Seminar in Deep Neural Networks ALG: Math

Sidharth Ramesh 18.05.2021

Mentor: Ard Kastrati

Overview

- Introduction
- NALU: Neural Arithmetic Logic Units
- Neural Arithmetic Units
- Neural Power Units
- Neural Status Registers
- LNN
- Discussion

NN fail at Extrapolation

- Scalar identity function
- Autoencoder (same size)

NALU: Neural Arithmetic Logic Units NAC: The Neural Accumulator, Authers: Andrew Trask et al.

- Introduce inductive bias for linear extrapolation
- Idea:
 - a = Wx (linear layer)

- Transformation matrix W consists of values $\{-1,0,1\}$
- Introduce a form which is easy to learn with gradient descent

NAC

a = Wx

$W = tanh(\hat{W}) \cdot \sigma(\hat{M})$

Elements in range [-1,1] with bias towards -1,0,1

Idea: Gating between add/sub cell and mul/div cell

$$y = g \cdot a + (1 - g) \cdot m$$

 $m = \exp W(\log(|x| + \epsilon))$

 $g = \sigma(Gx)$

			Static Ta	ask (test)	Recurrent Task (test)				
		Relu6	None	NAC	NALU	LSTM	ReLU	NAC	NAL	
Interpolation	a+b	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	a - b	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	$a \times b$	3.2	20.9	21.4	0.0	0.0	0.0	1.5	0.0	
	a/b	4.2	35.0	37.1	5.3	0.0	0.0	1.2	0.0	
	a^2	0.7	4.3	22.4	0.0	0.0	0.0	2.3	0.0	
	\sqrt{a}	0.5	2.2	3.6	0.0	0.0	0.0	2.1	0.0	
Extrapolation	a+b	42.6	0.0	0.0	0.0	96.1	85.5	0.0	0.0	
	a - b	29.0	0.0	0.0	0.0	97.0	70.9	0.0	0.0	
	$a \times b$	10.1	29.5	33.3	0.0	98.2	97.9	88.4	0.0	
	a/b	37.2	52.3	61.3	0.7	95.6	863.5	>999	>999	
	a^2	47.0	25.1	53.3	0.0	98.0	98.0	123.7	0.0	
	\sqrt{a}	10.3	20.0	16.4	0.0	95.8	34.1	>999	0.0	

Neural Arithmetic Units Improving upon NALU, Authors: Andreas Madsen and Alexander Rosenberg Johansen

- NALU doesn't support negative values or large hidden input-size
- Improving NAC_{+} and NAC_{-} based on a theoretical analysis
 - Simplification of the weight matrix $(W = tanh(\hat{W}) \cdot \sigma(\hat{M}))$
 - Sparsity regulariser
 - NAU (neural addition unit) and NMU (neural multiplication unit)

Neural Arithmetic Units **Expectation of the gradient**

• Glorot & Bengio, 2010: $E[z_{h_i}] = 0$ is desired

• In NALU this leads to $E[tanh(W_{h_{l-1},h_l})] = 0$ Reminder: $W_{h_{l-1},h_l} = tanh(\hat{W}_{h_{l-1},h_l}) \cdot \sigma(\hat{M})$

Causes the expectation of the gradient to be zero

$$E\left[\frac{\delta \mathscr{L}}{\delta \hat{M}_{h_{l-1}, h_l}}\right] = E\left[\frac{\delta \mathscr{L}}{\delta W_{h_{l-1}, h_l}}\right] \cdot E\left[\tan \theta\right]$$

- $nh(\hat{W}_{h_{l-1},h_{l}})] \cdot E[\sigma'(\hat{M}_{h_{l-1},h_{l}})] = 0$

Neural Addition Unit

Simplified Weight Matrix

• $W_{h_{l-1},h_l} = min(max(W_{h_{l-1},h_l},-1),1)$

• Sparsity regulariser

()

•
$$\mathscr{R}_{l,sparse} = \frac{1}{(H_l \cdot H_{l-1})} \sum_{h_l=1}^{H_l} \sum_{h_{l-1}=1}^{H_{l-1}} m$$

• $\mathscr{L} = \hat{\mathscr{L}} + \lambda_{sparse} \mathscr{R}_{l,sparse}$
NAU: $z_{h_l} = \sum_{h_{l-1}=1}^{H_{l-1}} W_{h_l,h_{l-1}} z_{h_{l-1}}$

clamping the elements to [-1,1]

$pin(|W_{h_{l-1},h_l}|, 1 - |W_{h_{l-1},h_l}|)$

Challenges of Division

- $m = \exp W(\log(|x| + \epsilon))$
- Small x, the output explodes

NAC. with $\epsilon = 10^{-7}$

NAC. with $\epsilon = 0.1$

NAC. with $\epsilon = 1$

Neural Multiplication Unit

• $W_{h_{l-1},h_l} = min(max(W_{h_{l-1},h_l},0),1)$

• NMU: $z_{h_l} = \int W_{h_l,h_{l-1}} z_{h_{l-1}} + 1 - W_{h_l,h_{l-1}}$ $h_{l-1} = 1$

Op	Model	Success	Solved	at iteration step	Sparsity error		
		Rate	Median	Mean	Mean		
	NAC.	$31\% \ ^{+10\%}_{-8\%}$	$2.8\cdot 10^6$	$3.0\cdot 10^6 \ {}^{+2.9\cdot 10^5}_{-2.4\cdot 10^5}$	$5.8 \cdot 10^{-4} {}^{+4.8 \cdot 10^{-4}}_{-2.6 \cdot 10^{-4}}$		
×	NALU	$0\% \ ^{+4\%}_{-0\%}$					
	NMU	$98\% {+1\% \atop -5\%}$	$1.4\cdot 10^6$	${\color{red}{1.5}} \cdot {\color{red}{10}}{\color{red}{6}} {\color{red}{+5.0 \cdot 10^4}}_{-6.6 \cdot 10^4}$	$ 4.2 \cdot \mathbf{10^{-7}}_{-2.9 \cdot 10^{-8}}^{+2.9 \cdot 10^{-8}} $		
	NAC_+	${f 100\%}{}^{+0\%}_{-4\%}$	$2.5\cdot 10^5$	$4.9\cdot 10^5 \ {}^{+5.2\cdot 10^4}_{-4.5\cdot 10^4}$	$2.3 \cdot 10^{-1} {}^{+6.5 \cdot 10^{-3}}_{-6.5 \cdot 10^{-3}}$		
	Linear	${f 100\%}\ {}^{+0\%}_{-4\%}$	$6.1\cdot 10^4$	${\bf 6.3\cdot 10^4}\begin{array}{l}{}^{+2.5\cdot 10^3}_{-3.3\cdot 10^3}$	$2.5 \cdot 10^{-1} + 3.6 \cdot 10^{-4} - 3.6 \cdot 10^{-4}$		
+	NALU	$14\% + 8\% \\ -5\%$	$1.5\cdot 10^6$	$1.6 \cdot 10^{6} {}^{+3.8 \cdot 10^{5}}_{-3.3 \cdot 10^{5}}$	$1.7 \cdot 10^{-1} {}^{+2.7 \cdot 10^{-2}}_{-2.5 \cdot 10^{-2}}$		
	NAU	${\color{red}{100\%}}^{+0\%}_{-4\%}$	$1.8\cdot 10^4$	$3.9\cdot 10^5 \ {}^{+4.5\cdot 10^4}_{-3.7\cdot 10^4}$	${f 3.2\cdot 10^{-5}}_{-1.3\cdot 10^{-5}}$		
	NAC_+	${f 100\%}\ {}^{+0\%}_{-4\%}$	$9.0\cdot 10^3$	$3.7\cdot 10^5 \ {}^{+3.8\cdot 10^4}_{-3.8\cdot 10^4}$	$2.3 \cdot 10^{-1} {}^{+5.4 \cdot 10^{-3}}_{-5.4 \cdot 10^{-3}}$		
	Linear	$7\% \ ^{+7\%}_{-4\%}$	$3.3\cdot 10^6$	$1.4 \cdot 10^6 {}^{+7.0 \cdot 10^5}_{-6.1 \cdot 10^5}$	$1.8 \cdot 10^{-1} {}^{+7.2 \cdot 10^{-2}}_{-5.8 \cdot 10^{-2}}$		
	NALU	$14\% {+8\% \atop -5\%}$	$1.9\cdot 10^6$	$1.9\cdot 10^6 \ {}^{+4.4\cdot 10^5}_{-4.5\cdot 10^5}$	$2.1 \cdot 10^{-1} {}^{+2.2 \cdot 10^{-2}}_{-2.2 \cdot 10^{-2}}$		
	NAU	${\color{red}{100\%}}^{+0\%}_{-4\%}$	$5.0\cdot 10^3$	${\color{red}{\bf 1.6\cdot 10^5}}_{-1.6\cdot 10^4}$	$ 6.6 \cdot \mathbf{10^{-2}}_{-1.9 \cdot 10^{-2}}^{+2.5 \cdot 10^{-2}} $		

Neural Power Units Authors: Niklas Heim, Tomas Pevny, Vaclav Smidl

- numbers
- root and division)
- Improve convergence by introducing a relevance gate
- Highly transparent model

Expands Neural Arithmetic Logic Units to operate on full domain of real

Adds capability to learn any arbritrary power function (therefore also square

$m = \exp W(\log(|x| + \epsilon))$ NaiveNPU Idea: use complex log and allow W to be complex as well

- $y = \exp(W \log_{complex}(x)) = \exp((W_r + iW_i) \log_{complex}(x))$
- Allowing W to be complex results in complex gradients which effectively doubles the number of parameters
- We only consider the real part of y

•
$$y = \exp(W_r \log(r) - \pi W_i k) \cdot q$$

 $\cos(W_i \log(r) + \pi W_r k)$

Definition NaiveNPU

imaginary part of the complex number, is defined as:

$$y = exp(W_r \log(r) - \pi W_i k) \cdot c$$
$$r = |x| + \epsilon, \qquad k_i = \begin{cases} 0\\1 \end{cases}$$

with inputs x, machine epsilon ϵ and learn parameters W_r and W_i .

- The naive Neural Power Unit, with Matrices W_r and W_i representing real and
 - $\cos(W_i \log(r) + \pi W_r k)$, where
 - $\begin{cases} 0 \ if x_i \le 0 \\ 1 \ if x_i > 0 \end{cases}$

NaiveNPU diagram, with input x and output y. Vectors in green, trainables in orange, functions in blue

Relevance Gate

NaiveNPU has difficulties converging on

large scale tasks

• If an input x_i is close to zero (i.e irrelevant, the whole row will be zero -> we lose

gradient information for all other inputs
$$x_i$$

$$r = \hat{g} \cdot (|x| + \epsilon) + (1 - \hat{g}), \qquad k_i =$$

 $\begin{cases} 0 \ if x_i \leq 0 \\ \hat{g}_i \ if x_i > 0 \end{cases}$

$$f(x, y) = (x + y, xy, x/y, \sqrt{x})^T =: t$$

Neural Status Registers Authors: Lukas Faber and Roger Wattenhofer

- The before mentioned architectures deal with extrapolation
- Quantitative Reasoning -> (if and while)
- Inspired by ALU (Arithmetic Logic Units)
 - Computes difference of 2 inputs
 - Difference is positive -> sign bit B_{\perp} is set
 - Difference is zero —> zero bit B_0 is set
 - such as $(>, <, \leq, \geq, =, \neq)$

Combining these bits with logical operations (&, /, !) we can perform comparisons

High-Level NSR architecture

Continuous Relaxation and Floating Point Comparison

1.
$$\frac{\delta y}{\delta b} = y(1 - y)$$
 • The
2.
$$\frac{\delta y}{\delta W^{+}} = y(1 - y)B_{+}$$

3.
$$\frac{\delta y}{\delta W^{0}} = y(1 - y)B_{0}$$

4.
$$\frac{\delta y}{\delta O_{1}} = y(1 - y)(B'_{+}W^{+} + B'_{0}W^{0})$$

5.
$$\frac{\delta y}{\delta O_{2}} = -y(1 - y)(B'_{+}W^{+} + B'_{0}W^{0})$$

- Values B_+ and B_0 can take on the value 0. Results in
- gradients for Equation (2) & (3)
- Adjust them:

$$\hat{B}_{+} = tanh(x)$$
 and $\hat{B}_{0} = 1 - 2(tanh(x))^{2}$

erence x = 0.5 then $\hat{B}_0 = 0.57$ which is incorrect

We fix this by introducing a hyper parameter λ

$$\hat{B}_{+\lambda} = tanh(\lambda x)$$
 and $\hat{B}_{0\lambda} = 1 - 2(tanh(\lambda x))$

Learning comparisons on data from [-10;9]

Task	Model	Train	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}	10^{9}	10^{10}	10^{11}	10^{12}	10^{13}
	>	1.0	1.0	0.96	0.71	0.49	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48
	<	1.0	1.0	0.93	0.7	0.49	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48
	\geq	1.0	1.0	0.94	0.71	0.49	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48
WILF	\leq	1.0	1.0	0.94	0.68	0.49	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48
	—	0.95	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	\neq	0.95	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	>	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	<	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
NSR	\geq	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
(ours)	\leq	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	—	0.99	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
	\neq	0.99	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92

LNN: Logical Neural Networks Authors: Ryan Riegel, Alexander Gray, et al.

- This is not your standard Neural Network
- LNN are able to do neural network-style *learning* and classical Al-style *reasoning*
- Neurons model a weighted real-valued logic

LNN: Logical Neural Network Main Ideas

- 1. Logical Constraints
- 2. Bounds on Truth Values
- 3. Omnidirectional Inference

• The choice of *f* affects the logic

Converges to classical inference behaviour

 $x_1 \wedge x_2$ $\leq 1 - \alpha$ $\leq 1-\alpha$ $\geq \alpha$

Most common real-valued logics

	T-conorm (OR) $a \oplus b$	Residuum (IMPLIES) $a \rightarrow b$
	$\max\{a, b\}$	<i>b</i> if <i>a</i> < <i>b</i> else 1
	$a + b - a \cdot b$	$\frac{b}{a} \text{ if } a < b \text{ else } 1$
- 1 }	min{1, <i>a</i> + <i>b</i> }	$\min\{1, 1 - a + b\}$

- The choice of *f* affects the logic
- Converges to classical inference behaviour

 $x_1 \wedge x_2$ $\leq 1 - \alpha$ $\leq 1-\alpha$ $\geq \alpha$

Main dea #2 **Bounds on Truth Values**

- Represent truth value with a lower and upper bound
- Allows open-world assumption
- 0

Other neuro-symbolic methods assume that the truth value can be known

• Unknown (L = 0, U = 1), Contradiction (L > U), Ambiguity (L = U = 0.5)

Main Idea #3 Omnidirectional Inference

- Use f^{-1} to allow inference in any direction
- Upward and downward algorithm = "feed-forward"
 - Upward ALG does normal evaluation (AND, OR, etc)
 - Downward ALG enables inference rules such as modus ponens (x, x->y |- y)

How logical neurons in a Logical Neural Network (LNN) differ from typical neurons found in deep neural networks (DNN)

Example: $x \land y = z$ Upward : x = y = 1, then z = 1Downward: z = 0 and y = 1, then x = 0

LNN: Logical Neural Network Learning

 $\min_{B,W} \quad E(B,W) + \sum_{k \in N} \max\{0, L_B\}$ s.t. $\forall k \in N, i \in I_k$, $\forall k \in N,$ $\sum_{i \in I_k} (1)$

- Incorporate Contradiction Term to the Loss Function
- Standard Backpropagation updates weights (importance of input)

$$\begin{array}{l} x_{i} + W_{i} - W_{i} + W_{i} + 1 \geq \alpha, \\ - \alpha + w_{ik} - \beta_{k} + 1 \geq \alpha, \\ - \alpha + w_{ik} - \beta_{k} + 1 \leq 1 - \alpha, \end{array} \qquad \begin{array}{l} w_{ik} \geq 0 \\ \beta_{k} \geq 0 \end{array} \qquad (6)$$

LNN are transparent, interpretable and decomposable!

References

- Trask et al. 2018. "Neural Arithmetic Logic Units". arXiv:1808.00508.
- Heim, Pevny and Smidl. 2020. "Neural Power Units". <u>arXiv:2006.01681</u>.
- Riegel et al. 2020. "Logical Neural Networks". <u>arXiv:2006.13155</u> 0

Madsen and Johansen. 2020. "Neural Arithmetic Units". arXiv:2001.05016.

Faber and Wattenhofer. 2020. "Neural Status Registers". <u>arXiv:2004.07085</u>.