Combining
 Algorithms and NNs

SEMINAR IN DEEP IN DEEP NEURAL NETWORKS
Kadoglou Maria Eleni, 18.04.21

Exact Combinatorial Optimization with Graph Convolutional Neural Networks

Branch E Bound Algorithm

Mixed-Integer Linear Program (MILP)

$$
\begin{aligned}
\underset{\mathbf{x}}{\arg \min } & \mathbf{c}^{\top} \mathbf{x} \\
\text { subject to } & \mathbf{A x} \leq \mathbf{b}, \\
& \mathbf{I} \leq \mathbf{x} \leq \mathbf{u}, \\
& \mathbf{x}
\end{aligned} \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p} .
$$

NP-Hard Problem

Linear Program Relaxation

Branch \& Bound Algorithm
$\arg \min \quad \mathbf{c}^{\top} \mathbf{x}$
subject to $\mathbf{A} \mathbf{x} \leq \mathbf{b}$,
$\mathbf{l} \leq \mathbf{x} \leq \mathbf{u}$,

$$
x \in \mathbb{R}^{n}
$$

Convex Problem \rightarrow lower bound to the original MILP

Branch \& Bound Algorithm

$\rightarrow \cdot x^{*} \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p} \rightarrow$ solution to the original problem (lucky!) Branching selection

- $x^{*} \notin \mathbb{Z}^{p} \times \mathbb{R}^{n-p} \rightarrow$ decompose into two sub-problems \rightarrow Node-Setection

1. Pick a fractional variable to branch on

- Lower Bound: minimum of leaf nodes
- Upper Bound: minimum of leaf nodes with integer solution

2. Continue branching to the fractional variables

3. The process stops:

- $\mathrm{LB}=\mathrm{UB}$
- $\mathrm{LB}-\mathrm{UB}=\varepsilon$
- The feasible regions do not decompose anymore

$$
x_{i} \geq\left\lceil x_{i}^{*}\right\rceil
$$

Branch \& Bound Algorithm

Fundamental Questions: Which variable to choose for branching?

- SOTA: Strong Branching

- Proposed Method: The Neural Network will say

1. Collect expert state-action pairs $D=\left\{\left(s_{i}, a_{i}^{*}\right)\right\}_{i=1}^{N}$
2. Learn the policy by minimizing:

$$
\mathcal{L}(\theta)=-\frac{1}{N} \sum_{\left(\mathbf{s}, \mathbf{a}^{*}\right) \in \mathcal{D}} \log \pi_{\theta}\left(\mathbf{a}^{*} \mid \mathbf{s}\right)
$$

Proposed Method

1. State Encoding \rightarrow bipartite graphs with attributes

Mixed-Integer Linear Program (MILP)

$$
\begin{array}{rr}
\underset{\mathbf{x}}{\arg \min } & \mathbf{c}^{\top} \mathbf{x} \\
\text { subject to } & \mathbf{A x} \leq \mathbf{b}, \\
& \mathbf{I} \leq \mathbf{x} \leq \mathbf{u}, \\
& \mathbf{x}
\end{array} \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p} .
$$

Proposed Method

How can we model the Graph to the Neural Netwok?

2. Policy $\pi_{\boldsymbol{\theta}}\left(\boldsymbol{a} \mid \boldsymbol{s}_{t}\right) \rightarrow$ Graph Convolutional Neural Network (GCNN)

Why GCNN?

- They have permutation invariance
- Combine the node with each neighbors
- From variable to constraints
- From constraints to variables

3. Treat the problem as a classification one

Evaluation Results

- Benchmarks : 4 Np Hard Problems
- Solver : SCIP 6.o.1 open source solver
- Baselines : Hybrid Branching [RBP], Full Strong Branching Expert [FSB], SVRRANK, LMART, and the regression approach of Alvarez [TREES]

Comparing accuracy of ML models

	Set Covering			Combinatorial Auction			Capacitated Facility Location			Maximum Independent Set		
model	acc@1	acc@5	acc@10									
TREES	51.8 ± 0	80.5	91.4 ± 0.2	52.9 ± 0	84.3	94.1 ± 0.1	63.0 ± 0	7.3 ± 0.	99.9 ± 0.0	30.9 ± 0	$7.4 \pm$	54.6 ± 0.3
SVMRANK	57.6 ± 0.2	84.7 ± 0.1	94.0 ± 0.1	57.2 ± 0.2	86.9 ± 0.2	95.4 ± 0.1	67.8 ± 0.1	98.1 ± 0.1	99.9 ± 0.0	48.0 ± 0.6	69.3 ± 0.2	78.1 ± 0.2
LMART	57.4 ± 0.2	84.5 ± 0.1	93.8 ± 0.1	57.3 ± 0.3	86.9 ± 0.2	95.3 ± 0.1	68.0 ± 0.2	98.0 ± 0.0	99.9 ± 0.0	48.9 ± 0.3	68.9 ± 0.4	77.0 ± 0.5
GCNN	65.5 ± 0.1	$\mathbf{9 2 . 4} \pm 0.1$	98.2 ± 0.0	$\mathbf{6 1 . 6} \pm 0.1$	91.0 ± 0.1	97.8 ± 0.1	71.2 ± 0.2	98.6 ± 0.1	99.9 ± 0.0	56.5 ± 0.2	$\mathbf{8 0 . 8} \pm 0.3$	89.0 ± 0.1

Evaluation Results

Performance regarding Solution:

```
Train on small
(Easy) instances and
evaluate
generalization on
medium (Medium)
and large (Hard)
```


Results

+ better in terms of solving time
+ generalizes to fairly larger instances
- performance decreases as the model is evaluated on larger problems
- outside of the training distribution ??
- need data for training

Model	Time	Easy Wins	Nodes	Time		Medium Wins	Nodes	Time	Hard Wins	Nodes
FSB	$17.30 \pm 6.1 \%$	0/100	$17 \pm 13.7 \%$	$411.34 \pm$	4.3\%	0/ 90	$171 \pm 6.4 \%$	$3600.00 \pm 0.0 \%$	$0 / 0$	n/a \pm n/a \%
RPB	$8.98 \pm 4.8 \%$	0/100	$54 \pm 20.8 \%$	$60.07 \pm$	3.7\%	$0 / 100$	$1741 \pm 7.9 \%$	$1677.02 \pm 3.0 \%$	4/ 65	$47299 \pm 4.9 \%$
TREES	$9.28 \pm 4.9 \%$	0/100	$187 \pm 9.4 \%$	$92.47 \pm$	5.9\%	0/100	$2187 \pm 7.9 \%$	$2869.21 \pm 3.2 \%$	0/ 35	$59013 \pm 9.3 \%$
SVMRANK	$8.10 \pm 3.8 \%$	1/100	$165 \pm 8.2 \%$	$73.58 \pm$	3.1\%	0/100	$1915 \pm 3.8 \%$	$2389.92 \pm 2.3 \%$	0/ 47	$42120 \pm 5.4 \%$
LMART	$7.19 \pm 4.2 \%$	14/100	$167 \pm 9.0 \%$	$59.98 \pm$	3.9\%	0/100	$1925 \pm 4.9 \%$	$2165.96 \pm 2.0 \%$	0/ 54	$45319 \pm 3.4 \%$
GCNN	$6.59 \pm 3.1 \%$	85 / 100	$134 \pm 7.6 \%$	$42.48 \pm$	2.7\%	100/100	$1450 \pm 3.3 \%$	$1489.91 \pm 3.3 \%$	66/70	$29981 \pm 4.9 \%$
				Set Covering						
FSB	$4.11 \pm 12.1 \%$	0/100	$6 \pm 30.3 \%$	$86.90 \pm$	12.9\%	0/100	$72 \pm 19.4 \%$	$813.33 \pm 5.1 \%$	0/68	$400 \pm 7.5 \%$
RPB	$2.74 \pm 7.8 \%$	0/100	$10 \pm 32.1 \%$	$17.41 \pm$	6.6\%	0/100	$689 \pm 21.2 \%$	$\overline{136.17 \pm 7.9 \%}$	13/100	$5511 \pm 11.7 \%$
TREES	$2.47 \pm 7.3 \%$	0/100	$86 \pm 15.9 \%$	$23.70 \pm$	11.2\%	0/100	$976 \pm 14.4 \%$	$451.39 \pm 14.6 \%$	0/ 95	10290 $\pm 16.2 \%$
SVMRANK	$2.31 \pm 6.8 \%$	0/100	$77 \pm 15.0 \%$	$23.10 \pm$	9.8\%	0/100	$867 \pm 13.4 \%$	$364.48 \pm 7.7 \%$	0/ 98	$6329 \pm 7.7 \%$
LMART	$1.79 \pm 6.0 \%$	75/100	$77 \pm 14.9 \%$	$14.42 \pm$	9.5\%	1/100	$873 \pm 14.3 \%$	$222.54 \pm 8.6 \%$	0/100	$7006 \pm 6.9 \%$
GCNN	$1.85 \pm 5.0 \%$	25/100	$70 \pm 12.0 \%$	$10.29 \pm$	7.1\%	99/100	$657 \pm 12.2 \%$	$114.16 \pm 10.3 \%$	$87 / 100$	$5169 \pm 14.9 \%$
				Combinatorial Auction						
FSB	$30.36 \pm 19.6 \%$	4/100	$14 \pm 34.5 \%$	$214.25 \pm$	15.2\%	1/100	$76 \pm 15.8 \%$	$742.91 \pm 9.1 \%$	15/90	$55 \pm 7.2 \%$
RPB	$26.55 \pm 16.2 \%$	9/100	$22 \pm 31.9 \%$	$156.12 \pm$	11.5\%	8/100	$142 \pm 20.6 \%$	$631.50 \pm 8.1 \%$	14/ 96	$\mathbf{1 1 0} \pm 15.5 \%$
TREES	$28.96 \pm 14.7 \%$	3/100	$135 \pm 20.0 \%$	$159.86 \pm$	15.3\%	3/100	$401 \pm 11.6 \%$	$671.01 \pm 11.1 \%$	1/95	$381 \pm 11.1 \%$
SVMRANK	$23.58 \pm 14.1 \%$	11/100	$117 \pm 20.5 \%$	$130.86 \pm$	13.6\%	13/100	$348 \pm 11.4 \%$	$586.13 \pm 10.0 \%$	21/95	$321 \pm 8.8 \%$
LMART	$23.34 \pm 13.6 \%$	16/100	$117 \pm 20.7 \%$	$128.48 \pm$	15.4\%	23/100	$349 \pm 12.9 \%$	$582.38 \pm 10.5 \%$	15/95	$314 \pm 7.0 \%$
GCNN	$\mathbf{2 2 . 1 0} \pm 15.8 \%$	57 / 100	$107 \pm 21.4 \%$	$120.94 \pm$	14.2% apacitat	$52 / 100$ ted Facility	$339 \pm 11.8 \%$ Location	$563.36 \pm 10.7 \%$	$30 / 95$	$338 \pm 10.9 \%$

| FSB | $23.58 \pm 29.9 \%$ | $9 / 100$ | $7 \pm 35.9 \%$ | $1 \overline{503.55 \pm 20.9 \%}$ | $0 / 74$ | $38 \pm 28.2 \%$ | $3600.00 \pm 0.0 \%$ | $0 /$ | 0 | n / a | $\pm \mathrm{n} / \mathrm{a} \%$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | | RPB | $8.77 \pm 11.8 \%$ | $7 / 100$ | $\mathbf{2 0} \pm 36.1 \%$ | $\overline{\mathbf{1 1 0 . 9 9} \pm 24.4 \%}$ | $41 / 100$ | $\mathbf{7 2 9} \pm 37.3 \%$ | $2045.61 \pm 18.3 \%$ | $22 / 42$ | $\mathbf{2 6 7 5} \pm 24.0 \%$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | TREES $\quad 10.75 \pm 22.1 \% \quad 1 / 100 \quad 76 \pm 44.2 \% \quad 1183.37 \pm 34.2 \% \quad 1 / 474664 \pm 45.8 \% ~ 3565.12 \pm 1.2 \% \quad 0 / \quad 338296 \pm 4.1 \%$ $\begin{array}{llllllllllllllll}\text { SVMRANK } & 8.83 \pm 14.9 \% & 2 / 100 & 46 \pm 32.2 \% & 242.91 \pm & 29.3 \% & 1 / & 96 & 546 & \pm 26.0 \% & 2902.94 & 9.6 \% & 1 / & 18 & 6256 & \pm 15.1 \%\end{array}$ $\begin{array}{lllllllllllllllll}\text { LMART } & 7.31 \pm 12.7 \% & 30 / 100 & 52 \pm 38.1 \% & 219.22 \pm & 36.0 \% & 15 / 91 & 747 \pm 35.1 \% & 3044.94 \pm 7.0 \% & 0 / & 12 & 8893 \pm 3.5 \%\end{array}$

How Combinatorial Optimization can help in Deep Learning?

e.g. Predict the quickest routes in Google Maps based on map input as an image

Construct Hybrid Architectures

- Problem: differentiability of the combinatorial components
- SOTA approaches : Solve a relaxation problem \longrightarrow Sub-optimal:
- Runtime
- Performance
- Optimality Quarantees

Differentiation of Blackbox Combinatorial Solvers

Gradients of Blackbox Solver

- Cost Function: $\mathbf{c}(w, y)=w \cdot \phi(y)$
- $\omega \rightarrow$ edge weights of a graph
$\omega \mapsto y(\omega)$ such that $y(w)=\arg \min _{y \in Y} \mathbf{c}(w, y)$

Differentiation of Blackbox Combinatorial Solvers

Shortest Path Problem from raw Images
$w \rightarrow$ representation Label
output: predicted shortest path for the respective map

Differentiation of Blackbox Combinatorial Solvers

Forward propagation

$\mathrm{x} \rightarrow \mathrm{NN} \rightarrow \omega \rightarrow$ Solver $\rightarrow \mathrm{y} \rightarrow \mathrm{L}(\mathrm{y})$

Backpropagation

$\mathrm{dL} / \mathrm{dx} \leftarrow \mathrm{NN} \leftarrow \mathrm{dL} / \mathrm{d} \omega \leftarrow$ Solver $\leftarrow \mathrm{dL} / \mathrm{dy} \leftarrow \mathrm{L}$

Problem!! dL/d $\omega \longrightarrow$ Useless in Optimization

Method of Interpolation

General Approaches \rightarrow Relaxation \rightarrow Loose a lot of information

Method of Interpolation

$$
\frac{d L}{d \omega}=\frac{d L}{d y} \frac{d y}{d \omega}
$$

We want a trick!

Linearization

$$
f(y)=L(\hat{y})+\frac{\mathrm{d} L}{\mathrm{~d} y}(\hat{y}) \cdot(y-\hat{y}) \longrightarrow \frac{\mathrm{d} f(y(w))}{\mathrm{d} w}=\frac{\mathrm{d} L}{\mathrm{~d} w}
$$

Interpolation
$f_{\lambda}(w)=f\left(y_{\lambda}(w)\right)-\frac{1}{\lambda}\left[\mathbf{c}(w, y(w))-\mathbf{c}\left(w, y_{\lambda}(w)\right)\right]$
$y_{\lambda}(w)=\underset{y \in Y}{\arg \min }\{\mathbf{c}(w, y)+\lambda f(y)\}$

Gradient

$\nabla f_{\lambda}(w)=-\frac{1}{\lambda}\left[\frac{\mathrm{~d} \mathbf{c}}{\mathrm{~d} w}(w, y(w))-\frac{\mathrm{d} \mathbf{c}}{\mathrm{d} w}\left(w, y_{\lambda}(w)\right)\right]=-\frac{1}{\lambda}\left[y(w)-y_{\lambda}(w)\right]$

Experiments

	Embedding Dijkstra		ResNet18	
k	Train \%	Test \%	Train \%	Test \%
12	99.7 ± 0.0	96.0 ± 0.3	100.0 ± 0.0	23.0 ± 0.3
18	98.9 ± 0.2	94.4 ± 0.2	99.9 ± 0.0	0.7 ± 0.3
24	97.8 ± 0.2	94.4 ± 0.6	100.0 ± 0.0	0.0 ± 0.0
30	97.4 ± 0.1	94.0 ± 0.3	95.6 ± 0.5	0.0 ± 0.0

The Case for Learned Index Structures

Can indexing data structures be replaced with machine learning models?

Fundamental Algorithms \& Data Structure

Why ML?

- Powerful GPU \rightarrow Parallelism
- Speed and Memory usage
- Benefit from data distributions
- Read-only in-memory data

B-Tree Index

Basic Idea: "Predict" the position
(a) B-Tree Index

(b) Learned Index

1. $\xrightarrow{\text { Key }} \xrightarrow{\text { Mos }=f(\text { key })}$
2. Do Binary search inside:
[Pos -min_error, Pos +max_error]
3. How to find this error?

4. Run all the keys through the model and take the maximum (over, under)miss-predictions

B-Tree Index

What eventually does the model? "Modeling" the CDF of the key distribution

$$
\text { Position }=P(X \leq \text { key }) * \text { Number }_{\text {keys }}
$$

- So first need to learn the data distribution

- Benefit because CDFs in ML are well studied over decades

First Attempt

- 200 M web-server log records by timestamp sorted
- 2 layer NN with 32 neurons/layer + ReLU

Goal : given the timestamp (index) \rightarrow predict the position

+ Measure the look-up time

B-Tree Index

Result?

250 ns

80.000 ns

But why?

1. Tensorflow \rightarrow designed for large models
2. B-Trees are good in overfitting
3. B-Trees \rightarrow cache and operation efficient
4. Predict the region not the exact position

Need to apply a search method (e.g. binary search)

1. Learning Index Framework (LIF)

2. Recursive Model Index

- Index synthesis system

Still Problems!

3. Hybrid Indexes

\longrightarrow Build Mixtures of Models
\longrightarrow Worse case Scenario : B-Tree!

Results

		Map Data			Web Data			Log-Normal Data		
Type	Config	Size (MB)	Lookup (ns)	Model (ns)	Size (MB)	Lookup (ns)	Model (ns)	Size (MB)	Lookup (ns)	Model (ns)
Btree	page size: 32	52.45 (4.00x)	274 (0.97x)	198 (72.3\%)	51.93 (4.00x)	276 (0.94x)	201 (72.7\%)	49.83 (4.00x)	274 (0.96x)	198 (72.1\%)
	page size: 64	26.23 (2.00x)	277 (0.96x)	172 (62.0\%)	25.97 (2.00x)	274 (0.95x)	171 (62.4\%)	24.92 (2.00x)	274 (0.96x)	169 (61.7\%)
	page size: 128	13.11 (1.00x)	265 (1.00x)	134 (50.8\%)	12.98 (1.00x)	260 (1.00x)	132 (50.8\%)	12.46 (1.00x)	263 (1.00x)	131 (50.0\%)
	page size: 256	6.56 (0.50x)	267 (0.99x)	114 (42.7\%)	6.49 (0.50x)	266 (0.98x)	114 (42.9\%)	6.23 (0.50x)	271 (0.97x)	117 (43.2\%)
	page size: 512	3.28 (0.25x)	286 (0.93x)	101 (35.3\%)	3.25 (0.25x)	291 (0.89x)	100 (34.3\%)	3.11 (0.25x)	293 (0.90x)	101 (34.5\%)
Le	2nd stage models: 10k	0.15 (0.01x)	98 (2.70x)	31 (31.6\%)	0.15 (0.01x)	222 (1.17x)	29 (13.1\%)	0.15 (0.01x)	178 (1.47x)	26 (14.6\%)
Index	2nd stage models: 50k	0.76 (0.06x)	85 (3.11x)	39 (45.9\%)	0.76 (0.06x)	162 (1.60x)	36 (22.2\%)	0.76 (0.06x)	162 (1.62x)	35 (21.6\%)
	2nd stage models: 100k	1.53 (0.12x)	82 (3.21x)	41 (50.2\%)	1.53 (0.12x)	144 (1.81x)	39 (26.9\%)	1.53 (0.12x)	152 (1.73x)	36 (23.7\%)
	2nd stage models: 200k	3.05 (0.23x)	86 (3.08x)	50 (58.1\%)	3.05 (0.24x)	126 (2.07x)	41 (32.5\%)	3.05 (0.24x)	146 (1.79x)	40 (27.6\%)

Hash Maps

(a) Traditional Hash-Map

Goal: Reduce Conflicts
(b) Learned Hash-Map

Again Learn Distributions!

$$
h(K)=P(X \leq K) * M
$$

Hash Maps - Results

Bloom Filter

- For the No we want to be sure!

(a) Traditional Bloom-Filter Insertion

(c) Bloom filters as a classification problem

Bloom Filter- Results

36\% Memory Reduction!

The Case for Learned Index Structures - Future Work

References

- Exact Combinatorial Optimization with Graph Convolutional Neural Networks, https://arxiv.org/abs/1906.01629
- Black Box Combinatorial Solver, https://arxiv.org/abs/1912.02175
- The Case for Learned Index Structures, https://arxiv.org/pdf/1712.01208.pdf
- https://medium.com/syncedreview/googles-tpu-chip-goes-public-in-challenge-to-nvidia-s-gpu-78ced56776b5
- https://towardsdatascience.com/graph-convolutional-networks-deep-99d7fee5706f

