
Combining
Algorithms and NNs
SEMINAR IN DEEP IN DEEP NEURAL NETWORKS

Kadoglou Maria Eleni, 18.04.21

Exact Combinatorial Optimization with Graph Convolutional Neural Networks

Goal
Solve

Combinatorial
Optimization

Solvers
Exact

solution

Machine
Learning

?

Same
Family

Problems

ML DecisionCollected Data

Solver SolutionProblem

Branch & Bound Algorithm

Mixed-Integer Linear Program (MILP)

NP-Hard Problem

Linear Program Relaxation

Branch & Bound
Algorithm

Convex Problem → lower bound to the original MILP

Branch & Bound Algorithm

LP
• 𝑥∗ ∈ ℤ𝑝 × ℝ𝑛 −𝑝 → solution to the original problem (lucky!)

• 𝑥∗ ∉ ℤ𝑝 × ℝ𝑛 −𝑝 → decompose into two sub-problems

𝑥𝑖 ≤ 𝑥𝑖
∗ 𝑥𝑖 ≥ 𝑥𝑖

∗

• Upper Bound: minimum of leaf
nodes with integer solution

1. Pick a fractional variable to
branch on

• Lower Bound: minimum of leaf
nodes

2. Continue branching to the
fractional variables

3. The process stops:

• LB = UB

• LB – UB = ε

• The feasible regions do
not decompose anymore

• Node Selection

• Branching selection

Obj = 5
x1,x2
fractional

Obj = 2

Obj = 4
x1,x2
fractional

Obj = 7
x1,x2
integral

Obj = 5.5
x1,x2
fractional

Obj = 8
x1,x2
integral

Obj = 6.5
x1,x2
fractional

Branch & Bound Algorithm

Fundamental Questions: Which variable to choose for branching?

• Proposed Method: The Neural Network will say• SOTA: Strong Branching

𝑥1 ≤ 𝑥1
∗ 𝑥1 ≥ 𝑥1

∗

𝑥2 ≤ 𝑥2
∗ 𝑥2 ≥ 𝑥2

∗

“MILP”
Classification
Problem Which variable

to select
eg. 𝑥1 or 𝑥2

1. Collect expert state-action pairs 𝐷 = 𝑠𝑖 , 𝑎𝑖
∗

𝑖=1
𝑁

2. Learn the policy by minimizing:
Score1 Score2

Proposed Method

1. State Encoding → bipartite graphs with attributes

Constraints

Variables

Edges

How to represent the states?

Original problem, bounds

Relaxation problem, solution to
LPs, added constraints Growing structure Graph

Mixed-Integer Linear Program (MILP)

𝒔𝒕 = (𝑮, 𝑪, 𝑬, 𝑽)

2. Policy 𝝅𝜽(𝒂|𝒔𝒕)→ Graph Convolutional Neural Network (GCNN)

Proposed Method

Constraints

Variables

Edges

How can we model the Graph to the Neural Netwok?

𝑝(𝑎1|𝑠𝑡)

𝑝(𝑎2|𝑠𝑡)

𝑝(𝑎3|𝑠𝑡)

3. Treat the problem as a classification one

𝝅𝜽(𝒂|𝒔𝒕)

Why GCNN?

• They have permutation invariance

• Combine the node with each neighbors

• From variable to constraints

• From constraints to variables

Evaluation Results

• Benchmarks : 4 Np Hard Problems

• Solver : SCIP 6.0.1 open source solver

• Baselines : Hybrid Branching [RBP], Full Strong Branching Expert [FSB], SVRRANK, LMART, and the regression
approach of Alvarez [TREES]

Comparing accuracy of ML models

Evaluation Results

Performance regarding Solution:

Train on small
(Easy) instances and
evaluate
generalization on
medium (Medium)
and large (Hard)

Results

+ better in terms of solving time

+ generalizes to fairly larger instances

- performance decreases as the
model is evaluated on larger problems

- outside of the training distribution ??

- need data for training

How Combinatorial Optimization can help in Deep Learning?

• Problem: differentiability of the combinatorial components

• SOTA approaches : Solve a relaxation problem Sub- optimal:
• Runtime
• Performance
• Optimality

Quarantees

e.g. Predict the quickest routes in Google Maps based on
map input as an image

Construct Hybrid Architectures

Deep Learning

Differentiation of Blackbox Combinatorial Solvers

Gradients of Blackbox Solver

Solver
Continuous Input w Discrete Output y

such that

• Cost Function:

• ω→ edge weights of a graph

w → representationShortest Path Problem from
raw Images

output: predicted shortest path for
the respective map

Differentiation of Blackbox Combinatorial Solvers

Piecewise function

Loss: Hamming distance
between the true and the

predicted SPL

Differentiation of Blackbox Combinatorial Solvers

Backpropagation

x → NN → ω→ Solver → y → L(y)

Forward propagation

dL / dx ← NN ← dL/dω ← Solver ← dL/dy ← L

Problem!! dL/dω Useless in Optimization

General Approaches → Relaxation → Loose a lot of information

Method of Interpolation

Solution Interpolation

Method of Interpolation

𝑑𝐿

𝑑𝜔
=

𝑑𝐿

𝑑𝑦

𝑑𝑦

𝑑𝜔
We want a trick!

Linearization

Interpolation

Gradient

Experiments

The Case for Learned Index Structures

Can indexing data structures be replaced with machine learning models?

Why ML?

• Powerful GPU → Parallelism

• Benefit from data distributions

• Speed and Memory usage

Fundamental Algorithms & Data Structure

• Read-only in-memory data

B-Tree Index

Basic Idea: “Predict” the position

Model
Key Pos = 𝑓(𝑘𝑒𝑦)1.

2. Do Binary search inside:
[Pos –min_error, Pos +max_error]

3. How to find this error?

4. Run all the keys through the
model and take the maximum
(over, under)miss-predictions

B-Tree Index

What eventually does the model? “Modeling” the CDF of the key distribution

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑃 𝑋 ≤ 𝑘𝑒𝑦 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟𝑘𝑒𝑦𝑠

• So first need to learn the data distribution

• Benefit because CDFs in ML are well studied over decades

Model

Key

Pos = 𝑓(𝑘𝑒𝑦)

First Attempt

• 200M web-server log records by timestamp sorted
• 2 layer NN with 32 neurons/layer + ReLU

Goal : given the timestamp (index) → predict the position

+ Measure the look-up time

B-Tree Index

Result?

250 ns 80.000 ns

But why? 1. Tensorflow→ designed for large models

2. B-Trees are good in overfitting

3. B-Trees → cache and operation efficient

4. Predict the region not the exact position

Need to apply a search method (e.g. binary search)

1. Learning Index Framework (LIF)

• Index synthesis system

Train the model
with Tensorflow

Export the optimized
parameter values

Recreate the model
architecture using C++

Make Predictions

2. Recursive Model Index

𝑺𝒕𝒊𝒍𝒍 𝑷𝒓𝒐𝒃𝒍𝒆𝒎𝒔!

𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏

3. Hybrid Indexes

Build Mixtures of Models

Results

B-Tree B-Tree

Worse case Scenario : B-Tree!

Hash Maps

Goal: Reduce Conflicts Again Learn Distributions!

ℎ 𝐾 = 𝑃 𝑋 ≤ 𝐾 ∗ 𝑀

Hash Maps - Results

Bloom Filter

Is this Key
existed?

Yes No

False
Positives

False
Negatives = 0

• For the No we want to be sure!

ML Model??

Bloom Filter for all
misclassified records

Bloom Filter - Results

36% Memory Reduction!

The Case for Learned Index Structures – Future Work

References

• Exact Combinatorial Optimization with Graph Convolutional Neural Networks,
https://arxiv.org/abs/1906.01629

• Black Box Combinatorial Solver, https://arxiv.org/abs/1912.02175

• The Case for Learned Index Structures, https://arxiv.org/pdf/1712.01208.pdf

• https://medium.com/syncedreview/googles-tpu-chip-goes-public-in-challenge-to-
nvidia-s-gpu-78ced56776b5

• https://towardsdatascience.com/graph-convolutional-networks-deep-99d7fee5706f

https://arxiv.org/abs/1906.01629
https://arxiv.org/abs/1912.02175
https://arxiv.org/pdf/1712.01208.pdf
https://medium.com/syncedreview/googles-tpu-chip-goes-public-in-challenge-to-nvidia-s-gpu-78ced56776b5
https://towardsdatascience.com/graph-convolutional-networks-deep-99d7fee5706f

