Seminar in Deep Neural Networks

ALG: Math

Overview

- Introduction
- NALU: Neural Arithmetic Logic Units
- Neural Arithmetic Units
- Neural Power Units
- Neural Status Registers
- LNN
- Discussion

NN fail at Extrapolation

- Scalar identity function
- Autoencoder (same size)

NALU: Neural Arithmetic Logic Units

NAC: The Neural Accumulator, Authers: Andrew Trask et al.

- Introduce inductive bias for linear extrapolation
- Idea:
- $a=W x$ (linear layer)
- Transformation matrix W consists of values $\{-1,0,1\}$
- Introduce a form which is easy to learn with gradient descent

NAC

$$
a=W x
$$

$$
W=\tanh (\hat{W}) \cdot \sigma(\hat{M})
$$

Elements in range $[-1,1]$ with bias towards - 1,0,1

NALU

Idea: Gating between add/sub cell and mul/div cell

$$
\begin{aligned}
& y=g \cdot a+(1-g) \cdot m \\
& m=\exp W(\log (|x|+\epsilon))
\end{aligned}
$$

$$
g=\sigma(G x)
$$

Neural Arithmetic Units

Improving upon NALU, Authors: Andreas Madsen and Alexander Rosenberg Johansen

- NALU doesn't support negative values or large hidden input-size
- Improving $N A C_{+}$and $N A C$. based on a theoretical analysis
- Simplification of the weight matrix $(W=\tanh (\hat{W}) \cdot \sigma(\hat{M}))$
- Sparsity regulariser
- NAU (neural addition unit) and NMU (neural multiplication unit)

Neural Arithmetic Units

Expectation of the gradient

- Glorot \& Bengio, 2010: $E\left[z_{k_{l}}\right]=0$ is desired
- In NALU this leads to $E\left[\tanh \left(W_{h_{l-1}, h_{l}}\right)\right]=0$

Reminder: $\quad W_{h_{l-1}, h_{l}}=\tanh \left(\hat{W}_{h_{l-1}, h_{l}}\right) \cdot \sigma(\hat{M})$

- Causes the expectation of the gradient to be zero

$$
E\left[\frac{\delta \mathscr{L}}{\delta \hat{M}_{h_{l-1}, h_{l}}}\right]=E\left[\frac{\delta \mathscr{L}}{\delta W_{h_{l-1}, h_{l}}}\right] \cdot E\left[\tanh \left(\hat{W}_{h_{l-1}, h_{l}}\right)\right] \cdot E\left[\sigma^{\prime}\left(\hat{M}_{h_{l-1}, h_{l}}\right)\right]=0
$$

Neural Addition Unit

- Simplified Weight Matrix
- $W_{h_{l-1}, h_{l}}=\min \left(\max \left(W_{h_{l-1}, h_{j}}-1\right), 1\right) \quad$ clamping the elements to $[-1,1]$
- Sparsity regulariser
- $\mathscr{R}_{l, \text { sparse }}=\frac{1}{\left(H_{l} \cdot H_{l-1}\right)} \sum_{h_{l}=1}^{H_{l}} \sum_{l_{l-1}=1}^{H_{l-1}} \min \left(\left|W_{h_{l-1}, h_{l}}\right|, 1-\left|W_{h_{l-1}, h_{l}}\right|\right)$
- $\mathscr{L}=\hat{\mathscr{L}}+\lambda_{\text {sparse }} \mathscr{R}_{l, \text { sparse }}$
- NAU: $z_{h_{l}}=\sum_{h_{l-1}=1}^{H_{l-1}} W_{h_{l}} h_{l-1} z_{h_{l-1}}$

Challenges of Division

- $m=\exp W(\log (|x|+\epsilon))$
- Small x , the output explodes

NAC. with $\epsilon=10^{-7}$

$N A C$. with $\epsilon=0.1$
$N A C$. with $\epsilon=1$

Neural Multiplication Unit

- $W_{h_{l-1}, h_{l}}=\min \left(\max \left(W_{h_{l-1}, h_{p}}, 0\right), 1\right)$
- $\mathscr{R}_{l, \text { sparse }}=\frac{1}{\left(H_{l} \cdot H_{l-1}\right)} \sum_{h_{l}=1}^{H_{l}} \sum_{h_{l-1}=1}^{H_{l-1}} \min \left(\left|W_{h_{l-1}, h_{l}}\right|, 1-\left|W_{h_{l-1}, h_{l}}\right|\right)$
- NMU: $z_{h_{l}}=\prod_{h_{l-1}=1}^{H_{l-1}} W_{h_{i}, h_{l-1}} z_{h_{l-1}}+1-W_{h_{l}, h_{l-1}}$

Op	Model	Success			Solved at iteration step		

Neural Power Units

Authors: Niklas Heim, Tomas Pevny, Vaclav Smidl

- Expands Neural Arithmetic Logic Units to operate on full domain of real numbers
- Adds capability to learn any arbritrary power function (therefore also square root and division)
- Improve convergence by introducing a relevance gate
- Highly transparent model

NaiveNPU $m=\exp W(\log (|x|+\epsilon))$

Idea: use complex log and allow W to be complex as well

- $y=\exp \left(W \log _{\text {complex }}(x)\right)=\exp \left(\left(W_{r}+i W_{i}\right) \log _{\text {complex }}(x)\right)$
- Allowing W to be complex results in complex gradients which effectively doubles the number of parameters
- We only consider the real part of y

$$
\text { - } y=\exp \left(W_{r} \log (r)-\pi W_{i} k\right) \cdot \cos \left(W_{i} \log (r)+\pi W_{r} k\right)
$$

Definition NaiveNPU

The naive Neural Power Unit, with Matrices W_{r} and W_{i} representing real and imaginary part of the complex number, is defined as:

$$
\begin{aligned}
& y=\exp \left(W_{r} \log (r)-\pi W_{i} k\right) \cdot \cos \left(W_{i} \log (r)+\pi W_{r} k\right), \text { where } \\
& r=|x|+\epsilon, \quad k_{i}=\left\{\begin{array}{l}
0 \text { if } x_{i} \leq 0 \\
1 \text { if } x_{i}>0
\end{array}\right.
\end{aligned}
$$

with inputs x , machine epsilon ϵ and learn parameters W_{r} and W_{i}.

NaiveNPU diagram, with input x and output y. Vectors in green, trainables in orange, functions in blue

Relevance Gate

- NaiveNPU has difficulties converging on large scale tasks
- If an input x_{i} is close to zero (i.e irrelevant,

the whole row will be zero $->$ we lose
gradient information for all other inputs x_{i}

$$
r=\hat{g} \cdot(|x|+\epsilon)+(1-\hat{g}), \quad k_{i}=\left\{\begin{array}{l}
0 \text { if } x_{i} \leq 0 \\
\hat{g}_{i} \text { if } x_{i}>0
\end{array}, \quad \hat{g}_{i}=\min \left(\max \left(g_{i}, 0\right), 1\right)\right.
$$

Neural Status Registers
 Authors: Lukas Faber and Roger Wattenhofer

- The before mentioned architectures deal with extrapolation
- Quantitative Reasoning —> (if and while)
- Inspired by ALU (Arithmetic Logic Units)
- Computes difference of 2 inputs
- Difference is positive $->$ sign bit B_{+}is set
- Difference is zero $->$ zero bit B_{0} is set
- Combining these bits with logical operations (\& , /, !) we can perform comparisons such as ($>,<, \leq, \geq,=, \neq$)

High-Level NSR architecture

Continous Relaxation and Floating Point Comparison

$$
\begin{aligned}
& \text { 1. } \frac{\delta y}{\delta b}=y(1-y) \\
& \begin{array}{lr}
\text { 2. The Values } B_{+} \text {and } B_{0} \text { can take on the value } 0 \text {. Results in } \\
\text { zero gradients for Equation (2) \& (3) }
\end{array} \\
& \begin{array}{lr}
\delta W^{+} & =y(1-y) B_{+} \\
\text {3. } \frac{\delta y}{\delta W^{0}}=y(1-y) B_{0} & \text { Adjust them: } \\
\text { 4. } \frac{\delta y}{\delta O_{1}}=y(1-y)\left(B_{+}^{\prime} W^{+}+B_{0}^{\prime} W^{0}\right) & \text { - Difference } x=0.5 \text { then } \hat{B}_{0}=0.57 \text { which is incorrect } \\
\text { 5. } \frac{\delta y}{} \frac{\text { and } \hat{B}_{0}=1-2(\tanh (x))^{2}}{\delta O_{2}}=-y(1-y)\left(B_{+}^{\prime} W^{+}+B_{0}^{\prime} W^{0}\right) & \hat{B}_{+\lambda}=\tanh (\lambda x) \text { and } \hat{B}_{0 \lambda}=1-2(\tanh (\lambda x))^{2}
\end{array}
\end{aligned}
$$

Learning comparisons on data from $[-10 ; 9]$

Task	Model	Train	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}	10^{9}	10^{10}	10^{11}	10^{12}	10^{13}
	$>$	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	0.96	0.71	0.49	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48
	$<$	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	0.93	0.7	0.49	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48
MLP	\geq	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	0.94	0.71	0.49	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48
	\leq	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$	0.94	0.68	0.49	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48
	$=$	0.95	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	\neq	0.95	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	$>$	$\mathbf{1 . 0}$												
	$<$	$\mathbf{1 . 0}$												
NSR	\geq	$\mathbf{1 . 0}$												
(ours)	\leq	$\mathbf{1 . 0}$												
	$=$	$\mathbf{0 . 9 9}$	$\mathbf{0 . 9 3}$											
	\neq	$\mathbf{0 . 9 9}$	$\mathbf{0 . 9 2}$											

LNN: Logical Neural Networks

Authors: Ryan Riegel, Alexander Gray, et al.

- This is not your standard Neural Network
- LNN are able to do neural network-style learning and classical Al-style reasoning
- Neurons model a
 weighted real-valued logic

LNN: Logical Neural Network

Main Ideas

1. Logical Constraints
2. Bounds on Truth Values
3. Omnidirectional Inference

Main Idea \#1: Logical Constraints

- Each neuron should behave like logical gate
- Constrain neural parameters to achieve this behaviour
- Conjunction and negation (1-x) we can implement all other logic
- The choice of f affects the logic
- Converges to classical inference behaviour

Most common real-valued logics

Logic	$\begin{gathered} \text { T-Norm (AND) } \\ \quad a \otimes b \end{gathered}$	$\begin{aligned} & \text { T-conorm (OR) } \\ & \quad a \oplus b \end{aligned}$	Residuum (IMPLIES) $a \rightarrow b$
Gödel	$\min \{a, b\}$	$\max \{a, b\}$	b if $a<b$ else 1
Product	$a \cdot b$	$a+b-a \cdot b$	$\frac{b}{a} \text { if } a<b \text { else } 1$
Łukasiewicz	$\max \{0, a+b-1\}$	$\min \{1, a+b\}$	$\min \{1,1-a+b\}$

Main Idea \#1: Logical Constraints

- Each neuron should behave like logical gate
- Constrain neural parameters to achieve this behaviour
- Conjunction and negation (1-x) we can implement all other logic
- The choice of f affects the logic
- Converges to classical inference behaviour

Main Idea \#2

Bounds on Truth Values

- Represent truth value with a lower and upper bound
- Allows open-world assumption
- Other neuro-symbolic methods assume that the truth value can be known
- Unknown $(L=0, U=1)$, Contradiction $(L>U)$, Ambiguity $(L=U=0.5)$

Main Idea \#3
 Omnidirectional Inference

How logical neurons in a Logical Neural Network (LNN)
differ from typical neurons found in deep neural networks (DNN)

- Use f^{-1} to allow inference in any directior
- Upward and downward algorithm = "feed-forward"
- Upward ALG does normal evaluation (AND, OR, etc)

Example: $x \wedge y=z$

$$
\text { Upward: } x=y=1 \text {, then } z=1
$$

Downward: $z=0$ and $y=1$, then $x=0$

LNN: Logical Neural Network
 Learning

$$
\begin{array}{rlrl}
\min _{B, W} & E(B, W)+\sum_{k \in N} \max \left\{0, L_{B, W, k}-U_{B, W, k}\right\} \\
\text { s.t. } & \forall k \in N, i \in I_{k}, & \alpha \cdot w_{i k}-\beta_{k}+1 \geq \alpha, & w_{i k} \geq 0 \\
& \forall k \in N, & \sum_{i \in I_{k}}(1-\alpha) \cdot w_{i k}-\beta_{k}+1 \leq 1-\alpha, & \beta_{k} \geq 0 \tag{7}
\end{array}
$$

- Incorporate Contradiction Term to the Loss Function
- Standard Backpropagation updates weights (importance of input)

LNN are transparent,

 interpretable and decomposable!

References

- Trask et al. 2018. "Neural Arithmetic Logic Units". arXiv:1808.00508.
- Madsen and Johansen. 2020. "Neural Arithmetic Units". arXiv:2001.05016.
- Heim, Pevny and Smidl. 2020. "Neural Power Units". arXiv:2006.01681.
- Faber and Wattenhofer. 2020. "Neural Status Registers". arXiv:2004.07085.
- Riegel et al. 2020. "Logical Neural Networks". arXiv:2006.13155

