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Exact Combinatorial Optimization with Graph Convolutional Neural Networks
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Branch & Bound Algorithm

Mixed-Integer Linear Program (MILP) 

NP-Hard Problem

Linear Program Relaxation

Branch & Bound 
Algorithm

Convex Problem → lower bound to the original MILP



Branch & Bound Algorithm

LP
• 𝑥∗ ∈ ℤ𝑝 × ℝ𝑛 −𝑝 → solution to the original problem (lucky!)

• 𝑥∗ ∉ ℤ𝑝 × ℝ𝑛 −𝑝 → decompose into two sub-problems

𝑥𝑖 ≤ 𝑥𝑖
∗ 𝑥𝑖 ≥ 𝑥𝑖

∗

• Upper Bound: minimum of leaf 
nodes with integer solution

1. Pick a fractional variable to 
branch on

• Lower Bound: minimum of leaf 
nodes

2. Continue branching to the 
fractional variables 

3. The process stops:

• LB = UB 

• LB – UB = ε 

• The feasible regions do 
not decompose anymore

• Node Selection

• Branching selection

Obj = 5
x1,x2 
fractional

Obj = 2

Obj = 4
x1,x2 
fractional

Obj = 7
x1,x2 
integral

Obj = 5.5
x1,x2 
fractional

Obj = 8
x1,x2 
integral

Obj = 6.5
x1,x2 
fractional



Branch & Bound Algorithm

Fundamental Questions: Which variable to choose for branching?

• Proposed Method: The Neural Network will say• SOTA: Strong Branching

𝑥1 ≤ 𝑥1
∗ 𝑥1 ≥ 𝑥1

∗

𝑥2 ≤ 𝑥2
∗ 𝑥2 ≥ 𝑥2

∗

“MILP”
Classification 
Problem Which variable 

to select
eg. 𝑥1 or 𝑥2

1. Collect expert state-action pairs 𝐷 = 𝑠𝑖 , 𝑎𝑖
∗

𝑖=1
𝑁

2. Learn the policy by minimizing: 
Score1 Score2



Proposed Method

1. State Encoding → bipartite graphs with attributes

Constraints

Variables

Edges

How to represent the states?

Original problem, bounds

Relaxation problem, solution to 
LPs, added constraints Growing structure Graph 

Mixed-Integer Linear Program (MILP) 

𝒔𝒕 = (𝑮, 𝑪, 𝑬, 𝑽)



2.  Policy 𝝅𝜽(𝒂|𝒔𝒕)→ Graph Convolutional Neural Network (GCNN)

Proposed Method

Constraints

Variables

Edges

How can we model the Graph to the Neural Netwok?

𝑝(𝑎1|𝑠𝑡)

𝑝(𝑎2|𝑠𝑡)

𝑝(𝑎3|𝑠𝑡)

3.  Treat the problem as a classification one

𝝅𝜽(𝒂|𝒔𝒕)

Why GCNN?

• They have permutation invariance

• Combine the node with each neighbors

• From variable to constraints

• From constraints to variables



Evaluation Results

• Benchmarks : 4 Np Hard Problems

• Solver :  SCIP 6.0.1 open source solver 

• Baselines : Hybrid Branching [RBP], Full Strong Branching Expert [FSB], SVRRANK, LMART, and the regression 
approach of Alvarez [TREES] 

Comparing accuracy of ML models



Evaluation Results

Performance regarding Solution:

Train on small 
(Easy) instances and 
evaluate 
generalization on 
medium (Medium) 
and large (Hard) 

Results

+ better in terms of solving time

+ generalizes to fairly larger instances 

- performance decreases as the
model is evaluated on larger problems

- outside of the training distribution ??

- need data for training



How Combinatorial Optimization can help in Deep Learning?

• Problem:  differentiability of the combinatorial components

• SOTA approaches : Solve a relaxation problem Sub- optimal:
• Runtime
• Performance
• Optimality 

Quarantees

e.g. Predict the quickest routes in Google Maps based on 
map input as an image

Construct Hybrid Architectures

Deep Learning  



Differentiation of Blackbox Combinatorial Solvers

Gradients of Blackbox Solver

Solver
Continuous Input w Discrete Output y

such that

• Cost Function:

• ω→ edge weights of a graph



w → representationShortest Path Problem from 
raw Images

output: predicted shortest path for 
the respective map

Differentiation of Blackbox Combinatorial Solvers

Piecewise function

Loss: Hamming distance 
between the true and the 

predicted SPL



Differentiation of Blackbox Combinatorial Solvers

Backpropagation

x → NN → ω→ Solver → y → L(y) 

Forward propagation

dL / dx ← NN ← dL/dω ← Solver ← dL/dy ← L 

Problem!!  dL/dω Useless in Optimization



General Approaches → Relaxation → Loose a lot of information  

Method of Interpolation

Solution Interpolation



Method of Interpolation

𝑑𝐿

𝑑𝜔
=

𝑑𝐿

𝑑𝑦

𝑑𝑦

𝑑𝜔
We want a trick!

Linearization

Interpolation

Gradient



Experiments



The Case for Learned Index Structures

Can indexing data structures be replaced with machine learning models?

Why ML?

• Powerful GPU → Parallelism

• Benefit from data distributions

• Speed and Memory usage

Fundamental Algorithms & Data Structure

• Read-only in-memory data



B-Tree Index

Basic Idea:  “Predict” the position 

Model
Key Pos = 𝑓(𝑘𝑒𝑦)1.

2. Do Binary search inside: 
[Pos –min_error, Pos +max_error] 

3.  How to find this error?

4.  Run all the keys through the 
model and take the maximum 
(over, under)miss-predictions 



B-Tree Index

What eventually does the model?   “Modeling” the CDF of the key distribution 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑃 𝑋 ≤ 𝑘𝑒𝑦 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟𝑘𝑒𝑦𝑠

• So first need to learn the data distribution

• Benefit because CDFs  in ML are well studied over decades 

Model

Key

Pos = 𝑓(𝑘𝑒𝑦)

First Attempt

• 200M web-server log records by timestamp sorted
• 2 layer NN with 32 neurons/layer + ReLU

Goal : given the timestamp (index) → predict the position

+ Measure the look-up time



B-Tree Index

Result?

250 ns 80.000 ns

But why? 1. Tensorflow→ designed for large models

2. B-Trees  are good in overfitting

3. B-Trees → cache and operation efficient

4. Predict the region not the exact position 

Need to apply a search method (e.g. binary search) 



1. Learning Index Framework (LIF)

• Index synthesis system

Train the model 
with Tensorflow

Export the optimized 
parameter values

Recreate the model 
architecture using C++

Make Predictions

2. Recursive Model Index

𝑺𝒕𝒊𝒍𝒍 𝑷𝒓𝒐𝒃𝒍𝒆𝒎𝒔!

𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏



3. Hybrid Indexes

Build Mixtures of Models

Results

B-Tree B-Tree

Worse case Scenario : B-Tree!



Hash Maps

Goal: Reduce Conflicts Again Learn Distributions!

ℎ 𝐾 = 𝑃 𝑋 ≤ 𝐾 ∗ 𝑀



Hash Maps - Results



Bloom Filter

Is this Key 
existed? 

Yes No

False 
Positives

False 
Negatives = 0

• For the No we want to be sure!

ML Model??

Bloom Filter for all 
misclassified records



Bloom Filter - Results

36% Memory Reduction!



The Case for Learned Index Structures – Future Work
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