succeed at these tasks
in the interpolation case, none of them succeed at extrapolation. However, in both interpolation and
extrapolation, the NAC succeeds at modeling addition and subtraction, whereas the more flexible
NALU succeeds at multiplicative operations as well (except for division in the recurrent task2).

4.2 MNIST Counting and Arithmetic Tasks

In the previous synthetic task, both inputs and outputs were provided in a generalization-ready
representation (as floating point numbers), and only the internal operations and representations had to
be learned in a way that generalized. In this experiment, we discover whether backpropagation can
learn the representation of non-numeric inputs to NACs/NALUs.

In these tasks, a recurrent network is fed a series of 10 randomly chosen MNIST digits and at the
end of the series it must output a numerical value about the series it observed.3 In the MNIST Digit
Counting task, the model must learn to count how many images of each type it has seen (a 10-way
regression), and in the MNIST Digit Addition task, it must learn to compute the sum of the digits
it observed (a linear regression). Each training series is formed using images from the MNIST
digit training set, and each testing series from the MNIST test set. Evaluation occurs over held-out
sequences of length 10 (interpolation), and two extrapolation lengths: 100 and 1000. Although no
direct supervision of the convnet is provided, we estimate how well it has learned to distinguish digits
by passing in a test sequences of length 1 (also from the MNIST test dataset) and estimating the
accuracy based on the count/sum. Parameters are initialized randomly and trained by backpropagating
the mean squared error against the target count vector or the sum.

Table 2 shows the results for both tasks. As we saw before, standard architectures succeed on held-out
sequences in the interpolation length, but they completely fail at extrapolation. Notably, the RNN-tanh
and RNN-ReLU models also fail to learn to interpolate to shorter sequences than seen during training.
However, the NAC and NALU both extrapolate and interpolate well.

4.3 Language to Number Translation Tasks

Neural networks have also been quite successful in working with natural language inputs, and LSTM-
based models are state-of-the-art in many tasks [10, 27, 16]. However, much like other numerical
input, it is not clear whether representations of number words are learned in a systematic way. To
test this, we created a new translation task which translates a text number expression (e.g., five
hundred and fifteen) into a scalar representation (515).

2Division is much more challenging to extrapolate. While our models limit numbers using nonlinearities, our
models are still able to represent numbers that are very, very small. Division allows such small numbers to be in
the denominator, greatly amplifying even small drifts in extrapolation ability.

3The input to the recurrent networks is the output the convnet in https://github.com/pytorch/
examples/tree/master/mnist.

5

Neural Arithmetic Units
Improving upon NALU, Authors: Andreas Madsen and Alexander Rosenberg Johansen

• NALU doesn’t support negative values or large hidden input-size

• Improving and based on a theoretical analysis

• Simplification of the weight matrix ()

• Sparsity regulariser

• NAU (neural addition unit) and NMU (neural multiplication unit)

NAC+ NAC⋅

W = tanh(Ŵ) ⋅ σ(M̂)

Neural Arithmetic Units
Expectation of the gradient

• Glorot & Bengio, 2010: is desired

• In NALU this leads to

Reminder:

• Causes the expectation of the gradient to be zero

E[zhl
] = 0

E[tanh(Whl−1,hl
)] = 0

Whl−1,hl
= tanh(Ŵhl−1,hl

) ⋅ σ(M̂)

E[
δℒ

δM̂ hl−1, hl

] = E[
δℒ

δW hl−1, hl

] ⋅ E[tanh(Ŵ hl−1, hl
)] ⋅ E[σ′￼(M̂ hl−1, hl

)] = 0

Neural Addition Unit
• Simplified Weight Matrix

• clamping the elements to [-1,1]

• Sparsity regulariser

•

•

• NAU:

Whl−1,hl
= min(max(Whl−1,hl

, − 1),1)

ℛl,sparse =
1

(Hl ⋅ Hl−1)

Hl

∑
hl=1

Hl−1

∑
hl−1=1

min(|Whl−1,hl
| ,1 − |Whl−1,hl

|)

ℒ = ℒ̂ + λsparseℛl,sparse

zhl
=

Hl−1

∑
hl−1=1

Whl,hl−1
zhl−1

Challenges of Division

•

• Small x, the output explodes

m = exp W(log(|x | + ϵ))

NAC⋅ with ϵ = 10−7 NAC⋅ with ϵ = 0.1

Published as a conference paper at ICLR 2020

However, this flexibility creates critical optimization challenges. By expanding the exp-log-
transformation, NAC• can be expressed as

NAC• : zh`
=

H`�1Y

h`�1=1

(|zh`�1 |+ ✏)Wh
`
,h

`�1 . (8)

In equation (8), if |zh`�1 | is near zero (E[zh`�1] = 0 is a desired property when initializing (Glorot
& Bengio, 2010)), Wh`�1,h`

is negative, and ✏ is small, then the output will explode. This issue is
present even for a reasonably large ✏ value (such as ✏ = 0.1), and just a slightly negative Wh`�1,h`

,
as visualized in figure 2. Also note that the curvature can cause convergence to an unstable area.

This singularity issue in the optimization space also makes multiplication challenging, which further
suggests that supporting division is undesirable. These observations are also found empirically in
Trask et al. (2018, table 1) and Appendix C.7.

(a) NAC• with ✏ = 10�7 (b) NAC• with ✏ = 0.1 (c) NAC• with ✏ = 1

Figure 2: RMS loss curvature for a NAC+ unit followed by a NAC•. The weight matrices are
constrained to W1 =

⇥
w1 w1 0 0
w1 w1 w1 w1

⇤
, W2 = [w2 w2]. The problem is (x1+x2) ·(x1+x2+x3+x4)

for x = (1, 1.2, 1.8, 2). The solution is w1 = w2 = 1 in (a), with many unstable alternatives.

2.4 INITIALIZATION OF NAC•

Initialization is important for fast and consistent convergence. A desired property is that weights are
initialized such that E[zh`

] = 0 (Glorot & Bengio, 2010). Using second order Taylor approximation
and assuming all zh`�1 are uncorrelated; the expectation of NAC• can be estimated as

E[zh`
] ⇡

✓
1 +

1

2
V ar[Wh`,h`�1] log(|E[zh`�1]|+ ✏)2

◆H`�1

) E[zh`
] > 1. (9)

As shown in equation 9, satisfying E[zh`
] = 0 for NAC• is likely impossible. The variance cannot

be input-independently initialized and is expected to explode (proofs in Appendix B.3).

2.5 THE NEURAL MULTIPLICATION UNIT

To solve the the gradient and initialization challenges for NAC• we propose a new unit for multipli-
cation: the Neural Multiplication Unit (NMU)

Wh`�1,h`
= min(max(Wh`�1,h`

, 0), 1), (10)

R`,sparse =
1

H` ·H`�1

H`X

h`=1

H`�1X

h`�1=1

min
�
Wh`�1,h`

, 1�Wh`�1,h`

�
(11)

NMU : zh`
=

H`�1Y

h`�1=1

�
Wh`�1,h`

zh`�1 + 1�Wh`�1,h`

�
(12)

The NMU is regularized similar to the NAU and has a multiplicative identity when Wh`�1,h`
= 0.

The NMU does not support division by design. As opposed to the NAC•, the NMU can represent
input of both negative and positive values and is not ✏ bounded, which allows the NMU to extrapolate
to zh`�1 that are negative or smaller than ✏. Its gradients are derived in Appendix A.3.

4

NAC⋅ with ϵ = 1

Neural Multiplication Unit

•

•

• NMU:

Whl−1,hl
= min(max(Whl−1,hl

,0),1)

ℛl,sparse =
1

(Hl ⋅ Hl−1)

Hl

∑
hl=1

Hl−1

∑
hl−1=1

min(|Whl−1,hl
| ,1 − |Whl−1,hl

|)

zhl
=

Hl−1

∏
hl−1=1

Whl,hl−1
zhl−1

+ 1 − Whl,hl−1

Published as a conference paper at ICLR 2020

Table 2: Comparison of: success-rate, first iteration reaching success, and sparsity error, all with 95%
confidence interval on the “arithmetic datasets” task. Each value is a summary of 100 different seeds.

Op Model Success Solved at iteration step Sparsity error
Rate Median Mean Mean

NAC• 31%
+10%
�8% 2.8 · 106 3.0 · 106 +2.9·105

�2.4·105 5.8 · 10�4 +4.8·10�4

�2.6·10�4

NALU 0%
+4%
�0% — — —⇥

NMU 98% +1%
�5% 1.4 · 106 1.5 · 106 +5.0·104

�6.6·104 4.2 · 10�7 +2.9·10�8

�2.9·10�8

NAC+ 100% +0%
�4% 2.5 · 105 4.9 · 105 +5.2·104

�4.5·104 2.3 · 10�1 +6.5·10�3

�6.5·10�3

Linear 100% +0%
�4% 6.1 · 104 6.3 · 104 +2.5·103

�3.3·103 2.5 · 10�1 +3.6·10�4

�3.6·10�4

NALU 14%
+8%
�5% 1.5 · 106 1.6 · 106 +3.8·105

�3.3·105 1.7 · 10�1 +2.7·10�2

�2.5·10�2
+

NAU 100% +0%
�4% 1.8 · 104

3.9 · 105 +4.5·104
�3.7·104 3.2 · 10�5 +1.3·10�5

�1.3·10�5

NAC+ 100% +0%
�4% 9.0 · 103 3.7 · 105 +3.8·104

�3.8·104 2.3 · 10�1 +5.4·10�3

�5.4·10�3

Linear 7%
+7%
�4% 3.3 · 106 1.4 · 106 +7.0·105

�6.1·105 1.8 · 10�1 +7.2·10�2

�5.8·10�2

NALU 14%
+8%
�5% 1.9 · 106 1.9 · 106 +4.4·105

�4.5·105 2.1 · 10�1 +2.2·10�2

�2.2·10�2
�

NAU 100% +0%
�4% 5.0 · 103 1.6 · 105 +1.7·104

�1.6·104 6.6 · 10�2 +2.5·10�2

�1.9·10�2

Finally, for a fair comparison we introduce two new units: A variant of NAC•, denoted NAC•,� , that
only supports multiplication by constraining the weights with W = �(Ŵ). And a variant, named
NAC•,NMU, that uses clamped linear weights and sparsity regularization identically to the NMU.

Figure 3 shows that the NMU can handle a much larger hidden-size and negative inputs. Furthermore,
results for NAC•,� and NAC•,NMU validate that removing division and adding bias improves the
success-rate, but are not enough when the hidden-size is large, as there is no ideal initialization.
Interestingly, no models can learn U[1.1, 1.2], suggesting certain input ranges might be troublesome.

●

●

●

●

●
● ● ● ● ●

●

● ● ● ● ● ● ● ●

● ●

●

● ● ● ● ● ●● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

● ● ●
●

●●

●

●

Success rate Solved at iteration step Sparsity error

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
0.00

0.05

0.10

0.15

0.20

0.25

0e+00

1e+06

2e+06

3e+06

4e+06

5e+06

0.00

0.25

0.50

0.75

1.00

Hidden size

model ● ● ● ● ●NAC•,NMU NAC•,σ NAC• NALU NMU

●

●

●

●

●●●● ●

●

●●

●

●

●

●

●

●

●

●

●●●● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●● ●●●●

●●
●

●

●●

●

●

●

●

Success rate Solved at iteration step Sparsity error

U[−2
,−1

]

U[−2
,2]

U[0,
1]

U[0.
1,0

.2]
U[1,

2]

U[1.
1,1

.2]

U[10
,20

]

U[−2
,−1

]

U[−2
,2]

U[0,
1]

U[0.
1,0

.2]
U[1,

2]

U[1.
1,1

.2]

U[10
,20

]

U[−2
,−1

]

U[−2
,2]

U[0,
1]

U[0.
1,0

.2]
U[1,

2]

U[1.
1,1

.2]

U[10
,20

]
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0e+00

1e+06

2e+06

3e+06

0.00

0.25

0.50

0.75

1.00

Interpolation range

model ● ● ● ● ●NAC•,NMU NAC•,σ NAC• NALU NMU

Figure 3: Multiplication task results when varying the hidden input-size and when varying the
input-range. Extrapolation ranges are defined in Appendix C.4.

7

Neural Power Units
Authors: Niklas Heim, Tomas Pevny, Vaclav Smidl

• Expands Neural Arithmetic Logic Units to operate on full domain of real
numbers

• Adds capability to learn any arbritrary power function (therefore also square
root and division)

• Improve convergence by introducing a relevance gate

• Highly transparent model

NaiveNPU
Idea: use complex log and allow to be complex as wellW

•

• Allowing to be complex results in complex gradients which effectively

doubles the number of parameters

• We only consider the real part of

•

y = exp(W logcomplex(x)) = exp((Wr + iWi) logcomplex(x))

W

y

y = exp(Wr log(r) − πWik) ⋅ cos(Wi log(r) + πWr k)

m = exp W(log(|x | + ϵ))

Definition NaiveNPU
The naive Neural Power Unit, with Matrices and representing real and
imaginary part of the complex number, is defined as:

 , where

 ,

with inputs x, machine epsilon and learn parameters and .

Wr Wi

y = exp(Wr log(r) − πWik) ⋅ cos(Wi log(r) + πWrk)

r = |x | + ϵ ki = {0 if xi ≤ 0
1 if xi > 0

ϵ Wr Wi

r log matmul

abs matmul � exp

x Wr Wi � y

0:⇡ matmul + cos

k matmul

Figure 1: NaiveNPU diagram, with input x
and output y. Vectors in green, trainables in
orange, functions in blue.

r � + log matmul

abs matmul � exp

x g clip 0 1 1-g Wr Wi � y

0:⇡ matmul + cos

k � matmul

Figure 2: NPU diagram. The NPU has a relevance gate
g (hatched background) in front of the input to the unit
to prevent zero gradients.

to use the complex logarithm (log := logcomplex) and a complex weight W to

y = exp(W logx) = exp ((Wr + iWi) logx) , (7)
where the input x is still a vector of real numbers. With the polar form for a complex number
z = rei✓ the complex log applied to a real number x = reik⇡ is

log x = log r + ik⇡, (8)
where k = 0 if x � 0 and k = 1 if x < 0. Using the complex log in Eq. 7 lifts the positivity
constraint on x, resulting in a layer that can process both positive and negative numbers correctly. A
complex weight matrix W somewhere in a larger network would result in complex gradients in other
layers. This would effectively result in doubling the number of parameters of the whole network. As
we are only interested in real outputs, we can avoid this doubling by considering only the real part of
the output y:

Re(y) = Re(exp((Wr + iWi)(log r + i⇡k))) (9)
= exp(Wr log r � ⇡Wik)� cos(Wi log r + ⇡Wrk). (10)

Above we have used Euler’s formula eix = cosx+ i sinx. A diagram of the NaiveNPU is shown in
Fig. 1.
Definition (NaiveNPU). The Naive Neural Power Unit, with matrices Wr and Wi representing real
and imaginary part of the complex numbers, is defined as

y = exp(Wr log r � ⇡Wik)� cos(Wi log r + ⇡Wrk), where (11)

r = |x|+ ✏, ki =

⇢
0 xi � 0
1 xi < 0

,

with inputs x, machine epsilon ✏, and learnt parameters Wr and Wi.

3.2 The Relevance Gate – NPU

The NaiveNPU has difficulties to converge on large scale tasks, and to reach sparse results in cases
where the input to a given row is small. We demonstrate this on a toy example of learning the function
f : R2 ! R, which is the identity on one of two inputs. The task is defined by the loss L:

L =
X

i

|m(x1, x2)� f(x1, x2)| =
X

i

|m(x1, x2)� x1,i|,

where m = NaiveNPU with (Wr,Wi) 2 R1⇥2 (12)
and x1 ⇠ U(0, 2), x2 ⇠ U(0, 0.05).

The left plot in Fig. 3 depicts the gradient norm G

G(Wr) =

����
@L
@Wr

����
2

(13)

of the NaiveNPU for a batch of two-dimensional inputs. Even in this simple example, the gradient
of the NaiveNPU is close to zero in large parts of the parameter space. This can be explained as
follows. One row of NaiveNPU weights effectively raises each input to a power and multiplies them:
xw1
1 xw2

2 . . . xwn
n . If a single input xi is constantly close to zero (i.e. irrelevant), the whole row will

be zero, no matter what its weights are and the gradient information on all other weights is lost.
Therefore, we introduce a gate on the input of our layer that can turn irrelevant inputs into 1s. A
diagram of the NPU is shown in Fig. 2.

4

NaiveNPU diagram, with input and output . Vectors in green, trainables in orange,
functions in blue

x y

Relevance Gate
• NaiveNPU has difficulties converging on

large scale tasks

• If an input is close to zero (i.e irrelevant,

the whole row will be zero —> we lose

gradient information for all other inputs

xi

xi

r log matmul

abs matmul � exp

x Wr Wi � y

0:⇡ matmul + cos

k matmul

Figure 1: NaiveNPU diagram, with input x
and output y. Vectors in green, trainables in
orange, functions in blue.

r � + log matmul

abs matmul � exp

x g clip 0 1 1-g Wr Wi � y

0:⇡ matmul + cos

k � matmul

Figure 2: NPU diagram. The NPU has a relevance gate
g (hatched background) in front of the input to the unit
to prevent zero gradients.

to use the complex logarithm (log := logcomplex) and a complex weight W to

y = exp(W logx) = exp ((Wr + iWi) logx) , (7)
where the input x is still a vector of real numbers. With the polar form for a complex number
z = rei✓ the complex log applied to a real number x = reik⇡ is

log x = log r + ik⇡, (8)
where k = 0 if x � 0 and k = 1 if x < 0. Using the complex log in Eq. 7 lifts the positivity
constraint on x, resulting in a layer that can process both positive and negative numbers correctly. A
complex weight matrix W somewhere in a larger network would result in complex gradients in other
layers. This would effectively result in doubling the number of parameters of the whole network. As
we are only interested in real outputs, we can avoid this doubling by considering only the real part of
the output y:

Re(y) = Re(exp((Wr + iWi)(log r + i⇡k))) (9)
= exp(Wr log r � ⇡Wik)� cos(Wi log r + ⇡Wrk). (10)

Above we have used Euler’s formula eix = cosx+ i sinx. A diagram of the NaiveNPU is shown in
Fig. 1.
Definition (NaiveNPU). The Naive Neural Power Unit, with matrices Wr and Wi representing real
and imaginary part of the complex numbers, is defined as

y = exp(Wr log r � ⇡Wik)� cos(Wi log r + ⇡Wrk), where (11)

r = |x|+ ✏, ki =

⇢
0 xi � 0
1 xi < 0

,

with inputs x, machine epsilon ✏, and learnt parameters Wr and Wi.

3.2 The Relevance Gate – NPU

The NaiveNPU has difficulties to converge on large scale tasks, and to reach sparse results in cases
where the input to a given row is small. We demonstrate this on a toy example of learning the function
f : R2 ! R, which is the identity on one of two inputs. The task is defined by the loss L:

L =
X

i

|m(x1, x2)� f(x1, x2)| =
X

i

|m(x1, x2)� x1,i|,

where m = NaiveNPU with (Wr,Wi) 2 R1⇥2 (12)
and x1 ⇠ U(0, 2), x2 ⇠ U(0, 0.05).

The left plot in Fig. 3 depicts the gradient norm G

G(Wr) =

����
@L
@Wr

����
2

(13)

of the NaiveNPU for a batch of two-dimensional inputs. Even in this simple example, the gradient
of the NaiveNPU is close to zero in large parts of the parameter space. This can be explained as
follows. One row of NaiveNPU weights effectively raises each input to a power and multiplies them:
xw1
1 xw2

2 . . . xwn
n . If a single input xi is constantly close to zero (i.e. irrelevant), the whole row will

be zero, no matter what its weights are and the gradient information on all other weights is lost.
Therefore, we introduce a gate on the input of our layer that can turn irrelevant inputs into 1s. A
diagram of the NPU is shown in Fig. 2.

4

 , , r = ̂g ⋅ (|x | + ϵ) + (1 − ̂g) ki = {0 if xi ≤ 0
̂gi if xi > 0

̂gi = min(max(gi,0),1)

Figure 6: Comparison of extrapolation quality of different models learning Eq. 20. Each column
represents the best model of 20 runs that were trained on the range U(0.1, 2). Lighter color implies
lower error.

imaginary parameters to help convergence. In such a case, the RealNPU generalizes better because it
corresponds to the task it is trying to learn.

4.3 Large Scale Arithmetic Task

One of the most important properties of a layer in a neural network is its ability to scale. With the
large scale arithmetic task we show that the NPU works reliably on many-input tasks that are heavily
over-parametrized. In this section we compare NALU, NMU, NPU, RealNPU, and the NaiveNPU
on a task that is identical to the ‘arithmetic task’ that Madsen and Johansen [2020] and Trask et al.
[2018] analyse as well. The goal is to sum two subsets of a 100 dimensional vector and apply an
operation (like ⇥) to the two summed subsets. The dataset generation is defined in the set of Eq. 23,
with the parameters from Tab. A5.

a =

s1,endX

i=s1,start

xi, b =

s2,endX

i=s2,start

xi, yadd = a+ b, ymul = a⇥ b, ydiv = 1/a, ysqrt =
p
a, (23)

where starting and ending values si,start, si,end of the summations are chosen such that a and b come
from subsets of the input vector x with a given overlap. The training objective is standard MSE,
regularized with L1:

L = MSE(model(x), y) + � k✓k1 , (24)
where � is scheduled to be low in the beginning of training and stronger towards the end. Specifics
of the used models and their hyper-parameters are defined in Tab. A4 & A6. Madsen and Johansen
[2020] perform an extensive analysis of this task with different subset and overlap ratios, varying
model and input sizes, and much more, establishing that the combination of NAU/NMU outperforms
the NALU. We focus on the comparison of NPU, RealNPU, NMU, and NALU on the default
parameters of Madsen and Johansen [2020] which sets the subset ratio to 0.5 and the overlap ratio
to 0.25 (details in Tab. A5). We include the NaiveNPU (without the relevance gate) to show how
important the gating mechanism is for both sparsity and overall performance.

Fig. 7 plots testing errors over the number of non-zero parameters for all models and tasks. The
addition plot shows that NMU, NPU, and RealNPU successfully learn and extrapolate on (+) with

8

f(x, y) = (x + y, xy, x/y, x)T =: t

Neural Status Registers
Authors: Lukas Faber and Roger Wattenhofer

• The before mentioned architectures deal with extrapolation

• Quantitative Reasoning —> (if and while)

• Inspired by ALU (Arithmetic Logic Units)

• Computes difference of 2 inputs

• Difference is positive —> sign bit is set

• Difference is zero —> zero bit is set

• Combining these bits with logical operations (&, /, !) we can perform comparisons
such as

B+

B0

(> , < , ≤ , ≥ , = , ≠)

Neural Status Registers

zx

@

@

�

cB+

cB0

*

W±

W 0

*

b + y

ȳ

sigm
oid

o1

o2
1�

O1

O2

softmaxV1

softmaxV2

Figure 1. High-Level NSR architecture. Boxes show (intermediate) vectors and scalars and circles are operations between them. Shaded
boxes indicate learnable parameters; @ denotes matrix multiplication. The NSR learns V1 and V2 to select the right elements from input
vector x = [x1, x2, . . . , xn] to compare; then computes the difference between the two learnt operands. The second set of parameters
W+, W 0 and a bias b learn to weigh B+ and B0 activations to produce the needed comparison. The output y returns whether the
comparison evaluates to true or false.

y. We show example weight allocations in Appendix 16.
For easier control of downstream layers, the NSR outputs y
as well as its negation ȳ. We output both y and ȳ, so down-
stream layers of the NSR have easy access to both branches
of the comparison.

3.2. Continuous Relaxation

First, we compute derivatives for all learnable parameters.
We relax notation to allow taking derivatives of vectors and
assume there is only a gradient signal for y, not for 1� y.
We further only compute partial derivatives of y with respect
to the NSR components, abstracting from any downstream
layers. We could get actual derivatives with the chain rule
by multiplying with @L

@y , and all arguments remain the same.
The derivatives are as follows (refer to Appendix A for their
derivation):

@y

@b
= y(1� y) (1)

@y

@W+
= y(1� y)B+ (2)

@y

@W 0
= y(1� y)B0 (3)

@y

@O1
= y(1� y)(B0

+W
+ +B0

0W
0) (4)

@y

@O2
= �y(1� y)(B0

+W
+ +B0

0W
0) (5)

First let us address the two Equations (4) and (5). To com-
pute derivatives for O1 and O2 (and thus V1 and V2), we
need to differentiate the two functions B+ and B0. In physi-

cal status registers, these are bits defined over integers, thus
having a discrete input and output. Additionally, these bits
take on the value 0 if the number is positive (for B+) or
not zero (for B0). In these cases we multiply the gradients
with a 0 in Equations (2) and (3), losing any learning signal.
To prevent these 0 bit activations from slowing down the
training unnecessarily, we change the bit off value from 0
to 1. Furthermore, we propose the following continuous
relaxations for B+ and B0 that map well to the discrete bit
values (we compare the discrete and continuous versions in
Figure 2). Note that the approximation for cB0 looks a bit
off with cB0 ⇡ �0.17 instead of �1. However, experiments
support that this causes no problems since W 0 can easily
compensate for the difference in magnitude.

cB+(x) = tanh(x)

cB0(x) = 1� 2(tanh(x))2

3.3. Floating-point Comparisons

As the second step, we tackle the relaxation for discrete
integer inputs. As they stand in Figure 2, the bit relaxations
support any floating numbers as inputs. However, practi-
cal learning with any inputs poses challenges. Let us look
at the quality � with which we denote the minimal differ-
ence between two non-equal numbers. In case of integers
� = 1. However, we would run into problems, for example
if � = 0.5 since cB0(0.5) ⇡ 0.57. In this case, the sign of
cB0 is incorrect, which is something that W 0 cannot correct.
Thus, the NSR cannot reason about (in-)equalities in that
case. To a lesser extent, also cB+ suffers from small delta

High-Level NSR architecture

Continous Relaxation and Floating Point Comparison

1.

2.

3.

4.

5.

δy
δb

= y(1 − y)

δy
δW+

= y(1 − y)B+

δy
δW0

= y(1 − y)B0

δy
δO1

= y(1 − y)(B′￼

+W+ + B′￼

0W0)

δy
δO2

= − y(1 − y)(B′￼

+W+ + B′￼

0W0)

• The Values can take on the value . Results in

zero gradients for Equation (2) & (3)

• Adjust them:

 and

• Difference then which is incorrect

• We fix this by introducing a hyper parameter

• and

B+ and B0 0

B̂+ = tanh(x) B̂0 = 1 − 2(tanh(x))2

x = 0.5 B̂0 = 0.57

λ

B̂+λ = tanh(λx) B̂0λ = 1 − 2(tanh(λx))2

Neural Status Registers

Table 4. Learning comparisons on data from [�10; 9] and testing comparisons on numbers from larger orders of magnitude. For testing
we sample n randomly and compare n against all integers at most 5 apart; rebalanced for = and 6=. Table cells show accuracy over 100
runs. MLP devolves to random guessing for 5� digit numbers and always predicts randomly for = and 6=. The NSR has neither problem
and solves all comparisons well.

Task Model Train 102 103 104 105 106 107 108 109 1010 1011 1012 1013

MLP

> 1.0 1.0 0.96 0.71 0.49 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48
< 1.0 1.0 0.93 0.7 0.49 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48
� 1.0 1.0 0.94 0.71 0.49 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48
 1.0 1.0 0.94 0.68 0.49 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48
= 0.95 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
6= 0.95 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

NSR
(ours)

> 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

< 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

� 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

= 0.99 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93

6= 0.99 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

are imbalanced, therefore we add test cases (n + i, n + i)
with i 2 [�5; 5]\{0}. We measure the comparison accuracy
for this test set. Table 4 reports the accuracy averaged over
100 runs. We can see NSR achieves excellent extrapolation
across all comparisons while MLP degenerates to random
guessing with 5+ digits. The NSR also reliably learns the
comparisons = and 6=, which MLP does not learn at all
(the 0.95 accuracy during training stems from constantly
predicting the majority answer in the unbalanced training
set). Apart from the imbalanced training set, these two com-
parisons also have a harder loss landscape which makes
learning dependent on the right initialization (Bland, 1998).

4.2. Learning with Floats

In this experiment, we investigate reasoning over floats.
As discussed in Section 3.3, the important measure is the
minimum difference � between two non-equal values. We
can compensate for � with scaling the pre-activation values
for cB+ and cB0 with a scalar �. To investigate the impact,
we run different experiments, varying both � and � across
{10�3, 10�2, 10�1, 1, 101, 102, 103}. We multiply every
input in the training set—coming again from [�10; 9]—with
� to obtain inputs with a smaller difference. For testing,
we also scale the test numbers accordingly to be only �
apart from each other. The remaining setup is as in the
previous section. For every pair �,�, we report > as an easy
comparison, and = as a difficult comparison, the results
extend to the other comparisons (see Appendix D). Due to
the clear results, we only perform 20 instead of 100 runs.
For every pair (�;�) we get a series of extrapolation results,
equivalent to one row in Table 4. In Figure 5, we show the
average of all these extrapolation tests, for each pair (�;�).

For both comparisons, there is a threshold where the NSR
learns the comparison almost perfectly and or not learning at
all. If both � and � are small, cB+ becomes small enough to
cause a vanishing gradient problem. Then the NSR cannot
learn >. The NSR can learn = if � � ��1. Since in these
cases the sign of cB+�) remains negative. We take away
that the proposed scaling through � works. While � is a
hyperparameter, we saw that a good rule of thumb is to set
� to the inverse of the assumed smallest difference � in the
expected data distribution. Moreover, the NSR is forgiving
for having a larger value of �, which gives some room for
safety and error. We can increase � few orders of magnitude
higher than our expected ��1. Thus, we conclude that the
NSR can handle floats as well as integers. For the remainder
of the experiments, we will consider integers for simplicity.

4.3. Learning Downstream Units: Piecewise Functions

We now show that we can combine the quantitative rea-
soning of the NSR with Neural Arithmetic Units to learn
extrapolating models for piecewise defined functions. As an
example, we look at the following two functions:

abs(x1, x2) =

(
x1 � x2 if x1 > x2

x2 � x1 else

f(x1, x2, x3, x4, x5) =

(
x5 + 4 if x1 > x2

x4 � x3 else

We expect the first function abs to be easy to learn since it
only depends on two inputs and is still a continuous function.
On the other hand, f has five inputs and is not continuous,
which is why we expect that f is harder to learn.

Learning comparisons on data from [−10; 9]

LNN: Logical Neural Networks
Authors: Ryan Riegel, Alexander Gray, et al.

• This is not your standard
Neural Network

• LNN are able to do neural
network-style learning
and classical AI-style
reasoning

• Neurons model a
weighted real-valued logic

LNN: Logical Neural Network
Main Ideas

1. Logical Constraints

2. Bounds on Truth Values

3. Omnidirectional Inference

Main Idea #1: Logical Constraints
• Each neuron should behave like logical

gate

• Constrain neural parameters to achieve
this behaviour

• Conjunction and negation (1-x) we can
implement all other logic

• The choice of f affects the logic

• Converges to classical inference
behaviour

⨂
→

→
⨁

→

Tail

Pet

Laser pointer Chases

Cat DogWhiskers

(Whiskers ⨂ Tail ⨂ (Laser pointer → Chases)) → Cat

(Cat ⨁ Dog) → Pet

(a) The LNN graph structure reflects the
formulae it represents.

True

False

!
1 - !

(b) A logistic activation
function

True

False

!
1 - !

(c) A linearly interpo-
lated activation function

Figure 1: Neurons (1a) with alternative activation functions (1b, 1c) configured to match the truth
functions of their corresponding operations, with established regions of unambiguously True, unam-
biguously False, and intermediate truth.

3 Model structure

In general, LNNs are described in terms of FOL, but it is useful to discuss LNNs restricted to the
scope of propositional logic.1 Structurally, an LNN is a graph made up of the syntax trees of all
represented formulae connected to each other via neurons added for each proposition. Specifically, as
shown in Figure 1a, there exists one neuron for each logical operation occurring in each formula and,
in addition, one neuron for each unique proposition occurring in any formula. All neurons return
pairs of values in the range [0, 1] representing lower and upper bounds on the truth values of their
corresponding subformulae and propositions. To aid interpretability of bounds, we define a threshold
of truth 1

2 < ↵  1 such that a continuous truth value is considered True if it is greater than ↵ and
False if it is less than 1� ↵. Bound values identify one of four primary states that a neuron can be
in, whereas secondary states offer a more-true-than-not or more-false-than-not interpretation.

Table 1: Primary truth value bound states
Bounds Unknown True False Contradiction

Upper [↵, 1] [↵, 1] [0, 1� ↵] Lower > Upper
Lower [0, 1� ↵] [↵, 1] [0, 1� ↵]

Neurons corresponding to logical connectives accept as input the output of neurons corresponding to
their operands and have activation functions configured to match the connectives’ truth functions.
Neurons corresponding to propositions accept as input the output of neurons established as proofs
of bounds on the propositions’ truth values and have activation functions configured to aggregate
the tightest such bounds. Proofs for propositions may be established explicitly, e.g. as the heads of
Horn clauses, though Section 4 shows how bidirectional inference permits every occurrence of each
proposition in each formula to be used as a potential proof. Negation is modeled as a pass-through
node with no parameters, canonically performing ¬x = 1� x.

3.1 Activation functions for connectives

Many candidate neural activation functions can accommodate the classical truth functions of logical
connectives, each varying in how it handles inputs strictly between 0 and 1. For instance, min{x, y} is
a suitable activation function for real-valued conjunction x⌦y, but so are x ·y and max{0, x+y�1}.

1First-order LNN expands to include neurons for predicate and quantifier symbols, with each formula
grounding treated as a proposition. Each neuron keeps a table that maps a set of n-dimensional grounding tuples
to truth value bounds, where n is the number of unique variables in the underlying subformula. Quantifiers 8
and 9 are modeled as pass-through nodes aggregating bounds over one of the n dimensions via min and max,
respectively. Inference proceeds as described for propositional LNN in Section 4, with each grounding treated
independently and special handling for 8 and 9. This method is similar to approaches that reduce inference
in classical FOL to propositional logic [18]. Additional details are given in section A.1 of the supplementary
material.

3

A logistic activation function
and a linearly interpolated

activation function

Logic T-Norm (AND)
 T-conorm (OR)
 Residuum (IMPLIES)

Gödel

Product

Łukasiewicz

a ⊗ b a ⊕ b a → b

min{a, b} max{a, b} b if a < b else 1

a ⋅ b a + b − a ⋅ b
b
a

if a < b else 1

max{0, a + b − 1} min{1, a + b} min{1, 1 − a + b}

Most common real-valued logics

Main Idea #1: Logical Constraints
• Each neuron should behave like logical gate

• Constrain neural parameters to achieve this

behaviour

• Conjunction and negation (1-x) we can

implement all other logic

• The choice of f affects the logic

• Converges to classical inference behaviour

⨂
→

→
⨁

→

Tail

Pet

Laser pointer Chases

Cat DogWhiskers

(Whiskers ⨂ Tail ⨂ (Laser pointer → Chases)) → Cat

(Cat ⨁ Dog) → Pet

(a) The LNN graph structure reflects the
formulae it represents.

True

False

!
1 - !

(b) A logistic activation
function

True

False

!
1 - !

(c) A linearly interpo-
lated activation function

Figure 1: Neurons (1a) with alternative activation functions (1b, 1c) configured to match the truth
functions of their corresponding operations, with established regions of unambiguously True, unam-
biguously False, and intermediate truth.

3 Model structure

In general, LNNs are described in terms of FOL, but it is useful to discuss LNNs restricted to the
scope of propositional logic.1 Structurally, an LNN is a graph made up of the syntax trees of all
represented formulae connected to each other via neurons added for each proposition. Specifically, as
shown in Figure 1a, there exists one neuron for each logical operation occurring in each formula and,
in addition, one neuron for each unique proposition occurring in any formula. All neurons return
pairs of values in the range [0, 1] representing lower and upper bounds on the truth values of their
corresponding subformulae and propositions. To aid interpretability of bounds, we define a threshold
of truth 1

2 < ↵  1 such that a continuous truth value is considered True if it is greater than ↵ and
False if it is less than 1� ↵. Bound values identify one of four primary states that a neuron can be
in, whereas secondary states offer a more-true-than-not or more-false-than-not interpretation.

Table 1: Primary truth value bound states
Bounds Unknown True False Contradiction

Upper [↵, 1] [↵, 1] [0, 1� ↵] Lower > Upper
Lower [0, 1� ↵] [↵, 1] [0, 1� ↵]

Neurons corresponding to logical connectives accept as input the output of neurons corresponding to
their operands and have activation functions configured to match the connectives’ truth functions.
Neurons corresponding to propositions accept as input the output of neurons established as proofs
of bounds on the propositions’ truth values and have activation functions configured to aggregate
the tightest such bounds. Proofs for propositions may be established explicitly, e.g. as the heads of
Horn clauses, though Section 4 shows how bidirectional inference permits every occurrence of each
proposition in each formula to be used as a potential proof. Negation is modeled as a pass-through
node with no parameters, canonically performing ¬x = 1� x.

3.1 Activation functions for connectives

Many candidate neural activation functions can accommodate the classical truth functions of logical
connectives, each varying in how it handles inputs strictly between 0 and 1. For instance, min{x, y} is
a suitable activation function for real-valued conjunction x⌦y, but so are x ·y and max{0, x+y�1}.

1First-order LNN expands to include neurons for predicate and quantifier symbols, with each formula
grounding treated as a proposition. Each neuron keeps a table that maps a set of n-dimensional grounding tuples
to truth value bounds, where n is the number of unique variables in the underlying subformula. Quantifiers 8
and 9 are modeled as pass-through nodes aggregating bounds over one of the n dimensions via min and max,
respectively. Inference proceeds as described for propositional LNN in Section 4, with each grounding treated
independently and special handling for 8 and 9. This method is similar to approaches that reduce inference
in classical FOL to propositional logic [18]. Additional details are given in section A.1 of the supplementary
material.

3

A logistic activation function
and a linearly interpolated

activation function

Main Idea #2
Bounds on Truth Values

• Represent truth value with a lower and upper bound

• Allows open-world assumption

• Other neuro-symbolic methods assume that the truth value can be known

• Unknown , Contradiction , Ambiguity (L = 0,U = 1) (L > U) (L = U = 0.5)

Main Idea #3
Omnidirectional Inference

• Use to allow inference in any direction

• Upward and downward algorithm =
“feed-forward”

• Upward ALG does normal evaluation
(AND, OR, etc)

• Downward ALG enables inference rules
such as modus ponens (x, x->y |- y)

f −1

X Y

Z

Example:

Upward : , then

Downward: and , then

x ∧ y = z
x = y = 1 z = 1

z = 0 y = 1 x = 0

LNN: Logical Neural Network
Learning

•

�. A model is a probability function p(·) over ⇤. We say that p(·) is a model of � and write p(·) |= �
if and only if li  p(S�i)  ui for i = 1, · · · , k. Let P� denote the set of all models of �.

Initial knowledge is specified by a set of formulas V0 and two functions L0 : V0 ! [0, 1] and
U0 : V0 ! [0, 1]. We may then state the following theorem, proved in section D of the supplementary
material:
Theorem 2. Let L� and U� denote the lower and upper bounds computed by LNN for formula �.
Define �0 = {(v, L0(v), U0(v)) | v 2 V0}. If P�0 6= ;, the following inequalities hold:

L�  infp2P�0
p(S�) U� � supp2P�0

p(S�)

6 Learning

A core strength of the LNN model is its differentiability, permitting the optimization via back-
propagation of parameters including operand importance weights, formula truth value bounds, and/or
the truth value bounds of atoms. Loss functions for LNN may exploit its logical interpretability, in
particular by penalizing contradiction, which can then be used to enforce even complicated logical
requirements. An important consideration, however, is whether it is desired to preserve neurons’
fidelity to their corresponding logical connectives, especially when presented with classical inputs.

Weighted nonlinear logic behaves classically for classical inputs when optimized as
minB,W E(B,W) +

P
k2N max{0, LB,W,k � UB,W,k}

s.t. 8k 2 N, i 2 Ik, ↵ · wik � �k + 1 � ↵, wik � 0 (6)
8k 2 N,

P
i2Ik

(1� ↵) · wik � �k + 1  1� ↵, �k � 0 (7)
for loss function E, bias vector B, weight matrix W , (disjunction) neuron index set N , and inferred
lower and upper bounds LB,W,k and UB,W,k at each neuron. Intuitively, (6) requires disjunctions
to return True if any of their inputs are true, even if their other inputs are 0, i.e. maximally false,
while (7) requires them to return False if all of their inputs are false. Loss function E often
embodies typical NN learning objectives such as mean-square error; in addition, contradiction
loss

P
k2N max{0, LB,W,k � UB,W,k} penalizes the sum total contradiction observed in the system.

Given the above linear constraints, methods such as Frank–Wolfe [8, 12] may be used to optimize B
and W . It is easy to see, however, that weights wik cannot be made equal to 0, nor can constraints be
relaxed to permit nonclassical behavior. This may be corrected via the introduction of slack variables,
though the following presents a means of sidestepping this issue while also improving gradients.

6.1 Tailored activation functions

For disjunction with � = 1, the tailored activation function fw, shown in Figure 1c, is a linear
interpolation between four critical points — (0, 0), (xF, 1� ↵), (xT,↵), and (xmax, 1), establishing
regions of unambiguous True, intermediate, and False truth values, respectively — given

fw(x) =

(
x · (1� ↵)/xF if 0  x  xF,
(x� xF) · (2↵� 1)/(xT � xF) + 1� ↵ if xF < x < xT,
(x� xT) · (1� ↵)/(xmax � xT) + ↵ if xT  x  xmax,

(8)

xF =
P

i2I wi · (1� ↵), xT = wmax · ↵, xmax =
P

i2I wi.

By construction, this guarantees classical inputs produce classical results without the need for
constraints. In addition, because xT is defined in terms of wmax, weights may drop to 0 without
significantly impacting fw. By the nature of monotonic linear interpolation, gradients are large and
reliable everywhere. Lastly, the tailored activation function establishes ↵ as a means of controlling
the system’s classicality, with smaller values being more classical.

7 Empirical evaluation

Smokers and friends. LTN experiment Kexp2 [19] has plausible universally quantified axioms for
a small universe (a-h) with initial facts for smokes S(x), cancer C(x), and friends F (x, y) (open-
world). We repeat the experiment including axioms induced by MLN [15] (total 8 axioms) on this

7

• Incorporate Contradiction Term to the Loss Function

• Standard Backpropagation updates weights (importance of input)

LNN are transparent,
interpretable and decomposable!

References
• Trask et al. 2018. “Neural Arithmetic Logic Units”. arXiv:1808.00508.

• Madsen and Johansen. 2020. “Neural Arithmetic Units”. arXiv:2001.05016.

• Heim, Pevny and Smidl. 2020. “Neural Power Units”. arXiv:2006.01681.

• Faber and Wattenhofer. 2020. “Neural Status Registers”. arXiv:2004.07085.

• Riegel et al. 2020. “Logical Neural Networks”. arXiv:2006.13155

https://arxiv.org/abs/1808.00508
https://arxiv.org/abs/2001.05016
https://arxiv.org/abs/2006.01681
https://arxiv.org/abs/2004.07085
https://arxiv.org/abs/2006.13155

